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Back in victorian Britain . . .

There was concern amongst the Victorians that aristocratic
families were becoming extinct.

Francis Galton (1822-1911), anthropologist and polymath:
Are families of English peers more likely to die out than the
families of ordinary men?

Let p0, p1, . . . , pn be the respective probabilities that a
man has 0, 1, 2, . . . n sons, let each son have the
same probability for sons of his own, and so on. What
is the probability that the male line goes extinct?

Henry William Watson (1827-1903), priest and mathematician:
The probability is the least solution of

X = p0 + p1X + p2X 2 + . . . + pnX n
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Termination of probabilistic programs

proc X proc Y proc Z

X

Y

X

Z

0.4

0.6 X

Y

Y

Z

0.3 0.4

0.3

0.3

0.7

Does the program terminate with probability 1 ?
The probabilities of termination are the least solution of

X = 0.4XY + 0.6
Y = 0.3XY + 0.4YZ + 0.3
Z = 0.3XZ + 0.7
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Monotone Systems of Polynomial Equations

These are examples of equation systems of the form

X = f (X )

where
X is a vector of n variables,
f (X ) is a vector of polynomials with positive coefficients.

We call them Monotone Systems of Polynomial Equations.
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Monotone Systems of Polynomial Equations

MSPEs appear in the
analysis of stochastic branching processes
– biology populations, chemical and nuclear reactions
analysis of stochastic context-free grammars

– Natural Language Processing, computational biology
verification of probabilistic programs
computation of reputations in reputation systems

We assume in this talk that there exists a non-negative solution.
Then there is a least one, denoted by µf .

This talk surveys what is known about computing
(approximating, gaining information on) µf .
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Comparing MSPEs and linear equations

The least solution of a linear system of equations with rational
coefficients is rational.

This property fails for MSPEs:

Example
The least solution of

f (X ) =
1
6

X 6 +
1
2

X 5 +
1
3

is irrational and not expressible by radicals.

We have 0.3357037075 < µf < 0.3357037076
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Comparing MSPEs and linear equations

The least solution of a linear system of equations with rational
coefficients can be written using polynomially many bits.

This again fails for MSPEs:

Example
The n-th component of the least solution of

X1 = 2, X2 = X 2
1 , . . . Xn = X 2

n−1

is 22(n−1) and so needs 2(n−1) bits.

Javier Esparza, Stefan Kiefer, Michael Luttenberger Solving Monotone Polynomial Equations



Comparing MSPEs and linear equations

The least solution of a linear system of equations with rational
coefficients can be written using polynomially many bits.

This again fails for MSPEs:

Example
The n-th component of the least solution of

X1 = 2, X2 = X 2
1 , . . . Xn = X 2

n−1

is 22(n−1) and so needs 2(n−1) bits.

Javier Esparza, Stefan Kiefer, Michael Luttenberger Solving Monotone Polynomial Equations



Comparing MSPEs and linear equations

The least solution of a linear system of equations with rational
coefficients can be computed in polynomial time (non-trivial).

Does this hold for MSPEs?

Since in general there is no closed form for the solution of a
MSPE, we reformulate the question:

MSPE-DECISION
Given an MSPE X = f (X ) with rational coefficients and k ∈ Q,
decide whether

(
µf

)
1 ≤ k .
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An upper bound on MSPE-DECISION

Proposition
MSPE-DECISION is in PSPACE.

Proof.
For X1 = f1(X1, X2), X2 = f2(X1, X2), we have (µf )1 ≤ a iff the
following formula is true over the reals:
∃x1, x2 : x1 = f1(x1, x2) ∧ x2 = f2(x1, x2) ∧ x1, x2 ≥ 0 ∧ x1 ≤ a
The first-order theory of the reals is decidable [Tarski 48], and
its existential fragment is in PSPACE [Canny 88].

However: current algorithms limited to 5 or 6 variables.
Possibly enough for our program example, but for little more . . .
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Lower bounds on MSPE-DECISION [EY]

SQUARE-ROOT-SUM
Given natural numbers d1, . . . , dn ∈ N and a bound k ∈ N,

decide whether
n∑

i=1

√
di ≤ k .

(a “subproblem” of euclidean TSP with coordinates as input)

SQUARE-ROOT-SUM is in PSPACE, but it is not known to be in
NP (despite rather intense efforts).

PosSLP (Positive Straight Line Program) [Allender et al 06]

Given an arithmetic circuit with integer inputs and gates +, ∗,−,
does the circuit output a positive number?.

Hard for the problems that can be solved with a polynomial
number of arithmetic operations. Unlikely to be in P.
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Lower bounds on MSPE-DECISION [EY]

Proposition [EY]
SQUARE-ROOT-SUM ≤ PosSLP ≤ MSPE-DECISION.

Conclusion:
MSPE-DECISION is in PSPACE and unlikely to be in P.
It might be solvable using a polynomial number of
arithmetic operations; a proof of this would be a
sensational result.
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A simple approximation method

Proposition (Kleene’s fixed point theorem)

The Kleene sequence 0, f (0), f (f (0)), . . . converges to µf .

Example
For our probabilistic program we get:

k (f k (0))1 (f k (0))2 (f k (0))3
0 0.000 0.000 0.000
4 0.753 0.600 0.887
8 0.834 0.738 0.926

12 0.873 0.802 0.944
16 0.897 0.839 0.955

Is the solution µf = (1, 1, 1)?

For a proof we need a guarantee on the convergence speed.
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Convergence order

Definition

Let a(0) ≤ a(1) ≤ a(2) . . . satisfying lim
k→∞

a(k) = a < ∞.

The convergence order of a(0) ≤ a(1) ≤ a(2) . . . is the function
β : N → N where β(k) is the number of bits of a(k) that coincide
with the corresponding bits of a.

Informally, β(k) is the number of accurate bits of a(k).

Example

If a = 101, 0110 . . ., a(0) = 010, 01, and a(1) = 100, 0101 . . .,
then β(0) = 0 and β(1) = 2.

Extension to sequences of vectors: take for β(k) the minimum
of the number of accurate bits of the vector components.
We speak of linear, exponential, or logarithmic orders.
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Kleene Iteration is slow

The Kleene sequence may have logarithmic convergence order.

Example

The least solution of X = 0.5X 2 + 0.5 is 1 = 0.999 · · · .
The Kleene sequence needs k iterations for about log k bits:

k f k (0)

0 0.0000
1 0.5000
2 0.6250
3 0.6953
4 0.7417

k f k (0)

20 0.9200
200 0.9900

2000 0.9990
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Kleene Iteration (univariate case)

Consider f (X ) = 3
8X 2 + 1

4X + 3
8

0 0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

1.2

1.2

µf

f (X )
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Slow
Logarithmic convergence order

→ try Newton’s method
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Newton’s Method (univariate case)

Consider X = f (X ) with f (X ) = 3
8X 2 + 1

4X + 3
8
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k iterations for k bits



Mathematical formulation (univariate case)

Let X = f (X ) be a monotonic equation and let ν be some
approximation of µf .

Newton’s method gets a better approximation ν ′ as follows:

1 Compute the tangent of f at ν:

Y = f (ν) + f ′(ν) · (X − ν)

2 Take ν ′ as its intersection with the straight line Y = X :

ν ′ := ν +
f (ν)− ν

1− f ′(ν)

Javier Esparza, Stefan Kiefer, Michael Luttenberger Solving Monotone Polynomial Equations



Generalization to the multivariate case

Let X = f (X ) be an MSPE and let ν be some approximation
of µf .

We get a better approximation ν ′ as follows:

ν ′ := ν + (Id− f ′(ν))−1(f (ν)− ν)

where
f ′ is the Jacobian of f , i.e., the matrix of partial derivatives
of f , and
Id is the identity matrix.
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Our probabilistic program again . . .

X
Y
Z

 =

 0.4XY + 0.6
0.3XY + 0.4YZ + 0.3

0.3XZ + 0.7



k (f k (0))X (f k (0))Y (f k (0))Z ν
(k)
X ν

(k)
Y ν

(k)
Z

0 0.000 0.000 0.000 0.000 0.000 0.000
4 0.753 0.600 0.887 0.933 0.899 0.972
8 0.834 0.738 0.926 0.983 0.974 0.993

12 0.873 0.802 0.944 0.983 0.974 0.993
16 0.897 0.839 0.955 0.983 0.974 0.993

Is the solution µf = (1, 1, 1)? Probably no, but we don’t have a
proof.

And perhaps we’ve just been lucky with the example!
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X
Y
Z

 =

 0.4XY + 0.6
0.3XY + 0.4YZ + 0.3

0.3XZ + 0.7



k (f k (0))X (f k (0))Y (f k (0))Z ν
(k)
X ν

(k)
Y ν

(k)
Z

0 0.000 0.000 0.000 0.000 0.000 0.000
4 0.753 0.600 0.887 0.933 0.899 0.972
8 0.834 0.738 0.926 0.983 0.974 0.993

12 0.873 0.802 0.944 0.983 0.974 0.993
16 0.897 0.839 0.955 0.983 0.974 0.993

Is the solution µf = (1, 1, 1)? Probably no, but we don’t have a
proof.

And perhaps we’ve just been lucky with the example!
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Mathematicians on Newton’s method

Studied by mathematicians for general systems f (X ) = 0.

The method may perform brilliantly (exponential convergence
order), but it is fragile. It may:

be ill defined ( (Id− f ′(ν(i))) may be singular );
diverge;
converge only in a small neighbourhood of the solution
(local convergence); or
converge as slowly as Kleene iteration.

Numerical mathematics has provided
a few, restrictive sufficient conditions for global exponential
convergence (Kantorovich’s theorem), and
miscellaneous conditions for local exponential
convergence (often expensive or impossible to check!).
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Computer scientists on Newton’s method

MSPEs are important in computer science.

Is Newton’s method robust for MPSEs?

Can we find guarantees on the convergence
order?

Next slides: results on this question obtained by Etessami
and Yannakakis and by us since 2005.
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Global convergence for MSPEs [EY’05,EKL’07]

Proposition

Let X = f (X ) be an MSPE. The Newton sequence
0 = ν(0),ν(1),ν(2), . . . is

well defined (the inverses exist);
monotonically increasing, i.e., ν(i) ≤ ν(i+1);
bounded from above by µf , i.e, ν(i) ≤ µf ;
converges to µf ; and
converges at least as fast as the Kleene sequence,
i.e., f i(0) ≤ ν(i).
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Best case

Theorem (easy to prove)

Let X = f (X ) be a MSPE.
If the matrix (Id− f ′(µf )) is non-singular, then the Newton
sequence has exponential convergence order.

However, since µf is what we wish to compute, the condition is
not very useful!
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A guarantee of linear convergence

Theorem (KLE STOC’07)
The Newton sequence has linear convergence order for
arbitrary MSPEs.

But: this only shows β(k) = a · k + b for some a and b.
It says nothing about how big or small a and b are!
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Definitions

An MSPE is called
strongly connected
if every variable depends transitively on every variable.X

Y
Z

 =

 0.4XY + 0.6
0.3XY + 0.4YZ + 0.3

0.3XZ + 0.7



fully inhomogeneous if f (0) > 0 (in all components).X
Y
Z

 =

 0.4XY + 0.6
0.3XY + 0.4YZ + 0.3

0.3XZ + 0.7


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A threshold for strongly connected MSPEs

Theorem (KLE STOC’07)

Let X = f (X ) be a strongly connected MSPE.
There is a threshold t (depending on f such that for every
i ≥ 0 the Newton sequence satisfies

β(t + i) ≥ i .

That is: after t iterations we are guaranteed at least one bit of
accuracy for each new iteration. We say that the method has
linear convergence order with convergence rate 1.

However, the proof is based on a purely topological property of
Rn. Again, it only proves that t exists!
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Bounds on the threshold

Theorem (KLE STOC’07)

Let X = f (X ) be a strongly connected MSPE.
There is a threshold t (depending on f ) such that for every
i ≥ 0 the Newton sequence satisfies:

β(t + i) ≥ i .

Theorem (EKL STACS’08)

Above theorem holds with t = 3n2(m + |log µmin|), where
n is the number of equations ( = number of variables),
m is the size of the system (coefficients in binary),
µmin is the minimal component of µf .

For fully inhomogeneous MSPEs even better: t = 3nm.
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But you’re cheating!

Isn’t it still useless? We do not know µmin!

Yes, but we can compute bounds for it
either syntactic ones, or, better,
dynamic ones, updated as the computation
progresses.
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Our probabilistic program again . . .

X
Y
Z

 =

 0.4XY + 0.6
0.3XY + 0.4YZ + 0.3

0.3XZ + 0.7


After 14 Newton steps we got earlier:

ν(14) = (0.98283 · · · , 0.97380 · · · , 0.99269 · · · )

Is the solution µf = (1, 1, 1) ?

No!
The MSPE is strongly connected, and 0.97380 ≤ µmin.
Our theorem proves that the error after 14 iterations is at most
0.004 (8 bits). So:

µf ≤ ν(14) +

0.004
0.004
0.004

 ≤

0.987
0.978
0.997

 <

1
1
1


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Non-strongly-connected MSPEs

X1 = 1/2 + 1/2 · X 2
1

X2 = 1/4 · X 2
1 + 1/2 · X1X2 + 1/4 · X 2

2
...

Xn = 1/4 · X 2
n−1 + 1/2 · Xn−1Xn + 1/4 · X 2

n

The least fixed-point of the system is (1, 1, . . . , 1).

We have ν
(2n−1)
n ≤ 1/2, and so that at least 2n−1 iterations of

Newton’s method are needed to obtain the first bit of Xn
[KLE STOC’07].

The method still has linear convergence order, but a worse
convergence rate.
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Non-strongly-connected MSPEs

Theorem (KLE STOC’07)

Let X = f (X ) be a MSPE.
There is a threshold t such that for every i ≥ 0 the Newton
sequence satisfies:

β(t + i · (h + 1) · 2h) ≥ i .

where h is the height of the graph of strongly connected
components.
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Conclusions

Solving MSPEs is central to several computer science
problems.

The associated decision problem can be very important to
understand the unit-cost model.
Newton’s Method works very well

for approximating least solutions of MSPEs.
The convergence of Newton’s Method for MSPEs can be
sharply analyzed: ultimately 1 bit per iteration in the
strongly connected case.
Thresholds give guarantee that linear convergence has
kicked in.
Far stronger results than for general systems.
In the paper: extension to min-max MSPEs
[EKL ICALP’08].
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Back in victorian Britain . . .

There was concern amongst the Victorians that aristocratic
families were becoming extinct.

Francis Galton (1822-1911), anthropologist and polymath:
Are families of English peers more likely to die out than the
families of ordinary men?

Let p0, p1, . . . , pn be the respective probabilities that a
man has 0, 1, 2, . . . n sons, let each son have the
same probability for sons of his own, and so on. What
is the probability that the male line goes extinct?

Henry William Watson (1827-1903), priest and mathematician:
The probability is the least solution of

X = p0 + p1X + p2X 2 + . . . + pnX n
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English peers again . . .

Watson concluded wrongly (due to an algebraic error) that all
families eventually die out.

But Galton found a fact, that, with hindsight, provides a possible
explanation for the data:

English peers tended to marry heiresses
(daughters without brothers)
Heiresses come from families without sons, and so
perhaps, by inheritance, with lower fertility rates (lower
probabilities p2, p3, . . . ).
. . . which increases the probability of the family dying out.
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