
Approaching the Coverability Problem
Continuously

Michael Blondin1,2?, Alain Finkel2, Christoph Haase2??, and Serge
Haddad2,3? ? ?

1 DIRO, Université de Montréal, Canada
2 LSV, CNRS & ENS Cachan, Université Paris-Saclay, France

3 Inria, France

Abstract. The coverability problem for Petri nets plays a central role
in the verification of concurrent shared-memory programs. However, its
high EXPSPACE-complete complexity poses a challenge when encoun-
tered in real-world instances. In this paper, we develop a new approach
to this problem which is primarily based on applying forward coverabil-
ity in continuous Petri nets as a pruning criterion inside a backward-
coverability framework. A cornerstone of our approach is the efficient
encoding of a recently developed polynomial-time algorithm for reacha-
bility in continuous Petri nets into SMT. We demonstrate the effective-
ness of our approach on standard benchmarks from the literature, which
shows that our approach decides significantly more instances than any
existing tool and is in addition often much faster, in particular on large
instances.

1 Introduction

Counter machines and Petri nets are popular mathematical models for modeling
and reasoning about distributed and concurrent systems. They provide a high
level of abstraction that allows for employing them in a great variety of appli-
cation domains, ranging, for instance, from modeling of biological, chemical and
business processes to the formal verification of concurrent programs.

Many safety properties of real-world systems reduce to the coverability prob-
lem in Petri nets: Given an initial and a target configuration, does there exist a
sequence of transitions leading from the initial configuration to a configuration
larger than the target configuration? For instance, in an approach pioneered by
German and Sistla [19] multi-threaded non-recursive finite-state programs with
shared variables, which naturally occur in predicate-abstraction-based verifica-
tion frameworks, are modeled as Petri nets such that every program location
corresponds to a place in a Petri net, and the number of tokens of a place

? Supported by the Fonds québécois de la recherche sur la nature et les technologies
(FQRNT), by the French Centre national de la recherche scientifique (CNRS), and
by the “Chaire Digiteo, ENS Cachan — École Polytechnique”.

?? Supported by Labex Digicosme, Univ. Paris-Saclay, project VERICONISS.
? ? ? Supported by ERC project EQualIS (FP7-308087).

indicates how many threads are currently at the corresponding program loca-
tion. Coverability can then, for instance, be used in order to detect whether a
mutual exclusion property could be violated when a potentially unbounded num-
ber of threads is executed in parallel. The coverability problem was one of the
first decision problems for Petri nets that was shown decidable and EXPSPACE-
complete [21,4,24]. Despite this huge worst-case complexity, over the course of
the last twenty years, a plethora of tools has emerged that have shown to be able
to cope with a large number of real-world instances of coverability problems in
a satisfactory manner.

Our contribution. We present a new approach to the coverability problem
and its implementation. When run on standard benchmarks that we obtained
from the literature, our approach proves more than 91% of safe instances to be
safe, most of the time much faster when compared to existing tools, and none
of those tools can individually prove more than 84% of safe instances to be safe.
We additionally demonstrate that our approach is also competitive when run on
unsafe instances. In particular, it decides 142 out of 176 (80%) instances of our
benchmark suite, while the best competitor only decides 122 (69%) instances.

Our approach is conceptually extremely simple and exploits recent advances
in the theory of Petri nets as well as the power of modern SMT-solvers in-
side a backward-coverability framework. In [14], Fraca and Haddad solved long-
standing open problems about the complexity of decision problems for so-called
continuous Petri nets. This class was introduced by David and Alla [5] and allows
for transitions to be fired a non-negative real number of times—hence places may
contain a non-negative real number of tokens. The contribution of [14] was to
present polynomial-time algorithms that decide all of coverability, reachability
and boundedness in this class. A further benefit of [14] is to show that continuous
Petri nets over the reals are equivalent to continuous Petri nets over the rationals,
and, moreover, to establish a set of simple sufficient and necessary conditions in
order to decide reachability in continuous Petri nets. The first contribution of
our paper is to show that these conditions can efficiently be encoded into a sen-
tence of linear size in the existential theory of the non-negative rational numbers
with addition and order (FO(Q+,+, >)). This encoding paves the way for decid-
ing coverability in continuous Petri nets inside SMT-solvers and is particularly
useful in order to efficiently answer multiple coverability queries on the same
continuous Petri net due to caching strategies present in modern SMT-solvers.
Moreover, we show that our encoding in effect strictly subsumes a recently in-
troduced CEGAR-based approach to coverability described by Esparza et al.
in [10]; in particular we can completely avoid the potentially exponentially long
CEGAR-loop, cf. the related work section below. The benefit of coverability in
continuous Petri nets is that it provides a way to over-approximate coverabil-
ity under the standard semantics: any configuration that is not coverable in a
continuous Petri net is also not coverable under the standard semantics. This
observation can be exploited inside a backward-coverability framework as fol-
lows. Starting at the target configuration to be covered, the classical backward-

2

coverability algorithm [1] repeatedly computes the set of all minimal predecessor
configurations that by application of one transition cover the target or some ear-
lier computed configuration until a fixed point is reached, which is guaranteed to
happen due to Petri nets being well-structured transition systems [13]. The crux
to the performance of the algorithm lies in the size of the set of minimal elements
that is computed during each iteration, which may grow exponentially.4 This is
where continuous coverability becomes beneficial. In our approach, if a mini-
mal element is not continuously coverable, it can safely be discarded since none
of its predecessors is going to be coverable either, which substantially shrinks
the predecessor set. In effect, this heuristic yields a powerful pruning technique,
enabling us to achieve the aforementioned advantages when compared to other
approaches on standard benchmarks.

Due to space constraints, we only sketch some of the proofs in this paper.
Full details can be found in [2].

Related Work. Our approach is primarily related to the work by Esparza et
al. [10], by Kaiser, Kroening and Wahl [20], and by Delzanno, Raskin and van
Begin [7]. In [10], Esparza et al. presented an implementation of a semi-decision
procedure for disproving coverability which was originally proposed by Esparza
and Melzer [11]. It is based on the Petri-net state equation and traps as sufficient
criteria in order to witness non-coverability. As shown in [11], those conditions
can be encoded into an equi-satisfiable system of linear inequalities called the
trap inequation in [11]. This approach is, however, prone to numerical impre-
cision that become problematic even for instances of small size [11, Sec. 5.3].
For that reason, the authors of [10] resort to a CEGAR-based variant of the
approach described in [11] which has the drawback that in the worst case, the
CEGAR loop has to be executed an exponential number of times leading to an
exponential number of queries to the underlying SMT-solver. We will show in
Section 4.3 that the conditions used in [10] are strictly subsumed by a subset of
the conditions required to witness coverability in continuous Petri nets: when-
ever the procedure described in [10] returns uncoverable then coverability does
not hold in the continuous setting either, but not vice versa. Thus, a single sat-
isfiability check to our formula in existential FO(Q+,+, >) encoding continuous
coverability that we develop in this paper completely subsumes the CEGAR-
approach presented in [10]. Another difference to [10] is that here we present a
sound and complete decision procedure.

Regarding the relationship of our work to [20], Kaiser et al. develop in their
paper an approach to coverability in richer classes of well-structured transition
systems that is also based on the classical backward-analysis algorithm. They
also employ forward analysis in order to prune the set of minimal elements during
the backward iteration, and in addition a widening heuristic in order to over-
approximate the minimal basis. Our approach differs in that our minimal basis is
always precise yet as small as possible modulo continuous coverability. Thus no
backtracking as in [20] is needed, which is required when the widened basis turns

4 This problem is commonly referred to as the symbolic state explosion problem, cf. [8].

3

out to be too inaccurate. Another difference is that for the forward analysis, a
Karp-Miller tree is incrementally built in the approach described in [20], whereas
we use the continuous coverability over-approximation of coverability.

The idea of using an over-approximation of the reachability set of a Petri
net in order to prune minimal basis elements inside a backward coverability
framework was first described by Delzanno et al. [7], who use place invariants
as a pruning criterion. However, computing such invariants and checking if a
minimal basis element can be pruned potentially requires exponential time.

Finally, a number of further techniques and tools for deciding Petri net
coverability or more general well-structured transition systems have been de-
scribed in the literature. They are, for instance, based on efficient data struc-
tures [15,12,8,16] and generic algorithmic frameworks such as EEC [17] and
IC3 [22].

2 Preliminaries

We denote by Q, Z and N the set of rationals, integers, and natural numbers,
respectively, and by Q+ the set of non-negative rationals. Throughout the whole
paper, numbers are encoded in binary, and rational numbers as pairs of integers
encoded in binary. Let D ⊆ Q, DE denotes the set of vectors indexed by a finite
set E. A vector u is denoted by u = (ui)i∈E . Given vectors u = (ui)i∈E ,v =
(vi)i∈E ∈ DE , addition u + v is defined component-wise, and u ≤ v whenever
ui ≤ vi for all i ∈ E. Moreover, u < v whenever u ≤ v and u 6= v. Let E′ ⊆ E
and v ∈ DE , we sometimes write v[E′] as an abbreviation for (vi)i∈E′ . The

support of v is the set JvK def
= {i ∈ E : vi 6= 0}.

Given finite sets of indices E and F , and D ⊆ Q, DE×F denotes the set
of matrices over D with rows and columns indexed by elements from E and
F , respectively. Let M ∈ DE×F , E′ ⊆ E and F ′ ⊆ F , we denote by ME′×F ′

the DE′×F ′ sub-matrix obtained from M whose row and columns indices are
restricted respectively to E′ and F ′.

Petri Nets. In what follows, we introduce the syntax and semantics of Petri
nets. While we provide a single syntax for nets, we introduce a discrete (i.e. in
N) and a continuous (i.e. in Q+) semantics.

Definition 1. A Petri net is a tuple N = (P, T,Pre,Post), where P is a finite
set of places; T is a finite set of transitions with P ∩ T = ∅; and Pre,Post ∈
NP×T are the backward and forward incidence matrices, respectively.

A (discrete) marking of N is a vector of NP . A Petri net system (PNS) is a
pair S = (N ,m0), where N is a Petri net and m0 ∈ NP is the initial marking.

The incidence matrix C of N is the P × T integer matrix defined by C
def
=

Post−Pre. The reverse net of N is N−1 def
= (P, T,Post,Pre). Let p ∈ P and

t ∈ T , the pre-sets of p and t are the sets •p
def
= {t′ ∈ T : Post(p, t′) > 0}

4

and •t
def
= {p′ ∈ P : Pre(p′, t) > 0}, respectively. Likewise, the post-sets of p

and t are p•
def
= {t′ ∈ T : Pre(p, t′) > 0} and t• = {p′ ∈ P : Post(p′, t) > 0},

respectively. Those definitions can canonically be lifted to subsets of places and
of transitions, e.g., for Q ⊆ P we have •Q =

⋃
p∈Q

•p. We also introduce the
neighbors of a subset of places/transitions by: •Q• = •Q ∪Q•. Let S ⊆ T , then

NS is the sub-net defined by NS
def
= (•S•, S,Pre•S•×S ,Post•S•×S).

We say that a transition t ∈ T is enabled at a marking m whenever m(p) ≥
Pre(p, t) for every p ∈ •t. A transition t that is enabled can be fired, leading to
a new marking m′ such that for all places p ∈ P , m′(p) = m(p) + C(p, t). We

write m
t−→ m′ whenever t is enabled at m leading to m′, and write m −→ m′

if m
t−→m′ for some t ∈ T . By −→∗ we denote the reflexive transitive closure of

−→. A word σ = t1t2 · · · tk ∈ T ∗ is a firing sequence of (N ,m0) whenever there
exist markings m1, . . . ,mk such that

m0
t1−→m1

t2−→ · · · tk−1−−−→mk−1
tk−→mk.

Given a marking m, the reachability problem asks whether m0 −→∗ m. The
reachability problem is decidable, EXPSPACE-hard [4] and in Fω3 [23], a non-
primitive-recursive complexity class. In this paper, however, we are interested in
deciding coverability, an EXPSPACE-complete problem [4,24].

Definition 2. Given a Petri net system S = (P, T,Pre,Post,m0) and a mark-
ing m ∈ NP , the coverability problem asks whether m0 −→∗ m′ for some
m′ ≥m.

Continuous Petri nets are Petri nets in which markings may consist of ratio-
nal numbers5, and in which transitions may be fired a fractional number of times.
Formally, a marking of a continuous Petri net is a vector m ∈ QP+. Let t ∈ T ,
the enabling degree of t with respect to m is a function enab(t,m) ∈ Q+ ∪ {∞}
defined by:

enab(t,m)
def
=

{
min{m(p)/Pre(p, t) : p ∈ •t} if •t 6= ∅,
∞ otherwise.

We say that t is Q-enabled at m if enab(t,m) > 0. If t is Q-enabled it may be fired
by any amount q ∈ Q+ such that 0 ≤ q ≤ enab(t,m), leading to a new marking

m′ such that for all places p ∈ P , m(p)′
def
= m(p)+q·C(p, t). In this case, we write

m
q·t−−→ m′. The definition of a Q-firing sequence σ = q1t1 · · · qktk ∈ (Q+ × T)∗

is analogous to the standard definition of firing sequence, and so are −→Q, −→∗Q
and Q-reachability. The Q-Parikh image of the firing sequence σ is the vector

π(σ) ∈ QT+ such that π(σ)(t)
def
=
∑
ti=t

qi. We also adapt the decision problems
for Petri nets.

5 In fact, the original definition allows for real numbers, however for studying decid-
ability and complexity issues, rational numbers are more convenient.

5

Definition 3. Given a Petri net system S = (P, T,Pre,Post,m0) and a mark-
ing m ∈ QP+, the Q-reachability (respectively Q-coverability) problem asks whether
m0 −→∗Q m (respectively m0 −→∗Q m′ for some m′ ≥m).

Recently Q-reachability and Q-coverability were shown to be decidable in
polynomial time [14]. In Section 3.2, we will discuss in detail the approach
from [14]. For now, observe that m −→ m′ implies m −→Q m′, and hence
m −→∗ m′ implies m −→∗Q m′. Consequently, Q-coverability provides an over-
approximation of coverability: this fact is the cornerstone of this paper.

Upward Closed Sets. A set V ⊆ NP is upward closed if for every v ∈ V and
w ∈ NP , v ≤ w implies w ∈ V . The upward closure of a vector v ∈ NP is the

set ↑v def
= {w ∈ NP : v ≤ w}. This definition can be lifted to sets V ⊆ NP in

the obvious way, i.e., ↑V def
=
⋃

v∈V ↑v. Due to NP being well-quasi-ordered by ≤,
any upward-closed set V contains a finite set F ⊆ V such that V = ↑F . Such
an F is called a basis of V and allows for a finite representation of an upward-
closed set. In particular, it can be shown that V contains a unique minimal basis
B ⊆ V that is minimal with respect to inclusion for all bases F ⊆ V . We denote
minbase(F) this minimal basis obtained by deleting vectors v ∈ F such that
there exists w ∈ F with w < v (when F is finite).

3 Deciding Coverability and Q-Reachability

We now introduce and discuss existing algorithms for solving coverability and
Q-reachability which form the basis of our approach. The main reason for doing
so is that it allows us to smoothly introduce some additional notations and
concepts that we require in the next section. For the remainder of this section,
we fix some Petri net system S = (N ,m0) with N = (P, T,Pre,Post), and
some marking m to be covered or Q-reached.

3.1 The Backward Coverability Algorithm

The standard backward coverability algorithm, Algorithm 1, is a simple to state
algorithm.

– It iteratively constructs minimal bases M , where in the k-th iteration, M
is the minimal basis of the (upward closed) set of markings that can cover
m after a firing sequence of length at most k. If m0 ∈ ↑M , the algorithm
returns true, i.e., that m is coverable. Otherwise, in order to update M , for

all m′ ∈M and t ∈ T it computes m′t(p)
def
= max{Pre(p, t), m′(p)−C(p, t)}.

The singleton {m′t} is the minimal basis of the set of vectors that can cover
m′ after firing t.

– Thus defining pb(M) as pb(M)
def
=
⋃

m′∈M,t∈T {m′t}, M ∪ pb(M) is a (not
necessarily minimal) basis of the upward closed set of markings that can
cover m after a firing sequence of length at most k + 1. This basis can be
then minimized in every iteration.

6

Algorithm 1 Backward Coverability

Require: PNS S = (N ,m0) and a marking m ∈ NP

1: M := {m};
2: while m0 6∈ ↑M do
3: B := pb(M) \ ↑M ;
4: if B = ∅ then
5: return false;
6: else
7: M := minbase(M ∪B);
8: return true;

The termination of the algorithm is guaranteed due to NP being well-quasi-
ordered, which entails that M must stabilize and return false in this case. It can
be shown that Algorithm 1 runs in 2-EXP [3]. The key point to the (empirical)
performance of the algorithm is the size of the set M during its computation: the
smaller, the better. Even though one can establish a doubly-exponential lower
bound on the cardinality of M during the execution of the algorithm, in general
not every element in M is coverable, even when m is coverable.

3.2 The Q-Reachability Algorithm

We now present the fundamental concepts of the polynomial-time Q-reachability
algorithm of Fraca and Haddad [14]. The key insight underlying their algorithm
is that Q-reachability can be characterized in terms of three simple criteria. The
algorithm relies on the notions of firing set and maximal firing set, denoted
fs(N ,m) and maxfs(N ,m), and defined as follows:

fs(N ,m)
def
= {Jπ(σ)K : σ ∈ (Q+ × T)∗, there is m′ ∈ QP+ s.t. m

σ−→Q m′}

maxfs(N ,m)
def
=

⋃
T ′∈fs(N ,m)

T ′.

Thus, fs(N ,m) is the set of supports of firing sequences starting in m. Even
though fs(N ,m) can be of size exponential with respect to |T |, deciding T ′ ∈
fs(N ,m) for some T ′ ⊆ T can be done in polynomial time, and maxfs(N ,m) is
also computable in polynomial time [14]. The following proposition characterizes
the set of Q-reachable markings.

Proposition 4 ([14, Thm. 20]). A marking m is Q-reachable in S = (N ,m0)
if and only if there exists x ∈ QT+ such that

(i) m = m0 + C · x
(ii) JxK ∈ fs(N ,m0)

(iii) JxK ∈ fs(N−1,m)

In this characterization, x is supposed to be the Parikh image of a firing
sequence. The first item expresses the state equation of S with respect to m0,

7

Algorithm 2 Q-reachability [14]

Require: PNS S = (N ,m0) with N = (P, T,Pre,Post) and a marking m
1: if m = m0 then
2: return true;
3: T ′ := T ;
4: while T ′ 6= ∅ do
5: S := ∅;
6: for all t ∈ T ′ do
7: x := solve(CP×T ′ · x = m−m0 ∧ x(t) > 0 ∧ x ∈ QT ′

+);
8: if x 6= undef then
9: S := S ∪ JxK;

10: if S = ∅ then
11: return false;
12: T ′ := maxfs(NS ,m0[•S•])) ∩maxfs(N−1

S ,m[•S•]))
13: if T ′ = S then
14: return true;
15: return false;

m and x. The two subsequent items express that the support of the solution
of the state equation has to lie in the firing sets of S and its reverse. As such,
the characterization in Proposition 4 yields an NP algorithm. By employing a
greatest fixed point computation, Algorithm 2, which is a decision variant of the
algorithm presented in [14], turns those criteria into a polynomial-time algorithm
(see [14] for a proof of its correctness). In order to use Algorithm 2 for deciding
coverability, it is sufficient, for each place p, to add a transition to N that can
at any time non-deterministically decrease p by one token. Denote the resulting
Petri net system by S ′, it can easily checked that m is Q-coverable in S if and
only if m is Q-reachable in S ′.

4 Backward Coverability Modulo Q-Reachability

We now present our decision algorithm for the Petri net coverability problem.

4.1 Encoding Q-Reachability into Existential FO(Q+,+, >)

Throughout this section, when used in formulas, w and x are vectors of first-
order variables indexed by P representing markings, and y is a vector of first-
order variables indexed by T representing the Q-Parikh image of a transition
sequence.

Condition (i) of Proposition 4, which expresses the state equation, is read-
ily expressed as a system of linear equations and thus directly corresponds to
a formula Φ(w,x,y) which holds whenever a marking x is reached starting
at marking w by firing every transition y(t) times (without any consideration
whether such a firing sequence would actually be admissible):

ΦNeqn(w,x,y)
def
= x = C · y + w.

8

Next, we show how to encode Conditions (ii) and (iii) into suitable formulas. To
this end, we require an effective characterization of membership in the firing set
fs(N ,w) defined in Section 3.2. The following characterization can be derived
from [14, Cor. 19]. First, we define a monotonic increasing function incfsN ,w :

2T → 2T as follows:

incfsN ,w(S)
def
= S ∪ {t ∈ T (N) : •t ⊆ JwK ∪ {s• : s ∈ S}} .

From [14, Cor. 19], it follows that T ′ ∈ fs(N ,w) if and only if T ′ = lfp(incfsNT ′ ,w
),

where lfp is the least fixed point operator6, i.e.,

T ′ = incfsNT ′ ,w
(· · · (incfsNT ′ ,w

(∅)) · · ·).

Clearly, the least fixed point is reached after at most |T ′| iterations.
In order to decide whether JyK ∈ fs(N ,w), we simulate this fixed-point

computation in an existential FO(Q+,+, >)-formula ΦNfs (w,y). Our approach is
inspired by a technique of Verma, Seidl and Schwentick that was used to show
that the reachability relation for communication-free Petri nets is definable by
an existential Presburger arithmetic formula of linear size [28]. The basic idea
is to introduce additional first-order variables z indexed by P ∪ T that, given
a firing set, capture the relative order in which transitions of this set are fired
and the order in which their input places are marked. This order corresponds to
the computation of lfp(incfsNJyK,w

) and is encoded via a numerical value z(t)

(respectively z(p)), representing an index that must be strictly greater than
zero for a transition (respectively an input place of a transition) of this set. In
addition, input places have to be marked before the firing of a transition:

ΦNdt(y, z)
def
=
∧
t∈T

(
y(t) > 0→

∧
p∈•t

0 < z(p) ≤ z(t)

)
.

Moreover, a place is either initially marked or after the firing of a transition
of the firing set. So:

ΦNmk (w,y, z)
def
=
∧
p∈P

(
z(p) > 0→

(
w(p) > 0 ∨

∨
t∈•p

y(t) > 0 ∧ z(t) < z(p)

))
.

We can now take the conjunction of the formulas above in order to obtain a
logical characterization of fs(N ,w):

ΦNfs (w,y)
def
= ∃z : ΦNdt(y, z) ∧ ΦNmk (w,y, z).

Having logically characterized all conditions of Proposition 4, we can define
the global Q-reachability relation for a Petri net system S = (N ,w) as follows:

ΦS(w,x)
def
= ∃y : ΦNeqn(w,x,y) ∧ ΦNfs (w,y) ∧ ΦN

−1

fs (x,y).

In summary, we have thus proved the following result in this section.

6 In [14, Cor. 19], an algorithm is presented that basically computes lfp(incfsNT ′ ,w
).

9

Algorithm 3 Backward Coverability Modulo Q-Reachability

Require: PNS S = (N ,m0) and a marking m ∈ NP

1: M := {m}; Φ(x) := ∃y : ΦS(m0,y) ∧ y ≥ x;
2: if not Q-coverable(S,m) then
3: return false
4: while m0 6∈ ↑M do
5: B := pb(M) \ ↑M ;
6: D := {v ∈ B : unsat(Φ(v))};
7: B := B \D;
8: if B = ∅ then
9: return false;

10: else
11: M := minbase(M ∪B);
12: Φ(x) := Φ(x) ∧

∧
v∈D x 6≥ v;

13: return true;

Proposition 5. Let S = (N ,m0) be a Petri net system and m be a marking.
There exists an existential FO(Q+,+, >)-formula ΦS(w,x) computable in linear
time such that m is Q-reachable in S if and only if ΦS(m0,m) is valid.

Checking satisfiability of ΦS is in NP, see e.g. [26]. It is a valid question to ask why
one would prefer an NP-algorithm over a polynomial-time one. We address this
question in the next section. For now, note that in order to obtain an even more
accurate over-approximation, we can additionally restrict y to be interpreted in
the natural numbers while retaining membership of satisfiability in NP, due to
the following variant of Proposition 4: If a marking is reachable in S then there
exists some y ∈ NT such that Conditions (i), (ii) and (iii) of Proposition 4 hold.

Remark 6. Proposition 5 additionally allows us to improve the best known upper
bound for the inclusion problem of continuous Petri nets, which is EXP [14].
Given two Petri net systems S = (N ,m0) and S ′ = (N ′,m′0) over the same
set of places, this problem asks whether the set of reachable markings of S is
included in S ′, i.e., whether ∀m.ΦS(m0,m)→ ΦS′(m

′
0,m) is valid. The latter

is a Π2-sentence of FO(Q+,+, >) and decidable in ΠP
2 [26]. Hence, inclusion

between continuous Petri nets is in ΠP
2 .

4.2 The Coverability Decision Procedure

We now present Algorithm 3 for deciding coverability. This algorithm is an ex-
tension of the classical backward reachability algorithm that incorporates Q-
reachability checks during its execution in order to keep the set of minimal basis
elements small.

First, on Line 1 we derive an open formula Φ(x) from ΦS such that Φ(x)
holds if and only if x is Q-coverable in S. Then, on Line 2, the algorithm checks
whether the marking m is Q-coverable using the polynomial-time algorithm

10

from [14] and returns that m is not coverable if this is not the case. Otherwise,
the algorithm enters a loop which iteratively computes a basis M of the backward
coverability set starting at m whose elements are in addition Q-coverable in S.
To this end, on Line 5 the algorithm computes a set B of new basis elements
obtained from one application of pb, and on Line 7 it removes from B the set
D which contains all elements of B which are not Q-coverable. If as a result B
is empty the algorithm concludes that m is not coverable in S. Otherwise, on
Line 11 it adds the elements of B to M . Finally, Line 12 makes sure that in
future iterations of the loop the underlying SMT solver can immediately discard
elements that lie in ↑D. The latter is technically not necessary, but it provides
some guidance to the SMT solver. The proof of the following proposition can be
found in [2].

Proposition 7. Let S = (N ,m0) be a PNS and m be a marking. Then m is
coverable in S if and only if Algorithm 3 returns true.

Remark 8. In our actual implementation, we use a slight variation of Algorithm 3
in which the instruction M := minbase(M ∪B) in Line 11 is replaced by M :=
minbase(M ∪ minc,kB). Here, c, k ∈ N are parameters to the algorithm, and
minc,kB is the set of the c + |B|/k elements of B with the smallest sum-norm.
In this way, the empirically chosen parameters c and k create a bottleneck that
gives priority to elements with small sum-norms, as they are more likely to allow
for discarding elements with larger sum-norms in future iterations.

This variation of Algorithm 3 has the same correctness properties as the orig-
inal one: It can be shown that using minc,kB instead of B in Line 11 computes
the same set ↑M at the expense of delaying its stabilization.

Before we conclude this section, let us come back to the question why in our
approach we choose using ΦS (whose satisfiability is in NP) over Algorithm 2
which runs in polynomial time. In Algorithm 3, we invoke Algorithm 2 only once
in Line 2 in order to check if S is not Q-coverable, and thereafter only employ ΦS
which gets incrementally updated during each iteration of the loop. The reason is
that in practice as observed in our experimental evaluation below, Algorithm 2
turns out to be often faster for a single Q-coverability query. Otherwise, as
soon ΦS has been checked for satisfiability once, future satisfiability queries
are significantly faster than Algorithm 2, which is a desirable behavior inside a
backward coverability framework. Moreover we can constraint solutions to be in
N instead of Q, leading to a more precise over approximation.

4.3 Relationship to the CEGAR-approach of Esparza et al.

In [10], Esparza et al. presented a semi-decision procedure for coverability that
is based on [11] and employs the Petri net state equation and traps inside a
CEGAR-framework. A trap in N is a non-empty subset of places Q ⊆ P such
that Q• ⊆ •Q, and Q ⊆ P is a siphon in N whenever •Q ⊆ Q•. Given a marking
m, a trap (respectively siphon) is marked in m if

∑
p∈Qm(p) > 0. An important

property of traps is that if a trap is marked in m, it will remain marked after

11

•
p0 t1 p1t2 2

Fig. 1. A Petri net that cannot mark p1.

any firing sequence starting in m. Conversely, when a siphon is unmarked in
m it remains so after any firing sequence starting in m. By definition, Q is a
trap in N if and only if Q is a siphon in N−1. The coverability criteria that [10]
builds upon are derived from [11] and can be summarized as follows.

Proposition 9 ([10]). If m is Q-reachable (respectively reachable) in (N ,m0)
then there exists x ∈ QT+ (respectively x ∈ NT) such that:

(i) m = m0 + C · x
(ii) for all traps Q ⊆ P , if Q is marked in m0 then Q is marked in m

As in our approach, in [10] those criteria are checked using an SMT-solver. The
for-all quantifier is replaced in [10] by incrementally enumerating all traps in
a CEGAR-style fashion. It is shown in [14, Prop. 18] that Condition (iii) of
Proposition 4 is equivalent to requiring that N−1JxK has no unmarked siphon in

m, which appears to be similar to Condition (ii) of Proposition 9. In fact, we
show the following.

Proposition 10. Conditions (i) and (iii) of Proposition 4 strictly imply Con-
ditions (i) and (ii) of Proposition 9 (when interpreted over Q+).

Proof. We only show strictness, the full proof can be found in [2]. To this end,
consider the Petri net (N ,m0) depicted in Figure 1 with m = (0, 1). Clearly
m is not reachable. There is a single solution to the state equation x = (1, 0).
There is a single trap {p1} which is unmarked in m0. So the conditions of
Proposition 9 hold, and hence the algorithm of [10] does not decide this net safe.
On the contrary in N−1JxK, the reverse net without t2, {p0} is a siphon that is

unmarked in m. So Condition (iii) of Proposition 4 does not hold. ut

This proposition shows that the single formula stated in Proposition 5 strictly
subsumes the approach from [10]. Moreover, it provides a theoretical justification
for why the approach of [10] performs so well in practice: the conditions are a
strict subset of the conditions developed for Q-reachability in [14].

5 Experimental Evaluation

We evaluate the backward coverability modulo Q-reachability algorithm on stan-
dard benchmarks from the literature with two goals in mind. First, we demon-
strate that our approach is competitive with existing approaches. In particular,
we prove significantly more safe instances of our benchmarks safe in less time
when compared to any other approach. Overall our algorithm decides 142 out
of 176 instances, the best competitor decides 122 instances. Second, we demon-
strate that Q-coverability is a powerful pruning criterion by analyzing the relative

12

Suite QCover Petrinizer mist bfc Total

mist 23 20 22 20 23

medical 11 4 11 3 12

bfc 2 2 2 2 2

bug tracking 32 32 0 19 40

soter 37 37 0 19 38

Total 105 95 35 63 115

Suite QCover Petrinizer mist bfc Total

mist 3 — 4 4 4

medical — — — — 0

bfc 26 — 29 42 44

bug tracking 0 — 0 1 1

soter 8 — 6 12 12

Total 37 0 39 59 61

Suite QCover Petrinizer mist bfc Total

mist 26 20 26 24 27

medical 11 4 11 3 12

bfc 28 2 31 44 46

bug tracking 32 32 0 20 41

soter 45 37 6 31 50

Total 142 95 74 122 176

Fig. 2. Number of safe instances (top-left), unsafe instances (top-right) and total in-
stances (bottom) decided by every tool. Bold numbers indicate the tool(s) which de-
cide(s) the largest number of instances in the respective category.

number of minimal bases elements that get discarded during the execution of
Algorithm 3.

We implemented Algorithm 3 in a tool called QCover in the programming
language Python.7 The underlying SMT-solver is z3 [6]. For the minc,k heuristic
mentioned in Remark 8, we empirically chose c = 10 and k = 5. We observed
that any sane choice of c and k leads to an overall speed-up, though different
values lead to different (even increasing) running times on individual instances.
QCover takes as input coverability instances in the mist file format.8 The
basis of our evaluation is the benchmark suite that was used in order to evaluate
the tool Petrinizer, see [10] and the references therein. This suite consists
of five benchmark categories: mist, consisting of 27 instances from the mist
toolkit; bfc, consisting of 46 instances used for evaluating BFC; medical and
bug tracking, consisting of 12 and 41 instances derived from the provenance
analysis of messages of a medical and a bug-tracking system, respectively; and
soter, consisting of 50 instances of verification conditions derived from Erlang
programs [9].

We compare QCover with the following tools: Petrinizer [10], mist [15]
and bfc [20] in their latest versions available at the time of writing of this paper.
mist implements a number of algorithms, we use the backward algorithm that
uses places invariant pruning [16].9 All benchmarks were performed on a single
computer equipped with four Intel R© CoreTM 2.00 GHz CPUs, 8 GB of memory
and Ubuntu Linux 14.04 (64 bits). The execution time of the tools was limited
to 2000 seconds (i.e. 33 minutes and 20 seconds) per benchmark instance. The
running time of every tool on an instance was determined using the sum of the
user and sys time reported by the Linux tool time.

Figure 2 contains three tables which display the number of safe instances
shown safe, unsafe instances shown unsafe, and the total number of instances

7
QCover is available at http://www-etud.iro.umontreal.ca/~blondimi/qcover/.

8
https://github.com/pierreganty/mist/wiki#input-format-of-mist

9
https://github.com/pierreganty/mist/wiki#coverability-checkers-included-in-mist

13

http://www-etud.iro.umontreal.ca/~blondimi/qcover/
https://github.com/pierreganty/mist/wiki#input-format-of-mist
https://github.com/pierreganty/mist/wiki#coverability-checkers-included-in-mist

of our benchmark suite decided by each individual tool. As expected, our algo-
rithm outperforms all competitors on safe instances, since in this case a proof
of safety (i.e. non-coverability) effectively requires the computation of the whole
backward coverability set, and this is where pruning via Q-coverability becomes
most beneficial. On the other hand, QCover remains competitive on unsafe
instances, though a tool such as BFC handles those instances better since its
heuristics are more suited for proving unsafety (i.e. coverability). Nevertheless,
QCover is the overall winner when comparing the number of safe and unsafe
instances decided, being far ahead at the top of the leader-board deciding 142
out of 176 instances.

1 4 16 64 256 2000

20

40

60

80

100

time t in seconds

n
u

m
b

er
o
f

in
st

a
n

ce
s

p
ro

v
en

sa
fe

in
≤
t

se
cs

.

1 4 16 64 256 2000

40

60

80

100

120

140

time t in seconds

n
u

m
b

er
o
f

in
st

a
n

ce
s

p
ro

v
en

(u
n

)s
a
fe

in
≤
t

se
cs

.

QCover Petrinizer bfc mist

Fig. 3. Cumulative number of instances proven safe (left) and total number of instances
decided (right) within a fixed amount of time.

QCover not only decides more instances, it often does so faster than its
competitors. Figure 3 contains two graphs which show the cumulative number
of instances proven safe and the total number of instances decided on all suites
by each tool within a certain amount of time. When it comes to safety, QCover
is always ahead of all other tools. However, when looking at all instances decided,
BFC first has an advantage. We observed that this advantage occurs on instances
of comparably small size. As soon as large instances come into play, QCover
wins the race. Besides different heuristics used, one reason for this might be the
choice of the implementation language (C for BFC vs. Python for QCover).
In particular, BFC can decide a non-negligible number of instances in less than
10ms, which QCover never achieves.

Finally, we consider the effectiveness of using Q-coverability as a pruning
criterion. To this end, consider Figure 4 in which we plotted the number of times
a certain percentage of basis elements was removed due to not being Q-coverable.
Impressively, in some cases more than 95% of the basis elements get discarded.
Overall, on average we discard 56% of the basis elements, which substantiates
the usefulness of using Q-coverability as a pruning criterion.

Before we conclude, let us mention that already 83 instances are proven
safe by only checking the state equation, and that additionally checking for the
criteria (ii) and (iii) of Proposition 4 increases this number to 101 instances.

14

0 20 40 60 80 100
0

200

400

percentage x

n
u
m

b
er

o
f

it
er

a
ti

o
n
s

w
it

h
≥
x

%
el

em
en

ts
p
ru

n
ed

0 20 40 60 80 100
0

20

40

60

average

percentage x

n
u
m

b
er

o
f

it
er

a
ti

o
n
s

w
it

h
x

%
el

em
en

ts
p
ru

n
ed

Fig. 4. Number of times a certain percentage of basis elements was removed due to
Q-coverability pruning.

If we use Algorithm 2 instead of our FO(Q+,+, >) encoding then we can only
decide 132 instances in total. Finally, in our experiments, interpreting variables
over Q instead of N resulted in no measurable overall performance gain.

In summary, our experimental evaluation shows that the backward cover-
ability modulo Q-reachability approach to the Petri net coverability problem
developed in this paper is highly efficient when run on real-world instances, and
superior to existing tools and approaches when compared on standard bench-
marks from the literature.

6 Conclusion

In this paper, we introduced backward coverability modulo Q-reachability, a
novel approach to the Petri net coverability problem that is based on using
coverability in continuous Petri nets as a pruning criterion inside a backward
coverability framework. A key ingredient for the practicality of this approach is
an existential FO(Q+,+, >)-characterization of continuous reachability, which
we showed to strictly subsume a recently introduced coverability semi-decision
procedure [10]. Finally, we demonstrated that our approach significantly outper-
forms existing ones when compared on standard benchmarks.

There are a number of possible avenues for future work. It seems promising
to combine the forward analysis approach based on incrementally constructing
a Karp-Miller tree that is used in BFC [20] with the Q-coverability approach
introduced in this paper. In particular, recently developed minimization and
acceleration techniques for constructing Karp-Miller trees should prove benefi-
cial, see e.g. [18,25,27]. Another way to improve the empirical performance of
our algorithm is to internally use more efficient data structures such as sharing
trees [8]. It seems within reach that a tool which combines all of the aforemen-
tioned techniques and heuristics could decide all of the benchmark instances we
used in this paper within reasonable resource restrictions.

Acknowledgments. We would like to thank Vincent Antaki for an early im-
plementation of Algorithm 2. We would also like to thank Gilles Geeraerts for
his support with the MIST file format.

15

References

1. Parosh Aziz Abdulla, Karlis Cerans, Bengt Jonsson, and Yih-Kuen Tsay. Al-
gorithmic analysis of programs with well quasi-ordered domains. Inf. Comput.,
160(1-2):109–127, 2000.

2. Michael Blondin, Alain Finkel, Christoph Haase, and Serge Haddad. Approaching
the coverability problem continuously. CoRR, abs/1510.05724, 2015.

3. Laura Bozzelli and Pierre Ganty. Complexity analysis of the backward coverability
algorithm for VASS. In Giorgio Delzanno and Igor Potapov, editors, Reachability
Problems, RP, volume 6945 of Lecture Notes in Computer Science, pages 96–109.
Springer, 2011.

4. E. Cardoza, Richard J. Lipton, and Albert R. Meyer. Exponential space com-
plete problems for Petri nets and commutative semigroups: Preliminary report. In
Symposium on Theory of Computing, STOC, pages 50–54, 1976.

5. René David and Hassane Alla. Continuous Petri nets. In Proceedings of the 8th
European Workshop on Application and Theory of Petri nets, pages 275–294, 1987.

6. Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: an efficient SMT solver.
In C. R. Ramakrishnan and Jakob Rehof, editors, Tools and Algorithms for the
Construction and Analysis of Systems, TACAS, volume 4963 of Lecture Notes in
Computer Science, pages 337–340. Springer, 2008.

7. Giorgio Delzanno, Jean-François Raskin, and Laurent Van Begin. Attacking sym-
bolic state explosion. In Gérard Berry, Hubert Comon, and Alain Finkel, editors,
Computer Aided Verification, CAV, volume 2102 of Lecture Notes in Computer
Science, pages 298–310. Springer, 2001.

8. Giorgio Delzanno, Jean-François Raskin, and Laurent Van Begin. Covering sharing
trees: a compact data structure for parameterized verification. STTT, 5(2-3):268–
297, 2004.

9. Emanuele D’Osualdo, Jonathan Kochems, and C.-H. Luke Ong. Automatic verifi-
cation of Erlang-style concurrency. In Francesco Logozzo and Manuel Fähndrich,
editors, Static Analysis, SAS, volume 7935 of Lecture Notes in Computer Science,
pages 454–476. Springer, 2013.

10. Javier Esparza, Ruslán Ledesma-Garza, Rupak Majumdar, Philipp Meyer, and
Filip Niksic. An SMT-based approach to coverability analysis. In Armin Biere
and Roderick Bloem, editors, Computer Aided Verification, CAV, volume 8559 of
Lecture Notes in Computer Science, pages 603–619. Springer, 2014.

11. Javier Esparza and Stephan Melzer. Verification of safety properties using integer
programming: Beyond the state equation. Formal Methods in System Design,
16(2):159–189, 2000.

12. Alain Finkel, Jean-François Raskin, Mathias Samuelides, and Laurent Van Begin.
Monotonic extensions of Petri nets: Forward and backward search revisited. Electr.
Notes Theor. Comput. Sci., 68(6):85–106, 2002.

13. Alain Finkel and Philippe Schnoebelen. Well-structured transition systems every-
where! Theor. Comput. Sci., 256(1-2):63–92, 2001.

14. Est́ıbaliz Fraca and Serge Haddad. Complexity analysis of continuous Petri nets.
Fundamenta Informaticae, 137(1):1–28, 2015.

15. Pierre Ganty. Algorithmes et structures de données efficaces pour la manipulation
de contraintes sur les intervalles (in French). Master’s thesis, Université Libre de
Bruxelles, Belgium, 2002.

16. Pierre Ganty, Cédric Meuter, Giorgio Delzanno, Gabriel Kalyon, Jean-François
Raskin, and Laurent Van Begin. Symbolic data structure for sets of k-uples. Tech-
nical Report 570, Université Libre de Bruxelles, Belgium, 2007.

16

17. Gilles Geeraerts, Jean-François Raskin, and Laurent Van Begin. Expand, enlarge
and check: New algorithms for the coverability problem of WSTS. J. Comput.
Syst. Sci., 72(1):180–203, 2006.

18. Gilles Geeraerts, Jean-François Raskin, and Laurent Van Begin. On the efficient
computation of the minimal coverability set of petri nets. Int. J. Found. Comput.
Sci., 21(2):135–165, 2010.

19. Steven M. German and A. Prasad Sistla. Reasoning about systems with many
processes. J. ACM, 39(3):675–735, 1992.

20. Alexander Kaiser, Daniel Kroening, and Thomas Wahl. A widening approach to
multithreaded program verification. ACM Trans. Program. Lang. Syst., 36(4):14:1–
14:29, 2014.

21. Richard M. Karp and Raymond E. Miller. Parallel program schemata: A mathe-
matical model for parallel computation. In Switching and Automata Theory, pages
55–61. IEEE Computer Society, 1967.

22. Johannes Kloos, Rupak Majumdar, Filip Niksic, and Ruzica Piskac. Incremental,
inductive coverability. In Natasha Sharygina and Helmut Veith, editors, Computer
Aided Verification, CAV, volume 8044 of Lecture Notes in Computer Science, pages
158–173. Springer, 2013.

23. Jérôme Leroux and Sylvain Schmitz. Demystifying reachability in vector addition
systems. In Logic in Computer Science, LICS, pages 56–67. IEEE, 2015.

24. Charles Rackoff. The covering and boundedness problems for vector addition sys-
tems. Theor. Comput. Sci., 6:223–231, 1978.

25. Pierre-Alain Reynier and Frédéric Servais. Minimal coverability set for petri nets:
Karp and miller algorithm with pruning. Fundam. Inform., 122(1-2):1–30, 2013.

26. Eduardo D. Sontag. Real addition and the polynomial hierarchy. Inf. Process.
Lett., 20(3):115–120, 1985.

27. Antti Valmari and Henri Hansen. Old and new algorithms for minimal coverability
sets. Fundam. Inform., 131(1):1–25, 2014.

28. Kumar Neeraj Verma, Helmut Seidl, and Thomas Schwentick. On the complexity
of equational horn clauses. In Robert Nieuwenhuis, editor, Automated Deduction
- CADE-20, volume 3632 of Lecture Notes in Computer Science, pages 337–352.
Springer, 2005.

17

	Approaching the Coverability Problem Continuously

