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at a Zen garden in the
dark

• They must decide by
majority to attack or not
(no attack if tie)

• How can they conduct
the vote?



Deaf Black Ninjas in the Dark

• Deaf Black Ninjas meet
at a Zen garden in the
dark

• They must decide by
majority to attack or not
(no attack if tie)

• How can they conduct
the vote?



Deaf Black Ninjas in the Dark

• Deaf Black Ninjas meet
at a Zen garden in the
dark

• They must decide by
majority to attack or not
(no attack if tie)

• How can they conduct
the vote?



Deaf Black Ninjas in the Dark

• Deaf Black Ninjas meet
at a Zen garden in the
dark

• They must decide by
majority to attack or not
(no attack if tie)

• How can they conduct
the vote?



Deaf Black Ninjas in the Dark

• Ninjas wander randomly, interacting when they
bump into each other.

• Ninjas store their current estimation of the final
outcome: attack or don’t attack.

• Additionally, they are active or passive .
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• Initially: all ninjas active, estimation = own vote.



Deaf Black Ninjas in the Dark

• Ninjas wander randomly, interacting when they
bump into each other.

• Ninjas store their current estimation of the final
outcome: attack or don’t attack.

• Additionally, they are active or passive .

attack
active

don’t attack
active

attack
passive

don’t attack
passive

• Initially: all ninjas active, estimation = own vote.



Deaf Black Ninjas in the Dark

• Ninjas wander randomly, interacting when they
bump into each other.

• Ninjas store their current estimation of the final
outcome: attack or don’t attack.

• Additionally, they are active or passive .

attack
active

don’t attack
active

attack
passive

don’t attack
passive

• Initially: all ninjas active, estimation = own vote.



Deaf Black Ninjas in the Dark

• Ninjas wander randomly, interacting when they
bump into each other.

• Ninjas store their current estimation of the final
outcome: attack or don’t attack.

• Additionally, they are active or passive .

attack
active

don’t attack
active

attack
passive

don’t attack
passive

• Initially: all ninjas active, estimation = own vote.



Deaf Black Ninjas in the Dark

Goal of voting protocol:

• eventually all ninjas reach the same
estimation, and

• this estimation corresponds to the majority.

Graphically:

• Initially more red ninjas =⇒
eventually all ninjas red.

• Initially more blue ninjas or tie =⇒
eventually all ninjas blue.
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Majority protocol: Are there more red ninjas than blue ninjas?

• Active ninjas of opposite
colors become passive
and blue

• Active ninjas convert
passive ninjas to their
color

Go!

file:///C:/Users/Esparza/Desktop/MisCharlas/LICS18/html/example1.html


Sad story …
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Majority protocol: Why?

• The first rule has no priority over the other
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Majority protocol: Why?

• The first rule has no priority over the other
two.

NO CONSENSUS!
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Interaction rules:

Passive blue ninjas convert
passive red ninjas to their
color

Sensei II Go!
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Sensei II’s protocol: Are theremore redninjas thanblueninjas?
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Very sad story …



Sensei III



Sensei III’s protocol

= Attack majority = Don’t attack majority = Tie

Interaction rules: Go!

file:///C:/Users/Esparza/Desktop/MisCharlas/LICS18/html/example4.html


Sensei III’s protocol
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Sensei III’s questions

Formalization questions:

• What is a protocol ?
• When is a protocol ``correct''?
• When is a protocol ``efficient''?



Sensei III’s questions

Verification questions:

• How do I check that my protocol is
correct ?

• How do I check that my protocol is
efficient ?



Sensei III’s questions

Expressivity questions:
• Are there protocols for other
problems?

• How large is the smallest protocol
for a problem?

• And the smallest efficient protocol?
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people in social networks

“soups” of molecules
(Chemical Reaction Networks)
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Population protocols: formal model Angluin, Aspnes et al. PODC’04

• States: finite set Q
• Opinions: O : Q→ {0, 1}
• Initial states: I ⊆ Q

• Transitions: T ⊆ Q2 × Q2

• Configurations: Q→ N

• Initial configurations: I→ N
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( 2 5 1 3 )

• States: finite set Q
• Opinions: O : Q→ {0, 1}
• Initial states: I ⊆ Q

• Transitions: T ⊆ Q2 × Q2

• Configurations: Q→ N

• Initial configurations: I→ N



Population protocols: formal model Angluin, Aspnes et al. PODC’04

( 2 5 0 0 )

• States: finite set Q
• Opinions: O : Q→ {0, 1}
• Initial states: I ⊆ Q

• Transitions: T ⊆ Q2 × Q2

• Configurations: Q→ N

• Initial configurations: I→ N



Population protocols: runs

Reachability graph for (3, 2,0,0):



Population protocols: runs

Underlying Markov chain:
(pairs of agents are picked uniformly at random)

2
10

2
10

6
10

1
10

4
10

4
10

4
10

6
10

4
10

4
10

6
10

10
10

6
10

2
10

4
10

3
10

2
10



Population protocols: runs

Run : infinite path from initial configuration
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Population protocols: computing predicates

Protocol computes φ : InitC → {0, 1}:
for every C ∈ InitC , the runs starting at C
reach stable consensus φ(C) with probability 1.

C0
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1 1

C2

1

. . .
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for every C ∈ InitC , the runs starting at C
reach stable consensus φ(C) with probability 1.
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Protocol computes φ(C0) = 0, φ(C1) = 1, φ(C2) = 1, . . .
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Population protocols: computing predicates

Protocol computes φ : InitC → {0, 1}:
for every C ∈ InitC , the runs starting at C
reach stable consensus φ(C) with probability 1.

C0

0 0

C1

1

C2

1

. . .

Protocol ill defined for C1 (Sensei I’s problem)



Population protocols: computing predicates

A protocol is well specified if it
computes some predicate

A protocol for a predicate φ is correct if
it computes φ (in particular, correct
protocols are well specified)



Population protocols: computing predicates

A protocol is well specified if it
computes some predicate

A protocol for a predicate φ is correct if
it computes φ (in particular, correct
protocols are well specified)



Sensei III’s questions

What predicates can we compute?

How fast can we compute them?

How succinctly can we compute them?

How can I check correctness?

How can I check efficiency?

To conclude …



Expressive power

Angluin, Aspnes, Eisenstat Dist. Comp.’07
Population protocols compute precisely the predicates
definable in Presburger arithmetic



Expressive power

Angluin, Aspnes, Eisenstat Dist. Comp.’07
Population protocols compute precisely the predicates
definable in Presburger arithmetic

Presburger arithmetic
• Atomic formulas: a1x1 + · · ·+ amxm < b
• Formulas: Close under boolean operations and
quantification

• Formula F(x1, . . . , xn) interpreted over Nn

• Predicate φ : Nn → {0, 1} definable in Presburger
arithmetic if there is formula F(x1, . . . , xn) s.t. for
every v ∈ Nn: φ(v) = 1 iff F(v) holds .



Expressive power

Angluin, Aspnes, Eisenstat Dist. Comp.’07
Population protocols compute precisely the predicates
definable in Presburger arithmetic

Quantifier elimination

Every Presburger formula F(x1, . . . , xn) has an equivalent
quantifier-free formula: A boolean combination of
threshold and modulo predicates

a1x1 + · · ·+ anxn < b a1x1 + · · ·+ anxn ≡ b (mod c)

with coefficients in Z



Expressive power

Angluin, Aspnes, Eisenstat Dist. Comp.’07
Population protocols compute precisely the predicates
definable in Presburger arithmetic

Proof:
1) PPs compute all Presburger predicates

Since Presburger arithmetic has quantifier elimination,
it suffices to:

• Exhibit PPs for threshold and modulo predicates
• Prove that predicates computable by PPs are closed
under negation and conjunction
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Initially: x agents, each with 2 euros, and

y agents, each with −3 euros (debt of 3 euros)

Agents must compute if total wealth less than 5 euros

Interactions:

• Two active agents: One agent transfers its money to the
other and goes passive; new opinions given by wealth of
active agent.

(7, A, ≥5) , (-4, A, <5) 7→ (3, A, <5) , (0, P, <5)
(2, A, <5) , (4, A, <5) 7→ (6, A, ≥5) , (0, P, ≥5)

• One active, one passive agent: Same.
• Two passive agents: Nothing happens.
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States: each agent keeps a residue 0, 1, 2, 3, 4
is active or passive (A or P)
has opinion on result (≡1, ̸≡1)

Examples: (2, A, ̸≡1), (0, P, ≡1)

Initially:
x active agents, each with residue 2
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Agents compute total wealth modulo 5
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Remainder predicates: A protocol for 2x− 3y ≡ 1 mod 5

States: each agent keeps a residue 0, 1, 2, 3, 4
is active or passive (A or P)
has opinion on result (≡1, ̸≡1)

Examples: (2, A, ̸≡1), (0, P, ≡1)

Correctness:
• Residue of total wealth is an invariant
• Eventually only one active agent left (leader).
Leader has the correct residue and the correct opinion

• Leader eventually changes opinions of all passive agents
to correct one
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Closure under boolean operations

Computable predicates are closed under negation
Invert the opinions of the states

Computable predicates are closed under conjunction
Let agents “multitask” to simultaneously compute the two
predicates

States: pairs (q, r), where q and r states of the first and second
protocols, resp.
Transitions: q1,q2 7→ q3,q4

r1, r2 7→ r3, r4
(q1, r1), (q2, r2) 7→ (q3, r3), (q4, r4)

Opinion of (q, r): O(q) ∧ O(r)
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Beyond Presburger predicates

• PPs can only compute predicates in DSPACE(log log n)
Meaning: if n agents can compute φ(n) then there is a
deterministic TM that on input the unary encoding of n
computes φ(n) using log log n space
Proof: Presburger languages are regular

• Several ways to increase power to NSPACE(log n):

• Absence detectors Michail, Spirakis JPDC’16
Agents detect absence of agents in states.

• Clocked protocols Aspnes PODC’17
Agents detect if stable consensus has been reached.

• Broadcast protocols Blondin, Esparza, Jaax, CONCUR’19
Agents can broadcast a signal to all agents.
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Beyond Presburger predicates

• PPs can only compute predicates in DSPACE(log log n)

• Several ways to increase power to NSPACE(log n):

• Absence detectors Michail, Spirakis JPDC’16
Agents detect absence of agents in states.

• Clocked protocols Aspnes PODC’17
Agents detect if stable consensus has been reached.

• Broadcast protocols Blondin, Esparza, Jaax, CONCUR’19
Agents can broadcast a signal to all agents.

For all three: n agents can simulate a NCM with counters
bounded by nc, and so an NTM using logspace in n



Beyond Presburger predicates

Increasing the expressive power to NSPACE(n log n) or
NSPACE(n2):

• Community protocols Guerraoui, Ruppert ICALP’09
• Agents have unique identities (integers)
• Agents can store a fixed number of identities in registers
• Agents can only compare identities according to <

• New states depends on old states and register contents

• Mediated protocols Michail et al. ICALP’09, TCS’11
No identities, but channels have state.
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Sensei III’s questions

What predicates can we compute?

How fast can we compute them?

How succinctly can we compute them?

How can I check correctness?

How can I check efficiency?

To conclude …



Efficiency

Efficiency measured by the expected number of interactions
until stable consensus: Inter(n)

Expected parallel time to consensus depends on
the concurrency model

Most popular model:

• A communication channel for every pair of agents
• For each pair, number of communications follows a
Poisson distribution with given rate

• Important advantage of the model: expected parallel
time Time(n) satisfies

Time(n) = Inter(n)/n
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time ?
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Efficiency

Alistarh et al. consider families {Pn}∞n=1 of protocols, where
Pn is the protocol used for inputs with n agents.

Alistarh et al. PODC ’15
There is a uniform family of protocols with O(n) states that
computes majority (without ties) in O(logO(1)(n)) time.

Alistarh et al. SODA ’17
Every (uniform or nonuniform) family of protocols with
O(log log n) states that correctly elects a leader or computes
majority takes Ω(n/polylog n) time.

Alistarh et al. SODA ’18
There exists a uniform family of protocols with O(log2 n)
states that computes majority in O(logO(1)(n)) time.
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Succinctness–An Example

Protocol for: Are there at least 4 sick ninjas?

• Each ninja is in a
state of {0, 1, 2, 3, 4}

• Initially, sick ninjas
in state 1, healthy
ninjas in state 0

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4
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Sensei III’s questions: Succinctness–An Example

Protocol for: Are there at least 2ℓ sick ninjas?

• Each ninja is in a
state of
{0, 1, . . . , 2ℓ − 1, 2ℓ}

• Initially, sick ninjas
in state 1, healthy
ninjas in state 0

• (m,n) 7→ (m+ n,0)
if m+ n < 2ℓ

• (m,n) 7→ (2ℓ, 2ℓ)
if m+ n ≥ 2ℓ

• Each ninja is in a
state of {0, 20, . . . , 2ℓ−1, 2ℓ}

• Initially, sick ninjas in
state 20, healthy ninjas
in state 0

• (2m, 2m) 7→ (2m+1,0)
if m+ 1 ≤ ℓ

• (2ℓ,n) 7→ (2ℓ, 2ℓ)

• Can be generalized to
non-powers of 2
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Succinctness

Just gave a protocol for X ≥ c with O(log c) states.

Is O(log log c) possible?
Not for every c …

Blondin, E., Jaax STACS’18
There exist infinitely many c such that every protocol for
X ≥ c has at least (log c)1/4 states

…but for some c, if we allow leaders:

Blondin, E., Jaax STACS’18
For infinitely many c there is a protocol with two leaders and
O(log log c) states that computes X ≥ c
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Sensei III’s questions

What predicates can we compute?

How fast can we compute them?

How succinctly can we compute them?

How can I check correctness?

How can I check efficiency?

To conclude …



Checking correctness

Protocols can become complex, even forB ≥ R:
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Protocols can become complex, even forB ≥ R:

How can we verify

correctness
automatically?



Checking correctness—Early days

Model checkers:

• PAT: model checker with global fairness
(Sun, Liu, Song Dong and Pang CAV’09)

• bp-ver: graph exploration
(Chatzigiannakis, Michail and Spirakis SSS’10)

• Conversion to counter machines + PRISM/Spin
(Clément, Delporte-Gallet, Fauconnier and Sighireanu ICDCS’11)

Only for populations of fixed size!

Not automatic!
Challenge: verifying automatically

all sizes
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Checking correctness—Decidability Acta Inf.’17

E., Ganty, Leroux, Majumdar Acta Inf.’17
It is decidable if a population protocol computes a given
(Presburger) predicate.
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C0 C1 C2 C3 C4 . . .

Initial configurations, colored with intended result

. . .

Bottom configurations, colored if consensus

Incorrect protocol: always wrong result for C3



Checking correctness—Decidability Acta Inf.’17

C0, C3, C5 … C1, C2, C4 …

A protocol correctly computes the given predicate iff:
no white or red SCCs reachable from blue initial configurations
no white or blue SCCs reachable from red initial configurations

Correctness reduced to reachability question between infinite
sets of configurations



Checking correctness—Decidability Acta Inf.’17

C0, C3, C5 … C1, C2, C4 …

Define: sets I, I1 and I0 of initial configurations
sets B, B1 and B0 of bottom configurations



Checking correctness—Decidability Acta Inf.’17

C0, C3, C5 … C1, C2, C4 …

Define: sets I, I1 and I0 of initial configurations
sets B, B1 and B0 of bottom configurations

We study the shape of these infinite sets



Basic notions: Presburger arithmetic

Presburger arithmetic

• Atomic formulas: a1x1 + · · ·+ anxn < b
• Formulas: Close under boolean operations and
quantification

• Formula F(x1, . . . , xm) with free variables x1, . . . , xm
interpreted over Nm



Init, Init1 and Init0 are Presburger definable

• Init is the set of configurations having
• arbitrarily many agents in initial states, and
• zero agents in non-initial states

⇒ Init is Presburger definable

• Init1 is the set of initial configurations satisfying the
given predicate φ, and φ is Presburger definable
⇒ Init1 is Presburger definable

• Init0 is the set of initial configurations that do not
satisfy φ, and φ is Presburger definable
⇒ Init0 is Presburger definable
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Bottom, Bottom1 and Bottom0 are Presburger definable

The mutual reachability relation ∗←→ on the configurations of a
given protocol is defined by:

C ∗←→ C′ iff C ∗−→ C′ and C′ ∗−→ C

∗←→ is a congruence:

• ∗←→ is an equivalence relation
• C1 ∗←→ C′1 ∧ C2 ∗←→ C′2 ⇒ C1 + C2 ∗←→ C′1 + C′2

Eilenberg and Schützenberger ’69, Hirshfeld ’94
Congruences over Nn are Presburger definable subsets of N2n

Corollary
∗←→ is definable in Presburger arithmetic
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A configuration C is a bottom configuration iff for every
configuration C′, C′′:(

C ∗←→ C′ ∧ C′ −→ C′′
)
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So the predicate Bottom(C) is captured by the formula:

Bottom(C) := ∀C′, C′′ :
(
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)
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Since both ∗←→ and −→ (one step!) are Presburger definable:
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Bottom, Bottom1 and Bottom0 are effectively
Presburger definable

Leroux ’11, Acta.Inf. ’17
The mutual reachability relation of a population protocol is
effectively Presburger definable

Proof:
1) Prove it first for globally cyclic protocols in which mutual
reachability and reachability coincide

2) Show: for every protocol there is a globally cyclic protocol
with the same mutual reachability relation

Corollary
Bottom, Bottom1 and Bottom0 are effectively Presburger
definable
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From correctness to Petri net reachability

Recall that a protocol correctly computes a predicate iff:

Bottom\Bottom0 is not reachable from Init1, and
Bottom\Bottom1 is not reachable from Init0.

We have reduced the correctness problem to:

Given: A population protocol P
(Eff.) Presburger sets C, C′ of configurations of P

Decide: Is some configuration of C′ reachable from some
configuration of C?

Now we reduce this to the reachability problem for Petri nets:

Given: Two markings M,M′ of a Petri net

Decide: Is M′ reachable from M ?
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From PPs to Petri nets

Population protocols Petri nets

State Place

Interaction Transition with
(q1,q2) 7→ (q′1,q′2) input places q1,q2

output places q′1,q′2

PP-scheme Net without marking

Configuration Marking

PP Net + infinite family of
initial markings
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Petri net of the slow majority protocol
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Petri net of the majority protocol
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2



From PPs to Petri nets

Every population protocol yields a net (without marking)

Not every net corresponds to a protocol!

• Protocol transitions neither create nor destroy tokens
• In particular, Petri nets derived from protocols are
bounded for every initial marking

Petri nets “more general” than population protocols in this
sense



Additional power of Petri nets
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Checking correctness—Feasibility

Our approach:
• Most protocols are naturally analyzed in “stages”:
“milestones” until the protocol reaches consensus 0 or 1,
depending on the input

• Sound and complete methodology reflecting this idea:

Stage Graphs
• Stage graphs for b = 0 and b = 1, describing “milestones”
from the initial configurations for which the output
should be b

• SMT-based semi-algorithm for the automatic construction
of stage graphs
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Preliminaries: Transition-based consensus

• Split set T of transitions into T0, T1, T⊥.
• Run reaches stable consensus b if from some
moment on it only executes transitions of Tb.

• Equivalent to state-based consensus

Milestones: ``killing'' transitions

• A transition is dead at a configuration C if no
configuration reachable from C enables it

• Intuition: protocols make progress towards
consensus by “killing” transitions, until all
“survivors” in T0 or all in T1.
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Preliminaries: Progress certificates

• Let C, C ′ be sets of configurations (think C ′ has more
dead transitions than C)

• C  C ′: runs starting at C visit C ′ with probability 1
• Certificate for C  C ′: mapping f : C → N such that
for every C ∈ C \ C ′ there exists C ∗−→ C′ such that
f(C) > f(C′).

• One-step certificate for C  C ′: C −→ C′ instead of
C ∗−→ C′.

Easy but important
For C inductive (closed under reachability):

C  C ′ iff there is a certificate for it
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Stage graphs

A stage graph for a given protocol, a given predicate, and a
given b ∈ {0, 1} is a finite DAG satisfying:

1. The nodes of the DAG, called stages,
are inductive sets of configurations
(closed under reachability)

2. Every b-initial configuration of the
protocol belongs to some initial stage

3. For every non-terminal stage C with
children C1, . . . , Cn there is a certificate
for C  C1 ∪ · · · ∪ Cn

4. For every terminal stage C: every C ∈ C
enables only transitions of Tb
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Majority protocol (R
?
> B)

t1 : B,R 7→ b,b t3 : R,b 7→ R, r

t2 : B, r 7→ B,b t4 : b, r 7→ b,b
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Stage graphs: soundness, completeness, decidabilty

Soundness
If a protocol has stage graphs for a predicate φ and
both 0 and 1, then the protocol computes φ.

Proof.
Easy.
Show that executions “go down” the stage graph w.p.1
till they get “trapped” in a bottom stage.



Stage graphs: soundness, completeness, decidabilty

A Presburger stage graph is a stage graph whose nodes
are Presburger sets and whose certificates are one-step
Presburger certificates (f(C) = a iff ψ(C,a) ≡ true)

Completeness Acta Inf. 2017

If a protocol computes φ, then it has Presburger stage
graphs for φ and both 0 and 1.

Proof.
Very hard.
Initial stage: Inductive Presburger “envelope” of the b-initial
configurations.
Final stage: set of all b-stable consensuses.



Stage graphs: soundness, completeness, decidabilty

Decidability Acta Inf. 2017

It is decidable if a given DAG of Presburger sets and
Presburger functions is a Presburger stage graph for a
given b.

Proof.
Follows from properties of Presburger sets:

Inductivity of Presburger sets is decidable (in NP for existential
fragment)

Whether a Presburger function is a one-step Presburger certificate
is decidable (in NP for existential fragment)



Stage graphs: soundness, completeness, decidabilty

Alternative algorithm for decidability of correctness:

• Two semi-decision algorithms
• For non-correctness: enumerate all initial
configurations and check convergence to the right
value

• For correctness: enumerate all DAGs of Presburger
sets and functions, and check if they are Presburger
stage graphs for 0 or for 1



Computing the children of a stage S

Input: S

U := ASDead(S)

if U ̸= ∅ then

output DeadAt(U,S)

else

output Split(S)



Computing the children of a stage S

Input: S

U := ASDead(S)

if U ̸= ∅ then

output DeadAt(U,S)

else

output Split(S)

Returns a set of transitions
that will die almost surely
from any configuration of S



Computing the children of a stage S

Input: S

U := ASDead(S)

if U ̸= ∅ then

output DeadAt(U,S)

else

output Split(S)

Overapproximates the
configurations reachable
from S at which U is
dead



Computing the children of a stage S

Input: S

U := ASDead(S)

if U ̸= ∅ then

output DeadAt(U,S)

else

output Split(S)
Attempts to split S into
stages with more dead
transitions



Computing the children of a stage S

Input: S

U := ASDead(S)

if U ̸= ∅ then

output DeadAt(U,S)

else

output Split(S)



Implementing AsDead(S): Kirchoff’s equations

Transition t =⇒ offset ∆(t)

Examples: t : q1,q2 7→ q2,q3 =⇒ ∆(t) = (−1,0, 1)
t : q1,q2 7→ q3,q3 =⇒ ∆(t) = (−1,−1, 2)

We have: if C t−→ C′ then C′ = C+∆(t)

Transition sequence w = t1 . . . tn

=⇒ offset ∆(w) =
n∑
i=1

∆(ti) =
∑
t∈T

#(t,w) ·∆(t)

Example: if C t1t2t1−−−→ C′ then C′ = C+ 2 ·∆(t1) + ∆(t2)

We have: if C w−→ C′ then C′ = C+∆(w)

If transition u can occur infinitely often

=⇒ there is C w−→ C with #(u,w) ≥ 1

=⇒ there is w with ∆(w) = 0 and #(u,w) ≥ 1

=⇒ there is w with
∑

t∈T#(t,w) ·∆(t) = 0 and#(u,w) ≥ 1
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t∈T

nt ·∆(t) = 0 and nu ≥ 1
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Kirchoff’s equations (unknowns: {nt | t ∈ T})



Implementing AsDead(S): Kirchoff’s equations

If transition u can occur infinitely often

=⇒ there is C w−→ C with #(u,w) ≥ 1

=⇒ there is w with ∆(w) = 0 and #(u,w) ≥ 1

=⇒ there is w with
∑

t∈T#(t,w) ·∆(t) = 0 and#(u,w) ≥ 1

=⇒ there are coefficients nt for every t ∈ T with∑
t∈T

nt ·∆(t) = 0 and nu ≥ 1︸ ︷︷ ︸
Kirchoff’s equations (unknowns: {nt | t ∈ T})

Kirchoff’s equations unsatisfiable
=⇒ t cannot occur infinitely often from any configuration



Implementing AsDead(S): Layers

A layer of a protocol is a set L of transitions such that for
every configuration C (reachable or not):

• all executions from C containing only transitions of L
are finite

• if all transitions of L are disabled at C, then they
cannot be re-enabled by any sequence w ∈ (T \ L)∗.

If L is a layer, then from any configuration all transitions
of L eventually die

There exists a set of integer linear constraints whose
solutions correspond to the possible layers of the
protocol −→ finding a layer is in NP



Implementing AsDead(S): Layers

A layer of a protocol is a set L of transitions such that for
every configuration C (reachable or not):

• all executions from C containing only transitions of L
are finite

• if all transitions of L are disabled at C, then they
cannot be re-enabled by any sequence w ∈ (T \ L)∗.

If L is a layer, then from any configuration all transitions
of L eventually die
There exists a set of integer linear constraints whose
solutions correspond to the possible layers of the
protocol −→ finding a layer is in NP



Implementing DeadAt(U,S)

Recall: DeadAt(U,S) overapproximates the
configurations reachable from S at which U is dead
Computable as intersection of:

• overapproximation of the configurations reachable
from S
(overapproximation is necessary)

• overapproximation of the configurations at which U
is dead
(overapproximation is optional)



Implementing DeadAt(U,S)

Set of configurations reachable from S
Overapproximated by set of configurations satisfying
automatically computed linear invariants of the form

∑
q∈Q

aq · C(q) ≥ b



Implementing DeadAt(U,S)

Set of configurations at which U is dead
Dead(U): configurations at which U is dead
En(U): configurations enabling some transition of U.

Dead(U) = pre∗(En(U))
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Observation: pre∗(En(U)) is upward-closed

Dead(U) is downward-closed
⇒ both are Presburger



Implementing DeadAt(U,S)

Set of configurations at which U is dead
Dead(U): configurations at which U is dead
En(U): configurations enabling some transition of U.

Dead(U) = pre∗(En(U))

Proposition
pre∗(En(U)) has finitely many minimal elements, and
they can be computed using a symbolic backward
reachability algorithm.



Implementing DeadAt(U,S)

Set of configurations at which U is dead
Dead(U): configurations at which U is dead
En(U): configurations enabling some transition of U.

Dead(U) = pre∗(En(U))

Proposition
pre∗(En(U)) has finitely many minimal elements, and
they can be computed using a symbolic backward
reachability algorithm.

⇒ both are effectively Presburger



Some experimental results (a bit outdated …)

Intel Core i7-4810MQ CPU and 16 GB of RAM.

Protocol Predicate |Q| |T| Time[s]
Majority[1] x ≥ y 4 4 0.1
Approx. Majority[2] Not well-specified 3 4 0.1
Broadcast[3] x1 ∨ . . . ∨ xn 2 1 0.1
Threshold[4] Σiαixi < c 76 2148 2375.9
Remainder[5] Σiαixi mod 70 = 1 72 2555 3176.5
Sick ninjas[6] x ≥ 50 51 1275 181.6
Sick ninjas[7] x ≥ 325 326 649 3470.8
Poly-log sick ninjas x ≥ 8 · 104 66 244 12.79

[1] Draief et al., 2012 [2] Angluin et al., 2007 [3] Clément et al., 2011
[4][5] Angluin et al., 2006 [6] Chatzigiannakis et al., 2010 [7] Clément et al., 2011



Sensei III’s questions

What predicates can we compute?

How fast can we compute them?

How succinctly can we compute them?

How can I check correctness?

How can I check efficiency?

To conclude …



Peregrine: a tool for population protocols Blondin, E., Jaax CAV’18

Peregrine: + Microsoft Z3 + JavaScript

peregrine.model.in.tum.de

• Design of protocols

• Manual and automatic simulation

• Statistics of properties such as termination time

• Automatic verification of correctness

• More to come!



Conclusion

Population protocols are a great model to
study fundamental questions of distributed
computation:

• Power of anonymous computation
• Network-independent algorithms
• Role of leaders
• Emergent behaviour and its limits



Conclusion

…and of formal verification:

• Verification of stochastic parameterized
systems (parameterization, liveness under
fairness)

• Automatic synthesis of parameterized
systems



Go!

THANK YOU!
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