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Abstract—This paper studies sets of rational numbers definable
by continuous Petri nets and extensions thereof. First, we identify
a polynomial-time decidable fragment of existential FO(Q,+, <)
and show that the sets of rationals definable in this fragment
coincide with reachability sets of continuous Petri nets. Next,
we introduce and study continuous vector addition systems with
states (CVASS), which are vector addition systems with states
in which counters may hold non-negative rational values, and
in which the effect of a transition can be scaled by a positive
rational number smaller or equal to one. This class strictly
generalizes continuous Petri nets by additionally allowing for
discrete control-state information. We prove that reachability
sets of CVASS are equivalent to the sets of rational numbers
definable in existential FO(Q,+, <) from which we can conclude
that reachability in CVASS is NP-complete. Finally, our results
explain and yield as corollaries a number of polynomial-time
algorithms for decision problems that have recently been studied
in the literature.

I. INTRODUCTION

Petri nets and vector addition systems with states (VASS) are
versatile classes of infinite-state systems that find numerous
applications in diverse areas of computer science, especially
in formal verification. A Petri net comprises a finite number
of places, which carry a non-negative number of tokens, and a
finite set of transitions. A transition may add and remove to-
kens from places, provided that the resulting number of tokens
remains non-negative in each place. Similarly, a VASS consists
of a finite-state controller with a finite number of counters
ranging over the natural numbers. When taking a transition,
counters may be incremented and decremented, provided that
the resulting counter values are non-negative. Petri nets and
VASS are computationally equivalent, and their combinatorial
structure is remarkably difficult to analyze. Despite significant
progress and efforts that have been made over the course
of the last forty years, reachability in Petri nets and VASS
is only known to be EXPSPACE-hard [1] and decidable in
non-primitive recursive time [2]. In order to circumvent the
computational difficulties encountered when dealing with these
models, relaxed semantics have been proposed in the literature.
An obvious relaxation consists in allowing the number of
tokens or counter values to drop below zero. This is known as
the state equation for Petri nets, and as Z-VASS (see e.g. [3])
for vector addition systems with states. Since non-negativity
constraints are usually crucial in modeling, researchers have
also studied relaxed models in which the number of tokens
or counter values must remain non-negative, but may range

over the real numbers. For example, David and Alla [4], [5]
introduced continuous Petri nets, which are Petri nets in which
a transition can be fired by a positive real factor, and in which
places may contain a non-negative real number of tokens.

The computational and practical benefits obtained from
relaxing the semantics of Petri nets and VASS are remarkable.
Continuous Petri nets, in particular, are a unique class of
infinite-state systems from a complexity-theoretic, logical and
practical point of view: reachability in continuous Petri nets
is only P-complete [6]; continuous Petri nets reachability
relations over the rational numbers are definable in existential
FO(Q,+, <) [7] as opposed to their discrete counterparts
whose reachability sets are not even semi-linear [8]; and
reachability in continuous Petri nets can consequently be
decided using SMT solvers [7], while only limited tool support
for reachability in discrete Petri nets exists. Moreover, contin-
uous Petri nets as well as Z-VASS, for which reachability
is NP-complete [3], over-approximate the behavior and the
reachability sets of their classical counterparts. Those over-
approximations have successfully been employed inside deci-
sion procedures for discrete Petri nets and VASS in order to
prune search spaces. For instance, in an approach proposed by
the authors [7], which has recently been refined by Geffroy,
Leroux and Sutre [9], reachability in continuous Petri nets
is used as a pruning criterion inside the classical backward
algorithm [10] for deciding coverability in Petri nets. Fur-
thermore, integer over-approximations of VASS and Petri nets
have been used as semi-decision procedures for coverability in
VASS [11], [12]. In all such application scenarios, those over-
approximations have led to decision procedures for coverabil-
ity problems in VASS and Petri nets that yield an empirically
outstanding performance on real-world instances [11], [7],
[12], [9].

There are two aspects of continuous Petri nets that emerge
from the aforementioned literature that have not yet been
understood in a satisfactory way. First, whenever the authors
presented their SMT-based decision procedure for reachability
in continuous Petri nets [7], members of the audience often
wondered why one would choose to solve a polynomial-
time decidable problem by a translation into existential
FO(Q,+, <), an NP-complete theory [13]. Even though there
are good reasons for doing so, e.g. the solid engineering work
that has gone into modern SMT solvers, fundamentally this
is a valid concern. Phrased differently, the actual question is
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whether there exists a polynomial-time decidable fragment of
existential FO(Q,+, <) that can express reachability in contin-
uous Petri nets, and on which SMT solvers are guaranteed to
empirically perform well. Second, Z-VASS have recently, and
to some extent surprisingly, shown to provide a more suitable
over-approximation than (subclasses of) continuous Petri nets
when applied to VASS coverability instances obtained from
the verification of concurrent Pthread-based C programs [12].
Essentially, the reason for this is that Z-VASS allow for
maintaining discrete control structures, whereas continuous
Petri nets do not allow for any sort of discrete information.
This shortcoming of continuous Petri nets has long been
known, and led to the introduction of hybrid Petri nets in
which only some places and transitions may operate under
the relaxed continuous semantics [5]. However, reachability
in hybrid Petri nets is, in the worst case, as difficult as
in standard Petri nets. This raises the question of whether
there exists an extension of continuous Petri nets that allows
for maintaining discrete control structures while sharing the
striking algorithmic and structural properties of continuous
Petri nets.

Our contribution: We take a unified approach to the two
questions identified in the previous paragraph. First, in Sec-
tion III-A we identify a fragment of existential FO(Q,+, <)
whose satisfiability problem is P-complete. Such fragments
have already been studied in the community working on
constraint satisfaction problems (CSPs). Our contribution is
to introduce the CSP of convex semi-linear Horn formulas
(CSP(Γc)), and to provide a polynomial-time decision proce-
dure for it. We then show in Section III-B that reachability
in continuous Petri nets reduces to CSP(Γc), and conversely
in Section III-C that the set of satisfying assignments of an
instance of CSP(Γc) can be obtained as the reachability set
of a continuous Petri net. Thus, CSP(Γc) fully characterizes
the reachability sets of continuous Petri nets. In addition, in
Section III-D we remark that our CSP(Γc)-based approach
to reachability in continuous Petri nets immediately recovers
further polynomial-time results for which dedicated algorithms
have been developed in the literature.

Our next contribution in Section IV is to introduce con-
tinuous vector addition systems with states (CVASS), a class
of hybrid Petri nets. Such CVASS are like VASS except that
when a transition is taken, its effect on the counters can be
scaled by any positive rational number less or equal to one,
provided that the resulting counter values remain non-negative.
We first show the not immediate fact that continuous Petri
nets embed into CVASS in the same way as Petri nets embed
into VASS. We then prove in Section IV-B that reachability
relations of CVASS are definable in existential FO(Q,+, <),
and hence that reachability in CVASS is decidable in NP.
Analogously to the case of continuous Petri nets, we show
in Section IV-C that the sets of solutions of an existential
FO(Q,+, <) formula is definable as the reachability set of a
CVASS. In Section IV-D, we give reductions which essentially
show that adding any sort of discrete control structure to
continuous Petri nets makes reachability NP-hard. Finally, we

discuss our results in Section VI and give an outlook on
possible future work.

Rational versus real arithmetic: Continuous Petri nets are
named this way because transitions may be fired by a non-
negative real number. However, for technical convenience, we
only consider firing transitions by rational numbers throughout
this paper. That way, we avoid problems such as how to finitely
represent arbitrary real numbers. Almost all of our construc-
tions and proofs only depend on the denseness of the domain,
and where this is not the case we explicitly remark how to
make an argument work when allowing transitions to be fired
a real number of times. Also note that all decision problems
we consider in this paper reduce to existential FO(Q,+, <),
and existential FO(Q,+, <) and existential FO(R,+, <) are
equivalent theories with an NP-complete satisfiability prob-
lem [13].

II. PRELIMINARIES

We denote respectively by Z, N, Q, Q+ and Q>0 the sets of
integers, non-negative integers, rational numbers, non-negative
rational numbers and positive rational numbers. For a, b ∈
Z, we let [a, b]

def
= {x ∈ Z : a ≤ x ≤ b}, and [a]

def
= [1, a].

Intervals over Q are denoted in the standard way. We write
vectors (v1, v2, . . . , vd) ∈ Qd in bold as v, and write v(i) and
vi for vi. Whenever vi is also a vector, we sometimes write
vi,j to denote (vi)j . Vectors are ordered component-wise, i.e.,
u ≤ v if and only if u(i) ≤ v(i) for every i ∈ [d]. Given
a finite index set I and A ⊆ Q, we denote by AI the set of
all I-indexed vectors v : I → A. With no loss of generality,
we may assume a total order on I , and hence for I such
that |I| = d we sometimes write elements from AI as tuples
v = (v1, . . . , vd) ∈ Ad. We write 0 for the null vector in any
dimension, and ei for the i-th unit vector, i.e., ei is such that
ei(i) = 1 and ei(j) = 0 for every j 6= i. The support of
a vector v ∈ Qd is JvK def

= {i ∈ [d] : v(i) 6= 0}. Similarly,
the positive support and negative support of v are defined
respectively as

JvK+ def
= {i ∈ [d] : v(i) > 0} JvK− def

= {i ∈ [d] : v(i) < 0}.

A. Continuous Petri nets

A continuous Petri net is a tuple N = (P, T,Pre,Post),
where P and T are disjoint finite sets, and Pre,Post ∈
NP×T . The sets P and T are respectively called the places
and transitions of N . The transpose of N is defined as
N † def

= (P, T,Post,Pre). The size of N is the number of
symbols required to write down N , where we assume binary
encoding of numbers and that transitions are represented as
lists of non-negative components of NP×T .

Let p ∈ P and t ∈ T . The pre-sets of p and t are
respectively defined as

•p
def
= {t′ ∈ T : Post(p, t′) > 0},

•t
def
= {p′ ∈ P : Pre(p′, t) > 0}.
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Similarly, the post-sets of p and t are respectively

p•
def
= {t′ ∈ T : Pre(p, t′) > 0},

t•
def
= {p′ ∈ P : Post(p′, t) > 0}.

We extend these definitions to sets, e.g., for every Q ⊆ P , we
let •Q def

=
⋃
p∈Q

•p.
For every t ∈ T , Pret and Postt denote the column of

Pre of and Post associated to t. The effect of a transition is
δ(t)

def
= Postt − Pret. For every A ∈ {Q,Q+}, α ∈ (0, 1],

and t ∈ T , we define the transition relation αt−→→A over AP by

u
αt−→→A v

def⇐⇒ u ≥ α ·Pret and v = u + α · δ(t).1

For integral u and v, we write u
t−→N v for u 1t−→→Q+

v, which
corresponds to the discrete Petri net semantics. To simplify the
notation, we define TH def

= ((0, 1]× T )∗. The identity relation
over AP is denoted by ε−→→A, and for π = α1t1α2t2 · · ·αktk ∈
TH, we let

π−→→A
def
=

αktk−−−→→A ◦ · · · ◦
α2t2−−−→→A ◦

α1t1−−−→→A .

The reachability relation R(N ) of N is defined as

∗−→→A
def
=
⋃
π∈TH

π−→→A .

The effect, the (rational) Parikh image Ψ(π) : T → Q+, and
the support of π are defined respectively as

δ(π)
def
= α1 · δ(t1) + α2 · δ(t2) + · · ·+ αn · δ(tn), and

Ψ(π)(t)
def
=
∑

1≤i≤n
ti=t

αi for every t ∈ T,

JπK def
= {ti : i ∈ [n]}.

We write απ = (α · α1)t1(α · α2)t2 · · · (α · αn)tn for every
α ∈ (0, 1]. A sequence π ∈ TH is a firing sequence from u ∈
QP+ if u

π−→→Q+
u + δ(π). We say that a subset of transitions

S ⊆ T is a firing set from u ∈ Q+ if there exists a firing
sequence π from u such that JπK = S.

At a later stage, we will be interested in sets M ⊆ Qd+
definable by continuous Petri nets. In general, it is unlikely to
expect that all places of a continuous Petri net can contribute
towards defining M , as some of them may need to be used,
for instance, for temporarily storing tokens. Therefore, we use
the following definition: a set M ⊆ Qn+ is definable by a
continuous Petri net N with places P such that |P | = m+ n
whenever there exists a fixed u ∈ Qm+ such that v ∈ M if
and only if (v,u)

∗−→→Q+
(0,0). Alternatively, M is definable

by N if it is a projection of a cross section of R(N †)(0).

1In the literature, α is often taken from Q>0 instead of (0, 1]. However,
it is easily seen that for reachability purposes either choice gives the same
reachability sets.

B. Linear rational arithmetic

We show decidability and complexity results via reductions
into existential FO(Q,+, <), the existential fragment of the
first-order theory of the rationals with addition and order.
Formulas of this theory are built from positive Boolean com-
binations of atomic formulas of the form aᵀ · x ∼ c, where
x = (x1, . . . , xn) are first-order variables, a ∈ Qn, c ∈ Q, and
∼ ∈ {>,≥,=}. We write φ(x) in order to indicate that the
variables x = (x1, . . . , xn) occur free in φ, and JφK ⊆ Qn for
the set of rational numbers that can be extended to solutions of
φ. The size of a formula is the number of symbols required to
write it down, where we assume binary encoding of numbers.

Satisfiability in existential FO(Q,+, <) is NP-
complete [13]. If we only consider conjunctions of atomic
formulas, we actually decide the feasibility problem for
linear programming, which is known to be hard for P [14,
Prob. A.4.1] and decidable in polynomial time [15], even in
the presence of strict inequalities, see e.g. [16, Chap. 8.7.1].

III. A LOGICAL CHARACTERIZATION OF REACHABILITY IN
CONTINUOUS PETRI NETS

The goal of this section is to identify a fragment of
existential FO(Q,+, <) that fully characterizes reachability
in continuous Petri nets. We introduce this fragment in Sec-
tion III-A below. It turns out that our fragment is closely
related to semi-linear CSPs, and we present our fragment as
a particular semi-linear CSP: the CSP of convex linear Horn
constraints. In particular, we show that its feasibility problem
is P-complete. Next, in Section III-B we provide a reduction
from reachability in continuous Petri nets to feasibility in the
CSP of semi-linear Horn constraints. This yields as a corollary
an alternative proof that reachability in continuous Petri nets is
decidable in P. Conversely, in Section III-C we show that the
set of feasible solutions of an instance of a CSP of linear Horn
constraints can be obtained as the set of reachable markings of
a continuous Petri net. To round up the picture, in Section III-D
we discuss applications of our results as well as relationships
to other models that have been studied in the literature.

A. The CSP of convex linear Horn constraints

In this section, we identify a syntactic fragment of ex-
istential FO(Q,+, <) that generalizes linear programming,
whose sets of solutions are convex, and for which satisfia-
bility is P-complete. In fact, our fragment is closely related
to the CSP of linear Horn constraints studied by Jonsson
and Bäckström [17], and Koubarakis [18]. Due to the close
relationship to CSPs and for technical convenience, we present
our fragment of existential FO(Q,+, <) in the language of
CSPs.

Given a domain D, a set of relation symbols τ =
{R1, R2, . . .}, and a τ -structure Γ = (D;RΓ

1 , R
Γ
2 , . . .) such

that RΓ
i ⊆ Dki is of arity ki, the problem CSP(Γ) is defined

as follows. Given a finite set of variables X = {x1, . . . , xn},
and a finite set of expressions R(xi1 , . . . , xik) such that
R ∈ τ , is there an assignment σ : X → D such that
(σ(xi1), . . . , σ(xik)) ∈ RΓ for all constraints R(xi1 , . . . , xik)
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of the input? Whenever D = Q and all Ri are definable by
a quantifier-free formula in FO(Q,+, <), Γ is called semi-
linear.2

Convex semi-linear relations over the non-negative rational
numbers are defined by convex semi-linear Horn clauses,
which are quantifier-free FO(Q,+, <) formulas of the form

ψ = aᵀ · x ∼ c ∨
∨

1≤i≤m

θi, where θi =
∧
j∈Ji

xj > 0

and where J1, J2, . . . , Jm are finite sets of indices. Given a
convex semi-linear Horn clause ψ as above, the negative liter-
als of ψ are neg(ψ)

def
= {θ1, . . . , θm}, and fact(ψ)

def
= aᵀ ·x ∼ c.

Given a negative literal θ ∈ neg(ψ), we denote by ψ \ θ the
convex semi-linear Horn clause ψ′ which is obtained from
ψ by removing θ from its set of negative literals. A convex
semi-linear Horn formula is a finite set Φ of convex semi-
linear Horn clauses. We define facts(Φ) to be the set of all
semi-linear facts in Φ such that ψ ∈ facts(Φ) if and only
if neg(ψ) = ∅. Whenever it is convenient, we also write
convex semi-linear Horn formulas as conjunctions of convex
semi-linear Horn clauses. In the following, we denote by
Γc = (Q+;R1, R2, . . .) the structure whose domain is the set
of non-negative rational numbers and whose relations are all
convex semi-linear relations.

We now study some properties of CSP(Γc). First of all, in
order to make our life a bit easier, we introduce the following
abbreviations that will later become handy:

x > 0→
∨

1≤i≤m

θi ⇐⇒ x = 0 ∨
∨

1≤i≤m

θi (1)

x = 0→
∧

1≤i≤m

yi = 0 ⇐⇒
∧

1≤i≤m

yi = 0 ∨ x > 0. (2)

As the name suggests, solutions of the CSP of convex semi-
linear Horn constraints are convex, as we show in the follow-
ing lemma.

Lemma 3.1: The set of solutions of an instance Φ of
CSP(Γc) is convex.

Proof: Let y, z ∈ Qn+ be two solutions of Φ. We claim
that x∗ = λ · y + (1− λ) · z is a solution of Φ for all rational
λ ∈ [0, 1]. This is clear for all semi-linear facts. Now consider
a general semi-linear Horn clause ψ in which, with no loss of
generality, z makes some negative literal θi =

∧
j∈Ji xj > 0

true. Note that for any λ ∈ [0, 1), we have x∗j > 0 as well due
to interpreting variables only over the non-negative integers.
Hence for such choices of λ, θi also evaluates to true under
x∗, and so does ψ. If λ = 1, then x∗ = y is a solution of ψ
by assumption.

Even though the sets of rationals definable in CSP(Γc) are
convex, in general they cannot be obtained as points inside a
convex polytope.

Lemma 3.2: There exists an infinite family of convex linear
Horn constraints (ψn(x, y1, . . . , yn))n>0 such that no convex
polytope defines any JψnK.

2Here, we adopt the notion of semi-linearity used in the CSP community.
Probably more commonly, semi-linear sets are also known as the sets of
natural numbers definable in FO(N,+, <).

Algorithm 1 Decision procedure for CSP(Γc).
INPUT: A convex semi-linear Horn formula Φ.

1: repeat
2: Ψ := facts(Φ); halt := true
3: if Ψ is unsatisfiable in Q+ then return unsatisfiable
4: for all ψ ∈ Φ \ facts(Φ) do
5: ψ′ := ψ
6: for all θ ∈ neg(ψ) do
7: if Ψ ∪ {θ} is unsatisfiable in Q+ then
8: ψ′ := ψ′ \ θ
9: halt := false

10: Φ := (Φ \ {ψ}) ∪ {ψ′}
11: until halt
12: return satisfiable

Proof: It is easily checked that ψn(x, y1, . . . , yn)
def
= (x =

0 ∨ y1 > 0 ∨ · · · ∨ yn > 0) is a family of convex linear Horn
constraints with the desired properties.

Finally, we show that CSP(Γc) is decidable in polynomial
time via Algorithm 1, an adaptation of the classical algorithm
deciding satisfiability of Boolean Horn formulas.

Theorem 3.3: CSP(Γc) is P-complete.
Proof: Hardness follows from P-hardness of linear pro-

gramming feasability [14, Prob. A.4.1]. It thus remains to be
shown that Algorithm 1 is a decision procedure for CSP(Γc)
that runs in polynomial time.

We begin with showing that the algorithm runs in poly-
nomial time. The satisfiability checks in Lines 3 and 7 can
be performed in polynomial time due to linear programming
being decidable in polynomial time [15], [16]. Thus, it remains
to show that the repeat-loop is traversed at most a polynomial
number of times. In every iteration of the loop, at least one
negative literal of some semi-linear Horn clause gets removed,
and thus the loop is iterated at most O(m) times, where m is
the number of negative literals in Φ. This in turn implies an
overall polynomial running time of Algorithm 1.

Regarding the correctness of the algorithm, if the algorithm
returns unsatisfiable in Line 3, then Φ contains an unsatisfiable
subset of facts, and hence is unsatisfiable. Moreover, if Ψ∪{θ}
is unsatisfiable in Line 7, then Ψ implies ¬θ, and hence
the updated Φ in Line 10 in which all such θ have been
removed has the same set of solutions as before. Let Φ′

and Ψ′ be respectively the convex semi-linear Horn formula
and the set of facts obtained in the algorithm once Line 12
has been reached. For every convex semi-linear Horn clause
ψi = aᵀ

i · x ∼ ci ∨
∨

1≤j≤mi θi,j in Φ′, the algorithm
guarantees that there are solutions xi,j of Ψ′ ∪ {θi,j}. We
claim that

x∗
def
=

1

n
·
∑
ψi∈Φ′

1≤j≤mi

xi,j

is a solution of Φ′. Indeed, x∗ is a solution of all facts in Ψ′,
cf. Lemma 3.1. Moreover, for any x > 0 of some θi,j , we
have xi,j > 0 and consequently x∗ > 0, since variables are
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interpreted over the non-negative rational numbers, resembling
the same argument used in the proof of Lemma 3.1. Conse-
quently, x∗ is a solution of Φ′ and hence of Φ. Thus, Φ is
satisfiable when the algorithm return satisfiable in Line 12.

Before we conclude this section, let us briefly discuss the
relationship of our CSP of convex linear Horn constraints to
other CSPs that have been studied in the literature. To the
best of our knowledge, no convex tractable extension of linear
programming has been identified so far. The tractable CSP of
linear Horn constraints studied in [17], [18], [19] allows for
constraints of the form aᵀ ·x ∼ c∨

∨
1≤i≤m aᵀ

i ·x 6= ci, where
x is interpreted over the rational numbers. While this CSP can
express constraints of CSP(Γc) in which every negative literal
is a single strict inequality, it is not obvious to us whether
the CSP of linear Horn constraints could be generalized such
that CSP(Γc) fully embeds into it. In any case, solutions to
instances of the CSP of linear Horn constraints are not convex
in general. Finally, it is worth mentioning that our convex
semi-linear Horn formulas can also be viewed as convex Horn
formulas, defined in [19] and allowing for restricted classes of
polynomials as negative literals, by observing that over Q+,∧

1≤i≤n xi > 0 ≡
∏

1≤i≤n xi > 0. However, a P upper bound
cannot be derived from the results in [19].

B. Reducing reachability in continuous Petri nets to CSP(Γc)

We now show that reachability sets of continuous Petri nets
are definable in CSP(Γc). Given a continuous Petri nets N ,
we show how to construct in logarithmic space an instance Φ
of CSP(Γc) such that a projection of JΦK corresponds to the
reachability set of N . Our reduction is based on the following
characterization of reachability in continuous Petri nets.

Proposition 3.4 ([6, Thm. 20]): LetN = (P, T,Pre,Post)
be a continuous Petri net. Let u,v ∈ QP+ and x ∈ QT+. There
exists π ∈ TH such that u π−→→Q+

v and Ψ(π) = x if and only
if

(i) v = u + (Post−Pre) · x;
(ii) JxK is a firing set from u in N ; and

(iii) JxK is a firing set from v in N †.
The first item requires the existence of a solution x to the

Petri net state equation, and the subsequent two items require
that the support of x has a corresponding firing sequence
in both N and its transpose. In [7], the authors developed
a translation of the conditions of Proposition 3.4 into existen-
tial FO(Q,+, <). There, the encoding of the Conditions (ii)
and (iii) of Proposition 3.4 is achieved by adapting an approach
proposed by Verma, Seidl and Schwentick for characterizing
the Parikh image of the language of a context-free grammar in
existential Presburger arithmetic [20]. However, the construc-
tion in [7] does not yield a formula in CSP(Γc). While the
Petri net state equation clearly is expressible in CSP(Γc), the
encoding used for Conditions (ii) and (iii) of Proposition 3.4
does not lie in CSP(Γc).

Lemma 3.5: There exists a logarithmic-space computable
instance Φ(u,y) of CSP(Γc) such that (u,y) ∈ JΦK if and
only if JyK is a firing set from u in N .

Proof: The CSP(Γc) instance Φ(u,y) that we define
uses auxiliary vectors of variables x0,x1, . . . ,x|T | ∈ QP∪T+ .
Similarly as in [20], the idea behind our construction is to
successively explore which places could carry tokens and
which transitions could in turn be enabled after a certain
number of steps. By xi,p > 0 and xi,t > 0 we indicate
that after at most i explorations steps the place p could carry
tokens, respectively that the transition t could be enabled. In
the definitions of the subsequent formulas, we make heavy
use of the abbreviations (1) and (2) in order to stay inside
CSP(Γc).

Initially only places in JuK carry tokens and no transition
is enabled:

ψ0(u,x0)
def
=
∧
p∈P

(x0,p > 0↔ up > 0) ∧
∧
t∈T

x0,t = 0.

Next, we declare that after i steps, places that carried tokens
after i−1 steps continue to have tokens, as well as places that
receive tokens from transitions that were enabled after i − 1
steps. Moreover, if a transition t is declared enabled after i
steps, we require that all places from which t consumes tokens
carry tokens after i− 1 steps:

ψi(xi,xi−1)
def
=∧

p∈P
(xi,p > 0↔ (xi−1,p > 0 ∨

∨
t∈•p

xi,t > 0)) ∧∧
t∈T

(xi,t > 0→
∧
p∈•t

xi−1,p > 0). (3)

Finally, the instance Φ(u,y) of CSP(Γc) required in the
lemma is obtained as the following conjunction:

Φ(u,y)
def
= ψ0(u,x0) ∧

∧
1≤i≤|T |

ψi(xi,xi−1) ∧

∧
t∈T

(yt > 0↔
∨

1≤i≤|T |

xi,t > 0).

It is not difficult to check that Φ(u,y) is an instance of
CSP(Γc). We can prove the correctness of the construction
by induction on |JyK|. This is not straightforward since (3)
does not enforce a transition t to be enabled whenever there
are tokens in every place of •t. We omit details for brevity
and refer the reader to Appendix A-A for further details.

The reason for the seemingly cumbersome definition of
when transitions become enabled in (3) is that we cannot
express xi,t > 0 ↔ (

∧
p∈•t xi−1,p > 0) in CSP(Γc). Intu-

itively this is the main reason why our previously developed
existential FO(Q,+, <) characterization of continuous Petri
net reachability [7] does not yield a formula in CSP(Γc). The
price to pay for staying inside CSP(Γc) is that the formula
constructed in Lemma 3.5 is quadratic in the size of N ,
whereas in [7] the formula is linear. Combining Proposition 3.4
with Lemma 3.5 now gives us the following theorem.

Theorem 3.6: There exists a logarithmic-space computable
instance Φ(u,v,w) of CSP(Γc) such that (u,v,w) ∈ JΦK if
and only if there exists π ∈ TH such that u

π−→→Q+
v and

Ψ(π) = w.
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x2
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p1

p2

pn
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qneg

qθ
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q′>

q>

. . .

a1

a2

|an|

c

Fig. 1. Continuous Petri net for ψ(x) = (a1 · x1 + · · ·+ an · xn > c) ∨ (x1 > 0 ∧ x2 > 0) ∨ · · · ∨ (xn > 0) where a1, a2, c > 0 and an < 0.

C. Reducing CSP(Γc) to reachability in continuous Petri nets

We now establish the converse direction of the previous
section. Given an instance Φ(x) of CSP(Γc), we show that
the sets of all non-negative rational solutions x∗ of Φ(x) can
be obtained as subsets of a cross section of reachable markings
of a continuous Petri net. The key point is to construct a
continuous Petri net gadget for simulating a single convex
linear Horn constraint.

Lemma 3.7: Let ψ(x) = aᵀ · x ∼ c ∨
∨

1≤i≤m θi be a
convex linear Horn constraint. There exist a continuous Petri
net N and y ∈ {0, 1}6, computable in logarithmic space, such
that ψ(x) holds if and only if (x,y)

∗−→→Q+
0.

Proof: We assume w.l.o.g. that a and c have integer
values. The construction of the continuous Petri net N for
ψ(x) = (a1 ·x1 + · · ·+an ·xn > c)∨θ1∨· · ·∨θm is illustrated
in Figure 1, where θ1 = (x1 > 0 ∧ x2 > 0), θm = (xn > 0),
a1, a2, c > 0 and an < 0. The places p1, p2, . . . , pn initially
contain the values of x. One of the blue transitions is enabled
if and only if θi holds for some i ∈ [n]. If this is the case,
then firing a blue transition brings a token in qθ which allows
to empty all places using the gray transitions. Thus it remains
to consider the case where no blue transition is enabled. Let
val(N ) be the “current” difference between the content of qpos
and qneg. In order to empty p1, p2, . . . , pn, the black transitions
must be fired until val(N ) = a1 ·x1 + · · ·+an ·xn. Similarly,
q≥ can only be emptied by fully firing the green transition,
leading to val(N ) = a1 · x1 + · · ·+ an · xn − c. The leftmost
magenta transition allows to decrease val(N ) by any λ ≥ 0. If
∼ equals >, then a token is initially placed in g>, and it can
only be removed by decreasing val(N ) by some λ > 0. At this
point, we obtain val(N ) = a1 ·x1 + · · ·+an ·xn− c−λ. The
orange transition “normalizes” the representation of val(N ).
Repeatedly firing this transition allows to empty both qpos and
qneg if and only if val(N ) = 0. Altogether, if val(N ) = 0,
we obtain a1 · x1 + · · · + an · xn = c + λ for some λ > 0
as desired. Even though the transitions need not to be fired
in this specific way, it can be proven that any firing sequence
can be rearranged in this fashion.

Since instances of CSP(Γc) are sets of convex linear Horn
constraints, taking the disjoint union of the gadgets constructed
in Lemma 3.7 allows us to conclude that solutions of CSP(Γc)
are definable by continuous Petri nets.

Theorem 3.8: Let Φ(x) be an instance of CSP(Γc) with
free variables x. There exists a logarithmic-space computable
continuous Petri net N defining the set JΦK of solutions of
Φ(x).

Note that Theorem 3.8 implies that the satisfiability problem
for CSP(Γc) reduces to continuous Petri net reachability. In-
deed, the continuous Petri net obtained from Theorem 3.8 can
be extended with transitions non deterministically guessing an
assignment of the free variables.

D. Applications and observations

We close our investigation of continuous Petri nets with a
short account on some observations and P upper bounds that
follow as corollaries of our results, and on relationships of
continuous Petri nets to other models studied in the literature.

Properties of continuous Petri net reachability sets: It is
well-known that reachability sets of continuous Petri nets are
convex, see e.g. [6]. It is thus a legitimate question to ask
whether it is possible to obtain reachability sets of continuous
Petri nets as (projections of) points inside a convex polytope
given by a system of strict and non-strict linear inequalities.
Combining Theorem 3.6 with Lemma 3.2 shows that this is
not the case.

Proposition 3.9: Reachability sets of continuous Petri nets
are not definable as (projections of) points inside a convex
polytope.

Boundedness, coverability and structural cyclicity: Given
a Petri net N and an initial marking u ∈ QP+, continuous
boundedness is the problem to decide whether there exists
b ∈ Q+ such that for every marking v reachable from u
and, for every place p, v(p) ≤ b holds. Note that N is
unbounded if and only if there exist v,w ∈ QP+ such that
u
∗−→→Q+

v
∗−→→Q+

w and v < w. Given markings u,v ∈ Q+,
continuous coverability is to decide whether u

∗−→→Q+
w for

some w ≥ v. Finally, structural cyclicity is to decide whether
0

π−→N 0 for some path π such that |π| > 0. Observe that N
is structurally cyclic if and only if 0 π−→→Q+

0 for some π such
that |π| > 0.

Continuous boundedness and continuous coverability were
shown decidable in P in [6] via dedicated algorithms that rely
on specific analyses of runs in continuous Petri nets. Structural
cyclicity was recently shown P-complete in a dedicated paper
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by Drewes and Leroux [21]. Note that the reachability algo-
rithm presented in [6] does not immediately yield membership
in P of structural cyclicity.

Corollary 3.10: Continuous boundedness, continuous cov-
erability and structural cyclicity for Petri nets belong to P.

Proof: Rephrase the definitions of the respective decision
problems in CSP(Γc) and apply Theorem 3.6.

Constant-rate multi-mode systems: In [22], Alur, Trivedi
and Wojtczak study so-called constant-rate multi-mode sys-
tems (MMS), a class of hybrid systems that can switch among a
finite set of modes, and whose dynamics is specified by a finite
number of real-valued variables with mode-dependent constant
rates. Such systems can, for instance, be used in order to
model the behavior of heating, ventilation and air conditioning
(HVAC) systems, or two tank systems [23]. Formally, a MMS
is a tuple H = (M,n,R), where M is a finite non-empty set
of modes, n is the number of continuous variables of H, and
R : M → Qn defines the rates of H that specify for every
mode the change in value per time unit in every component.
Given an initial configuration u0 ∈ Qn, a run of H is a pos-
sibly infinite sequence % : (u0, (m1, t1),u1, (m2, t2),u2, . . . )
such that mi ∈ M , ti ∈ Q+ and ui = ui−1 + ti · R(mi) for
all i > 0. Given a system of linear inequalities S : A · x ≥ b
such that A ∈ Qm×n and b ∈ Qm, % is safe with respect to
S if A · ui ≥ b for all i ≥ 0. In [22], Alur et al. study safe
schedulability and safe reachability in MMS. Without going
into any further details, in its essence safe schedulability asks
whether there is a finite non-empty run starting and ending in
the same u that is safe with respect to S, and safe reachability
asks whether there is a finite run that is safe with respect to S,
starts in a designated u, and ends in some designated v ∈ Qn.
Both problems are shown decidable in [22] in polynomial time
via sophisticated analyses and dedicated algorithms. However,
with no further efforts, the same results can easily be obtained
as a corollary of Theorem 3.6 by viewing constant-rate MMS
as continuous Petri nets by an application of some insights
from Lemma 3.7.

Corollary 3.11: Safe schedulability and safe reachability in
constant-rate MMS are logarithmic-space reducible to contin-
uous Petri net reachability problems and thus belong to P.

IV. CONTINUOUS VECTOR ADDITION SYSTEMS WITH
STATES

We now introduce CVASS. The difference to their classical
discrete counterparts is that in CVASS counters may take
non-negative rational values, and the effect of a transition
can arbitrarily be scaled by any rational number in (0, 1].
Formally, a continuous d-dimensional vector addition system
with states (d-CVASS) is a pair V = (Q,T ) such that Q
is a finite set of control states, and T ⊆ Q × Zd × Q is
a finite set of transitions. For notational convenience, we
write a configuration (q,u) ∈ Q×Qd+ as q(u), where every
component of u is referred to as a counter.

For every transition t = (p, z, q), the effect of t is δ(t) def
= z.

For every A ∈ {Q+,Q}, α ∈ (0, 1], and t ∈ T , we define the

transition relation αt−→→A over Q× Ad by

p(u)
αt−→→A q(v)

def⇐⇒ u + α · δ(t) = v.

For integral u and v, we write p(u)
t−→N q(v) and p(u)

t−→Z
q(v) for p(u)

1t−→→Q+
q(v) and p(u)

1t−→→Q q(v) in order to
denote respectively the VASS and Z-VASS transition relations.
As for continuous Petri nets, we write TH for ((0, 1] × T )∗.
Transition relations can be extended to sequences, and we
denote the reachability relation by ∗−→→A. We say that a
sequence π ∈ TH is q-admissible from p(u) ∈ Q × Qd+ if
p(u)

π−→→Q+
q(v) for some v ∈ Qd+. Reachability in CVASS

is to decide whether p(u)
∗−→→Q+

q(v), and cyclic reachability
is to decide whether q(u)

∗−→→Q+
q(v). Finally, Q-reachability

and cyclic Q-reachability are to decide p(u)
∗−→→Q q(v) and

q(u)
∗−→→Q q(v), respectively. Reachability sets of CVASS are

defined analogously as for continuous Petri nets.
For every sequence π = α1t1α2t2 · · ·αntn ∈ TH, the effect

δ(π) ∈ Qd, the (rational) Parikh image Ψ(π) : T → Q+, the
support JπK ⊆ T and the underlying path of π are defined
respectively as

δ(π)
def
= α1 · δ(t1) + α2 · δ(t2) + · · ·+ αn · δ(tn),

Ψ(π)(t)
def
=
∑

1≤i≤n
ti=t

αi for every t ∈ T,

JπK def
= {ti : i ∈ [n]}, and

path(π)
def
= t1t2 . . . tn.

Note that δ(π) =
∑
t∈JπK Ψ(t) · δ(t), and if π is q-admissible

from p(u), then p(u)
π−→→Q+

q(u + δ(π)). Effects, Parikh
images, supports and underlying paths are naturally extended
to languages over TH.

We define the transpose of a transition t = (p, z, q) ∈ T

as t†
def
= (q,−z, p), and the transpose of a sequence π =

α1t1α2t2 · · ·αntn ∈ TH as π†
def
= αnt

†
nαn−1t

†
n−1 · · ·α1t

†
1.

Note that δ(π) = −δ(π†), Ψ(π)(t) = Ψ(π†)(t†), and
t ∈ JπK ⇐⇒ t† ∈ Jπ†K. The transpose of a d-CVASS
V = (Q,T ) is V† def

= (Q,T †) where T † def
= {t† : t ∈ T}.

The underlying directed graph of V is GV
def
= (Q,S) where

S
def
= {(p, q) : (p, z, q) ∈ T}. The Parikh image and support

of sequences over S∗ are defined in the same way as over
TH. For every s = (p, q) ∈ S, in(s)

def
= p and out(s)

def
= q.

For every q ∈ Q, in(q)
def
= {s ∈ S : out(s) = q}, out(q)

def
=

{s ∈ S : in(s) = q} and edges(q)
def
= in(q) ∪ out(q). Let

G = (V,E) be a directed graph and E′ ⊆ E, we define
G[E′] as the subgraph induced by E′, i.e. G[E′]

def
= ({v ∈ V :

edges(v) ∩ E′ 6= ∅}, E′).
In order to justify our definition of CVASS, our first

result shows that continuous Petri nets can be embedded into
CVASS. The standard construction for the discrete case cannot
directly be used here since transitions associated to Pre and
Post could be scaled by different factors. We add extra
counters in order to rule out such undesired behavior.
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Proposition 4.1: Let N = (P, T,Pre,Post) be a con-
tinuous Petri net. There exist a logarithmic-space computable
(|T |+|P |)-CVASS V = (Q,S) and q ∈ Q such that

u
∗−→→Q+

v in N if and only if q(0,u)
∗−→→Q+

q(0,v) in V.

Proof: Let T = {t1, t2, . . . , tn}. We let V def
= (Q,S) be the

(|T |+|P |)-CVASS such that Q def
= {q}∪{pi : i ∈ [n]} and S def

=

{si : i ∈ [n]} ∪ {ti : i ∈ [n]}, where si
def
= (q, (ei,−Prei), pi)

and ti
def
= (pi, (−ei,Posti), q) for every i ∈ [n].

If u
∗−→→Q+

v in N , then it is clear that q(0,u)
∗−→→Q+

q(0,v) in V . Let us show the converse. Suppose there exists
π ∈ SH such that q(0,u)

π−→→Q+
q(0,v) in V . First note

that π is of the form π = α1s`1β1t`1 · · ·αks`kβkt`k . If αi =
βi, we say that i is good, otherwise we say that i is bad.
In Appendix B, we show that π can be rearranged into an
equivalent run with fewer bad indices. Formally, it can be
shown that there exists π′ ∈ SH such that δ(π′) = δ(π),
path(π′) = path(π), π′ is q-admissible, and π′ has fewer
bad indices than π. The claim implies that the number of bad
indices can be decreased until there are only good indices, in
which case we obtain a run of V corresponding to a run of
N .

A. A characterization of cyclic reachability in CVASS
In this section, we establish a characterization of cyclic

reachability in CVASS in a similar vein to Proposition 3.4.
The latter proposition constitutes the basis of the P upper
bound for reachability in continuous Petri nets shown by
Fraca and Haddad in [6]. In order to establish an analogous
characterization for CVASS, it turns out that we can closely
follow and adapt the approach described in [6] to work for
CVASS. While the formal technical aspects are non-trivial
to establish, the underlying idea is simple to understand.
Basically, in order to show q(u)

∗−→→Q+
q(v), we show that

it suffices to check whether q(u)
π−→→Q q(v) for some path π,

and whether π can be scaled in a way such that it does not
force any counter to go below zero when starting in q(u) and
when ending in q(v), as illustrated in Figure 2.

For brevity, we only provide all necessary intermediate
statements required for our characterization; all proofs can be
found in Appendix B-A. For the remainder of this section, we
fix a d-CVASS V = (Q,T ). We first establish a couple of
facts on runs of CVASS whose proofs are immediate.

Lemma 4.2: The following statements hold for every π ∈
TH and α, α′ ∈ (0, 1]:
(a) p(u)

π−→→Q+
q(v) if and only if p(α ·u)

α·π−−→→Q+
q(α · v),

(b) if p(u)
απ−−→→Q+

q(v), p(u′) α′π−−→→Q+
q(v′) and α + α′ ≤

1, then p(u + u′)
(α+α′)π−−−−−→→Q+

q(v + v′),
(c) if p(u)

π−→→Q+
q(v), then p(u)

απ−−→→Q+
q((1−α)·u+α·v),

(d) p(u)
π−→→Q+

q(v) in V if and only if q(v)
π†−→→Q+

p(u) in
V†.

Next, we establish a sufficient condition to apply the trans-
formation illustrated in Figure 2, i.e. to convert a cyclic run
over Q into a cyclic run over Q+ with the same Parikh image.

Fig. 2. Two runs of V = (Q,T ), where Q = {p, q} and T = {s :
(q, (−2, 4), p), t : (p, (4,−2), q)}. State q and transition s appear in blue,
and p and t appear in magenta. Left: q(1, 1)

s t−−→→Q q(3, 3); right: an

equivalent run q(1, 1)
((1/4)s (1/4)t)4−−−−−−−−−−−→→Q+

q(3, 3) that remains above 0.

Lemma 4.3: Let q ∈ Q, u,v ∈ Qd+, and π ∈ TH be such
that

(a) q(u)
π−→→Q q(v),

(b) Jδ(t)K− ⊆ JuK for every t ∈ JπK, and
(c) Jδ(t)K+ ⊆ JvK for every t ∈ JπK.

There exists π′ ∈ TH such that q(u)
π′−→→Q+

q(v) and Ψ(π′) =
Ψ(π).

The subsequent lemma now shows that if we assume the
existence of a path π witnessing Q+-reachability then we can
extract a path π′ from π that ends in a configuration that fulfills
some of the criteria of Lemma 4.3.

Lemma 4.4: Let p, q ∈ Q, u,v ∈ Qd+ and π ∈ TH. If
p(u)

π−→→Q+
q(v), then there exists π′ ∈ TH such that

(a) π′ is q-admissible from p(u),
(b) path(π′) = path(π), and
(c) Jδ(t)K ⊆ Jv′K for every t ∈ Jπ′K, where v′

def
= u + δ(π′).

We have now established all intermediate results that we
require in order to obtain our characterization of CVASS cyclic
reachability:

Proposition 4.5: Let q ∈ Q, u,v ∈ Qd+ and w ∈ QT+. There
exists π ∈ TH such that q(u)

π−→→Q+
q(v) and Ψ(π) = w if

and only if there exist π, πfwd, πbwd ∈ TH such that

(a) q(u)
π−→→Q q(v),

(b) πfwd is q-admissible from q(u) in V ,
(c) π†bwd is q-admissible from q(v) in V†,
(d) Ψ(π) = w and JπK = JπfwdK = JπbwdK = JwK.

Proof: The “only if’ direction is immediate. Therefore,
we assume (a–d) hold, and we show that q(u)

∗−→→Q+
q(v).

By Lemma 4.4, there exists π′fwd ∈ TH such that

• π′fwd is q-admissible from q(u) in V ,
• path(π′fwd) = path(πfwd), and
• Jδ(t)K ⊆ JxK for every t ∈ Jπ′fwdK, where x def

= u+δ(π′fwd).

In particular, note that q(u)
π′fwd−−→→Q+

q(x).
By Lemma 4.4, there exists π′bwd ∈ TH such that

• π′†bwd is q-admissible from q(v) in V†,
• path(π′†bwd) = path(π†bwd), and
• Jδ(t)K ⊆ JyK for every t ∈Jπ′†bwdK, where y def

= v+δ(π′†bwd).
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Note that q(v)
π′†bwd−−→→Q+

q(y), which implies, together with

Lemma 4.2(d), that q(y)
π′bwd−−→→Q+

q(v).
Let π = α1t1α2t2 · · ·αktk. For every j ∈ [k], let

aj
def
= Ψ(π′fwd)(tj) / Ψ(path(π))(tj)

bj
def
= Ψ(π′bwd)(tj) / Ψ(path(π))(tj).

Let 0 < λ ≤ 1 be small enough so that αj − λ(aj + bj) ≥ 0

for every j ∈ [k]. Let cj
def
= αj − λ(aj + bj) for every j ∈ [k],

and let σ def
= c1t1c2t2 · · · cktk. By Lemma 4.2(c), we have

q(u)
λπ′fwd−−−→→Q+

q(

x′︷ ︸︸ ︷
u + λδ(π′fwd)).

Similarly, by applying Lemma 4.2(d), Lemma 4.2(c) and again
Lemma 4.2(d), we obtain

q(v − λδ(π′bwd)︸ ︷︷ ︸
y′

)
λπ′bwd−−−→→Q+

q(v).

Moreover,

δ(σ) =
∑
j∈[k]

cj · δ(tj)

=
∑
j∈[k]

(αj − λ(aj + bj)) · δ(tj)

=
∑
j∈[k]

αj · δ(tj)− λ
∑
j∈[k]

(aj + bj) · δ(tj)

= δ(π)− λ
∑
j∈[k]

(aj + bj) · δ(tj)

= δ(π)− λ
∑
j∈[k]

Ψ(π′fwd)(tj) + Ψ(π′bwd)(tj)

Ψ(path(π))(tj)
· δ(tj)

= δ(π)− λ
∑
t∈JπK

(Ψ(π′fwd)(t) + Ψ(π′bwd)(t)) · δ(t)

= δ(π)− λδ(π′fwd)− λδ(π′bwd)

= v − u− λδ(π′fwd)− λδ(π′bwd)

= (v − λδ(π′bwd))− (u + λδ(π′fwd))

= y′ − x′.

Therefore, q(x′) σ−→→Q q(y′). By definition of x′ and y′, and
since 0 < λ ≤ 1, we have JxK ⊆ Jx′K and JyK ⊆ Jy′K. Thus,

Jδ(t)K ⊆ Jx′K for every t ∈ Jπ′fwdK,
Jδ(t)K ⊆ Jy′K for every t ∈ Jπ′bwdK, and

hence σ satisfies all of the conditions of Lemma 4.3. Thus,
there exists σ′ ∈ TH such that Ψ(σ′) = Ψ(σ) and
q(x′)

σ′−→→Q+
q(y′). We obtain

q(u)
λπ′fwd−−−→→Q+

q(x′)
σ′−→→Q+

q(y′)
λπ′bwd−−−→→Q+

q(v).

It remains to observe that Ψ(λπ′fwd · σ′ · λπ′bwd) = Ψ(π).

B. Reducing reachability in CVASS to existential FO(Q,+, <)

We now show that the characterization of CVASS cyclic
reachability established in Proposition 4.5 enables us to define
reachability relations of CVASS in existential FO(Q,+, <).
This in turn shows that reachability in CVASS can be decided
in NP. For the remainder of this section, let V = (Q,T ) be an
arbitrary but fixed d-CVASS.

We first make the conditions of Proposition 4.5 effective
and then develop an existential FO(Q,+, <) characterization
of CVASS cyclic reachability. Our first step is to provide
an effective characterization of Proposition 4.5(a). Essentially,
Lemma 4.6 below is an adaptation to CVASS of the classical
Euler-Hierholzer theorem characterizing directed graphs con-
taining Eulerian cycles.

Lemma 4.6: Let q ∈ Q, u,v ∈ Qd and w ∈ QT+. There
exists π ∈ TH such that q(u)

π−→→Q q(v) and Ψ(π) = w if
and only if there exist g ∈ QT+ such that

(a) v = u +
∑
t∈T w(t) · δ(t),

(b) JgK = JwK and g(t) ≥ w(t) for every t ∈ S,
(c) GV [JgK] is strongly connected and contains q, and
(d)

∑
t∈in(p) g(t) =

∑
t∈out(p) g(t) for every p ∈ Q.

Proof: ⇒) Let π = α1t1α2t2 · · ·αktk be such that
q(u)

π−→→Q q(v) and Ψ(π) = w. Let g(t)
def
= Ψ(path(π))(t)

for every t ∈ T . Note that (a) immediately holds, and that (b)
holds since 0 < αi ≤ 1 for every i ∈ [k]. Let S def

= JgK. Since
path(π) is a path from q to q, GV [S] is strongly connected
and contains q. It remains to show (d). Let H be the directed
multigraph obtained from GV [S] by replacing each edge t ∈ S
by Ψ(path(π))(t) many arcs from in(t) to out(t). It is readily
seen that path(π) yields an Eulerian cycle in H . Therefore,
|in(H, p)| = |out(H, p)| for every p ∈ Q, which implies (d).
⇐) Let S def

= JgK. For every t ∈ S, let at ∈ N and bt ∈ N>0

be such that g(t) = at/bt. Let λ def
= lcm{bt : t ∈ S}, and

let H be the directed multigraph obtained from GV [S] by
replacing each arc t ∈ S by λ ·g(t) arcs from in(t) to out(t).
By (c), GV [S] is strongly connected and contains q. Thus,
H is strongly connected and contains q. Moreover, for every
p ∈ Q,

in(H, p) =
∑

t∈in(GV ,p)

λ · g(t)

= λ ·
∑

t∈in(GV ,p)

g(t)

= λ ·
∑

t∈out(GV ,p)

g(t) (by (d))

=
∑

t∈out(GV ,p)

λ · g(t) = out(H, p).

Therefore, H has an Eulerian cycle σ from q to q. Let σ′ =
t1t2 · · · tk be the path of GV obtained from σ. Let i ∈ [k],
and αi

def
= w(ti)/Ψ(σ′)(ti). Note that Ψ(σ′)(ti) = λ · g(ti).

9



Moreover, 0 < w(ti) ≤ g(ti) by (b). Thus, 0 < αi ≤ 1. Let
π

def
= α1t1α2t2 · · ·αktk. We have

δ(π) =
∑
i∈[k]

αi · δ(ti)

=
∑
i∈[k]

(w(ti)/Ψ(σ′)(ti)) · δ(ti)

=
∑
t∈JπK

Ψ(σ′)(t) · (w(t)/Ψ(σ′)(t)) · δ(t)

=
∑
t∈JπK

w(t) · δ(t)

= v − u (by (a)).

Therefore, we obtain q(u)
π−→→Q q(v). Moreover, a simple

calculation shows that Ψ(π) = w.
Note that if CVASS over R are considered instead, g can

still be chosen to be rational in the previous proof, and
hence taking the least common multiple makes sense. See
Appendix B-B for more details.

We now turn towards an effective characterization of Propo-
sition 4.5(b) and (c). Basically, the next lemma states that
there exists a q-admissible path π starting in p(u) whenever
we can find an ordering of the transitions visited by π such
that all counters which are decremented by a transition have
previously been incremented.

Lemma 4.7: Let p(u) ∈ Q×Qd+, q ∈ Q and S ⊆ T . There
exists π ∈ TH such that
• π is q-admissible from p(u), and
• JπK = S.

if and only if there exists an injection f : S → Q>0 such that
for every t, t′ ∈ S,
(a) if f(t) = min{f(s) : s ∈ S}, then in(t) = p,
(b) if f(t) < f(t′), then there exists a path π in GV from

out(t) to in(t′) such that JπK ⊆ {s ∈ S : f(s) < f(t′)},
(c) if f(t) = max{f(s) : s ∈ S}, then there exists a path π

in GV from out(t) to q such that JπK ⊆ S, and
(d) Jδ(t)K− ⊆ JuK ∪

⋃
s∈S

f(s)<f(t)

Jδ(s)K+.

It is now not so difficult to see that we can translate
CVASS cyclic reachability into FO(Q,+, <) via the effective
characterizations of the conditions of Proposition 4.5 provided
by Lemma 4.6 and Lemma 4.7:

Lemma 4.8: There exists a logarithmic-space computable
existential FO(Q,+, <) formula ϕV,q(x,y, z) such that
ϕV,q(u,v,w) holds if and only if there exists π ∈ TH such
that q(u)

π−→→Q+
q(v) and Ψ(π) = w.

We may now define CVASS reachability in existential
FO(Q,+, <). Given p(u), q(v) ∈ Q×Qd+, we observe that any
run from p(u) to q(v) can be decomposed as a run alternating
between simple paths and cycles of arbitrarily length. More
formally, p(u)

∗−→→Q+
q(v) if and only if there exist 0 ≤ k ≤

|Q|, q0, q1, . . . , qk+1 ∈ Q, u0,u1, . . . ,uk,v1,v2 . . . ,vk+1 ∈
Qd+ and π0, π1, . . . , πk ∈ TH such that
(a) p(u) = q0(u0), q(v) = qk+1(vk+1),

(b) qi(ui)
πi−→→Q+

qi+1(vi+1) for every 0 ≤ i ≤ k,
(c) qi(vi)

∗−→→Q+
qi(ui) for every 0 < i ≤ k,

(d) 0 ≤ |πi| < |Q| for every 0 ≤ i ≤ k.
Since the intermediate paths πi in (b) are of bounded length,
they can be guessed in FO(Q,+, <), and Condition (c) can
be encoded using the formulas established in Lemma 4.8.
Those observations enable us to prove the main theorem of
this section.

Theorem 4.9: Let p, q ∈ Q. There exists a logarithmic-space
computable existential FO(Q,+, <) formula ϕV,p,q(x,y, z)
such that ϕV,p,q(u,v,w) holds if and only if there exists π ∈
TH such that p(u)

π−→→Q+
q(v) and Ψ(π) = w.

Since satisfiability in existential FO(Q,+, <) is NP-
complete [13], we obtain an upper bound for reachability in
CVASS as an immediate consequence.

Corollary 4.10: Reachability in CVASS is in NP.

C. Reducing existential FO(Q,+, <) to reachability in CVASS

In this section, we briefly discuss that the sets of rational
numbers definable in existential FO(Q,+, <) are, in a certain
sense, equivalent to reachability sets of CVASS. Since counters
of CVASS cannot hold negative numbers, we encode arbitrary
rational numbers as pairs of non-negative rational numbers.
Given u ∈ Q, we define enc(u)

def
= (u, 0) if u ≥ 0,

and enc(u)
def
= (0, |u|) if u < 0. The value represented by

(u, v) ∈ Q2
+ is val(u, v)

def
= u − v. We naturally extend this

notation to vectors. For every u ∈ Qd, enc(u) ∈ Q2d
+ is the

vector whose (2·i−1)-th and (2·i)-th components correspond
to enc(u(i)). The value of u ∈ Q2d

+ is the vector val(u) ∈ Qd

such that val(u)(i)
def
= u(2 · i− 1)− u(2 · i).

Lemma 4.11: Let ψ(x) be an atomic formula of
FO(Q,+, <) and n = |x|. There is a logarithmic-space com-
putable (2n+3)-CVASS V = (Q,T ) and states p, r ∈ Q such
that ψ(u) holds if and only if p(enc(u), 0, 0, 1)

∗−→→Q+
r(0).

Proof: The proof consists of a more or less straight-
forward adaptation of Lemma 3.7.

Using Lemma 4.11 as a gadget, and by simulating conjunc-
tions by sequential composition and disjunction by branching,
we can lift Lemma 4.11 to arbitrary existential FO(Q,+, <)
formulas. The construction is similar to the one for Z-VASS
established in [3, Lem. 12].

Theorem 4.12: Let ϕ(x) be a formula of existential
FO(Q,+, <) and n = |x|. There exist k > 0, an (n+k)-
CVASS V = (Q,T ), p, q ∈ Q and v ∈ {0, 1}k, computable
in logarithmic space, such that ϕ(u) holds if and only if
p(enc(u),v)

∗−→→Q+
q(0).

D. Complexity of decision problems for CVASS

Having already established an NP upper bound in Sec-
tion IV-B, here we provide strong complementary lower
bounds for reachability in CVASS, and briefly discuss the
complexity of related decision problems. The next lemma
essentially shows that allowing for any sort of non-trivial
control structure renders reachability in CVASS NP-hard.

Lemma 4.13: CVASS reachability is already NP-hard for
the following cases:

10



(a) CVASS in which the number of counters is two and the
underlying control graph is acyclic, and

(b) cyclic reachability in CVASS whose constants are encoded
in unary.
Proof: In order to show (a), we reduce from an instance

A ⊆ {a1, a2, . . . , an} ⊆ N, t ∈ N of the classical NP-
complete subset sum problem. The reduction is similar to
the reduction showing NP-hardness of reachability in two-
clock timed automata [24]. We define V = (Q,T ) such that
Q = {p0, p1, . . . , pn} and

T
def
= {(pi−1, (ai, 1), pi), (pi−1, (0, 1), pi) : i ∈ [n]}.

Clearly, p0(0, 0)
∗−→→Q+

pn(t, n) if and only if there exists
A′ ⊆ A such that

∑
a∈A′ a = t.

Regarding (b), we reduce from an instance ϕ(x1, . . . , xn)
of Boolean 3-SAT. We construct a (2 · n)-CVASS V from ϕ.
Intuitively, counter 2 · i− 1 (respectively 2 · i) contains a non-
zero value if and only if xi (respectively ¬xi) is set to true.
Let Ci be the set of the three literals occurring in clause i of ϕ.
First, V guesses an assignment of the variables by increasing
the counter associated to xi or ¬xi. Then, V ensures that each
clause is satisfied by substracting a small amount from the
counter associated to some literal ` ∈ Ci. Finally V allows
to decrease all counters and to go back to the starting state.
Formal details can be found in Appendix B-D.

Together with Corollary 4.10, we obtain one of the main
theorems of this paper.

Theorem 4.14: Reachability in CVASS is NP-complete.
Since reachability in continuous Petri nets is decidable in

polynomial time and reduces to CVASS cyclic reachability
(see Proposition 4.1), one may have hoped CVASS cyclic
reachability to be decidable in polynomial time as well.
Lemma 4.13(b) shows that this is not the case. The only P
upper bound that we can establish in the presence of control
states is for cyclic Q-reachability.

Theorem 4.15: Cyclic Q-reachability is in P.
Proof: We show that the conditions of Lemma 4.6

can be expressed in CSP(Γc). This is clear for all condi-
tions except for (c), which requires that a directed graph
is strongly connected and contains a certain vertex. Thus,
let G = (V,E) be a directed graph, u ∈ V , and
let x = (xe)e∈E and r = (ru,v)u,v∈V . Our first
step is to define Φp(x, r) such that JΦpK = {(x, r) :
ru,v > 0 if and only if G[JxK] contains a path from u to v}.
To this end, we introduce additional variables y =
(yu,v,i)u,v∈V,i∈[0,|E|] capturing reachability relations after i
steps and define:

Φp
def
=
∧
u∈V

(yu,u,0 > 0 ∧
∧

v∈V \{u}

yu,v,0 = 0) ∧

∧
u,v∈V

1≤i≤|E|

(yu,v,i > 0→
∨

e∈in(v)

(xe > 0 ∧ yu,in(e),i−1 > 0)) ∧

∧
u,v∈V

ru,v > 0↔
∨

0≤i≤|E|

yu,v,i > 0.

Using Φp, we can now define Φsc(x) such that x ∈ JΦscK
if and only if G[JxK] is strongly connected and contains u.
Additionally, Φsc contains variables g = (gv)v∈V such that
gv > 0 indicates that v is contained in G[JxK]:

Φsc
def
= Φp ∧ (

∧
v∈V

gv > 0↔
∨

e∈edges(v)

xe > 0) ∧ gu > 0 ∧

∧
v∈V

gv > 0→ (ru,v > 0 ∧ rv,u > 0).

It is not difficult to verify that Φsc has the desired properties.
A full construction defining all conditions of Lemma 4.6 can
be found in Appendix B-B.

Moreover, as an easy consequence of the previously
established lower bounds and the existential FO(Q,+, <)
characterization of reachability in CVASS, we obtain NP-
completeness results for other decision problems for CVASS.
Given p(u) ∈ Qd+, boundness asks whether there exists
w such that p(u)

∗−→→Q+
q(v) implies v ≤ w. Given an

additional configuration q(v) ∈ Qd+, coverability asks whether
p(v)

∗−→→Q+
q(w) for some w ≥ v.

Theorem 4.16: Coverability, q-admissibility and unbound-
edness in CVASS are all NP-complete.

Proof: For the upper bounds, we respectively translate the
decision problems into existential FO(Q,+, <) as follows:

• ∃w ∈ Qd+ ∃p ∈ QT+ : ϕV,p,q(u,w,p) ∧w ≥ v,
• ∃v ∈ Qd+ ∃p ∈ QT+ : ϕV,p,q(u,v,p),
• ∃v,w ∈ Qd+ ∃p,p′ ∈ QT+ :

∨
q∈Q ϕV,p,q(u,v,p) ∧

ϕV,q(v,w,p
′) ∧w > v.

For the NP-hardness, it is possible to adapt the proof of
Lemma 4.13(b).

In contrast to the good complexity-theoretic properties of
CVASS for the aforementioned decision problems, as in clas-
sical VASS, the introduction of zero-test renders reachability
in CVASS undecidable.

Theorem 4.17: Reachability in CVASS with zero-tests is
undecidable.

Proof: Recall that reachability for 2-VASS with zero-tests
is undecidable [25]. We sketch how to simulate a VASS V
with zero-tests by a CVASS V ′ with zero-tests. First, two
new counters are added. Each non zero-test transition of V
is converted into the CVASS gadget of Figure 3 to ensure that
each transition is “fully taken”. We add a transition from q

p q → p q
z

(−1, 1, z)

(1,−1, z)

zero1?

zero2?

Fig. 3. Gadget to transform a VASS into a CVASS with zero-tests with the
same reachability set.

to a “trap state” r which allows to decrement the two new
counters. It readily seen that p(u)

∗−→→Q+
q(v) in V if and

only if p(1, 0,u)
∗−→→Q+

r(0, 0,v) in V ′.
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p s

qa

qb

r

t1: (2, 0)

t5: (0, 2)

t2: (−1,−1)

t4: (−1,−1)

t3: (2, 2)t6: (0, 0)

t1 t2

t3

t4t5

t6p

qa

qb

s r

c1

c2

2

2

2

2

Fig. 4. Example of a 2-VASS (left) and its equivalent Petri net (right).

V. OVER-APPROXIMATING VASS REACHABILITY SETS BY
CVASS

As discussed in the introduction, continuous Petri nets, Z-
VASS and variants thereof have been used in the literature
in order to over-approximate reachability sets of discrete Petri
nets and VASS [11], [7], [12], [9]. In general, the finer an over-
approximation, the more useful it is for pruning search spaces
in discrete Petri nets and VASS. The goal of this section is to
briefly discuss the over-approximation of VASS reachability
sets achieved by CVASS in comparison with continuous Petri
nets and Z-VASS.

As we showed in Proposition 4.1, continuous Petri nets em-
bed into CVASS, and hence CVASS subsume reachability sets
of continuous Petri nets. Since CVASS define all existential
FO(Q,+, <)-definable sets and continuous Petri nets CSP(Γc)-
definable sets, it is clear that there exist CVASS whose
reachability sets cannot be defined by continuous Petri nets.
Figure 4 provides an example, which additionally illustrates
the benefits of over-approximating discrete VASS with CVASS
instead of continuous Petri nets. Recall from Section IV-D that
q(v) is coverable from p(u) if p(u)

∗−→→Q+
q(w) for some

w ≥ v. It is readily seen that p(1, 1) cannot be covered from
p(0, 0) in the VASS V on the left-hand side of Figure 4, under
both the discrete and continuous semantics. However, if we
turn V into a Petri net N such as the one shown on the right-
hand side of Figure 4, the control states of V become places,
and hence interpreting N under continuous semantics allows
for, informally speaking, being in fractions of the control states
of the original VASS V .3 Consequently, the following firing
sequence is possible in N :

{p}
π= 1

2 ·t1
1
2 ·t5

1
2 ·t2

1
2 ·t4t3t6−−−−−−−−−−−−−−−→→Q+

{p, 2 · c1, 2 · c2}.

Hence, {p, c1, c2} is coverable in N . It is worth noting that
the Parikh image of π above has non-integer values, i.e.,
Ψ(π) = (1/2, 1/2, 1, 1/2, 1/2, 1). Considering only execu-
tions with integer Parikh images, as it is for instance done
in [7], would still be insufficient in order to prevent N from
covering {p, c1, c2}. Indeed, π′ def

= ππ leads to {p, 4 · c1, 4 · c2}
and Ψ(π′) = (1, 1, 2, 1, 1, 2). This “erroneous behavior” is due
to the fact that both qa and qb can continuously be reached
simultaneously in N .

3Of course, there are many different ways to transform a VASS into a Petri
net, but in any such transformation, control states become places.

If we interpret V as a Z-VASS, p(1, 1) could still be covered,
since p(0, 0)

t1t2t3t6−−−−−→Z p(3, 1). This example nicely illustrates
the advantage CVASS have over Z-VASS by not allowing
counters to drop below zero, while still being decidable in
NP. To be fair, there are also instances in which a CVASS can
cover a configuration of an over-approximated VASS which
is not coverable in a Z-VASS. Consider Figure 5. We have

p(1)
1
2 ·t1t2−−−−→→Q r(1), while r(1) cannot be covered from p(1)

in the Z-VASS semantics.

p q r
t1 : −2 t2 : +1

Fig. 5. Example where over-approximating over Z is better than over Q+.

VI. CONCLUDING REMARKS

While discrete Petri nets and VASS are known to be equiv-
alent and often used as synonyms, our results show that this is
not the case in the continuous setting: continuous Petri nets and
CVASS define different sets of rationals, and have respectively
P-complete and NP-complete reachability problems. In partic-
ular, we showed that reachability sets of CVASS are equivalent
to those definable in existential FO(Q,+, <), and reachability
sets of continuous Petri nets coincide with the sets of non-
negative rational numbers definable in CSP(Γc), a polynomial-
time decidable fragment of existential FO(Q,+, <). The latter
characterization might contribute towards understanding why
reachability in continuous Petri nets with tens of thousands
of places can still efficiently be decided by SMT solvers, as
demonstrated in [7]. There has been some work showing that
abstracted models of clause-learning based SAT solvers run
in expected polynomial time on finite max-closed CSPs [26].
Though presumably challenging, it would be striking if vari-
ants of such results could be lifted to CSPs over infinite
domains such as CSP(Γc).

As for future work, in Section III-D we showed that
continuous Petri nets are closely related to constant-rate MMS.
In [22], the problem of finding runs in constant-rate MMS
which are optimal with respect to a linear objective function
was also shown to be decidable in polynomial time. It seems
conceivable that an optimization variant of CSP(Γc) could also
be decidable in polynomial time, which would enable us to
compute optimal runs in continuous Petri nets in polynomial
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time. Finally, Le Roux, Pauly and Raskin have recently studied
Minkowski games [27], which can be viewed as a game-
theoretic variant of constant-rate MMS. Investigating various
types of games on continuous Petri nets and CVASS appears
to be a promising direction of future research.
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APPENDIX A
MISSING PROOFS FROM SECTION III

A. Missing proofs from Section III-B

In this section, we formally prove Lemma 3.5. Let us fix a continuous Petri net N = (P, T,Pre,Post) for the remainder
of this section. Recall that we want to build a formula expressing firing sets of N . More formally, we build a formula ϕ such
that ϕ(u,y) holds if and only if there exists some π ∈ TH such that π is a firing sequence from u and JπK = JyK.

Let

ϕ(u,y)
def
= ∃x0,x1, . . . ,x|T | ∈ QP∪T+ ψ0(x0) ∧

∧
1≤i≤|T |

ψi(xi,xi−1) ∧
∧
t∈T

yt > 0↔
∨

1≤i≤|T |

xi,t > 0

where

ψ0(u,x0)
def
=
∧
p∈P

(x0,p > 0↔ u(p) > 0) ∧
∧
t∈T

x0,t = 0

ψi(xi,xi−1)
def
=
∧
p∈P

(xi,p > 0↔ (xi−1,p > 0 ∨
∨
t∈•p

xi,t > 0)) ∧
∧
t∈T

(xi,t > 0→
∧
p∈•t

xi−1,p > 0).

In order to prove that ϕ is correct, let us define the following intermediary formula:

Φn(x0,x1, . . . ,xn)
def
= ψ0(u,x0) ∧

∧
1≤i≤n

ψi(xi,xi−1).

Lemma A.1: Let u ∈ QP+ and y ∈ QT+. For every π ∈ TH, if JπK = JyK and π is a firing sequence from u, then there exist
x0,x1, . . . ,xn ∈ QP∪T+ , where n = |JπK|, such that

(a) Φn(x0,x1, . . . ,xn) is satisfied,
(b) t ∈ JπK if and only if xi,t > 0 for some i ∈ [n],
(c) xn,p > 0 for every p ∈ JuK ∪ JπK•.

Proof: We prove the claim by induction on n. If n = 0, then π = ε. For every q ∈ P ∪ T , we let

x0,q
def
=

{
1 if q ∈ P and u(q) > 0,

0 otherwise.

The validity of (a), (b) and (c) follows immediately.
Assume n > 0 and that the claim holds for every sequence of length smaller than n. There exist σ, σ′ ∈ TH, α ∈ (0, 1],

s ∈ T such that
• π = σ αs σ′, and
• JσK = JπK \ {s}.

Let π′ def
= σ αs. Note that π′ is a firing sequence from u, and Jπ′K = JπK. Thus, we can build an assignment from π′ instead

of π. By induction hypothesis, there exists an assignment x0,x1, . . . ,xn−1 ∈ QP∪T+ such that
(1) Φn−1(x0,x1, . . . ,xn−1) is satisfied,
(2) t ∈ JσK if and only if xi,t > 0 for some i ∈ [n− 1],
(3) xn−1,p > 0 for every p ∈ JuK ∪ JσK•.
It remains to choose the values of xn. For every p ∈ P and t ∈ T , we let

xn,p
def
=

{
1 if xn−1,p > 0 or s ∈ •p,
0 otherwise.

and

xn,t
def
=

{
1 if t = s,

0 otherwise.

It is readily seen that for every p ∈ P ,

xn,p > 0↔ (xn−1,p > 0 ∨
∨
t∈•p

xn,t > 0).
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Let us show that the following holds: ∧
p∈•s

xn−1,p > 0. (4)

Since π′ is a firing sequence from u, there exist v,w ∈ QP+ such that

u
σ−→→Q+

v
αs−→→Q+

w.

We have •s ⊆ JvK ⊆ JuK∪ JσK•. By (3), this implies that xn−1,p > 0 for every p ∈ •s. Therefore, (4) holds. This means that
ψn is satisfied, and, altogether with (1), that Φn is satisfied. Thus, (a) holds. Moreover, by (2), (3) and the assignment of x,
(b) and (c) hold.

Corollary A.2: Let u ∈ QP+, y ∈ QT+, and let π ∈ TH be a firing sequence from u such that JπK = JyK. Formula ϕ is
satisfied by (u,y).

Proof: Let n def
= |JπK|. By Lemma A.1, there exist x0,x1, . . . ,xn ∈ QP∪T+ such that

Φn(x0,x1, . . . ,xn) is satisfied. (5)

and

t ∈ JπK if and only if xi,t > 0 for some i ∈ [n]. (6)

For every n < i ≤ |T |, q ∈ P ∪ T , let

xi,q
def
=

{
1 if q ∈ P and xi−1,q > 0,

0 otherwise.

For every n < i ≤ |T |, ψi(xi,xi−1) holds. Therefore, with (5), this implies that Φ|T |(x0,x1, . . . ,x|T |) is satisfied. By (6),
we conclude that ϕ(u,v) is satisfiable.

Lemma A.3: Let u ∈ QP+ and y ∈ QT+. Let 0 ≤ n ≤ |T | and let x0,x1, . . . ,xn ∈ QP∪T+ . If Φn(x0,x1, . . . ,xn) is satisfied,
then there exist π ∈ TH and v ∈ QP+ such that
(a) u

π−→→Q+
v,

(b) JπK = Tn,
(c) JvK = Pn ∪ T •n .
where

Pn = {p ∈ P ;xn,p > 0} and
Tn = {t ∈ T : xi,t > 0 for some i ∈ [n]}.

Proof: We prove the claim by induction on n. Suppose n = 0. We have P0 = JuK and T0 = ∅. Thus, v def
= u and π def

= ε
satisfy (a), (b) and (c).

Assume n > 0 and that the claim holds for n − 1. Since Φn(x0,x1, . . . ,xn) is satisfied, Φn−1(x0,x1, . . . ,xn−1) is also
satisfied. By induction hypothesis, there exist w ∈ QP+ and σ ∈ TH such that

u
σ−→→Q+

w, JσK = Tn−1 and JwK = Pn−1 ∪ T •n−1. (7)

Let S def
= Tn \ Tn−1 = {t1, t2, . . . , tk}. Note that xn,ti > 0 for every i ∈ [k]. Thus, by definition of ψn, we have xi−1,p > 0

for every p ∈ •S. By 7, this implies that
•S ⊆ Pn−1 ⊆ JwK. (8)

Let
γ

def
= max(1,max{d2/w(p)e : p ∈ JwK}).

For every i ∈ [k], let βi
def
= max(1,max{Pre(p, ti) : p ∈ •ti}) and αi

def
= 1/(γ · βi). Let i ∈ [k] and p ∈ •ti. We have

αi ·Pre(p, ti) = Pre(p, ti)/(γ · βi)
≤ Pre(p, ti)/(d2/w(p)e · βi)
≤ Pre(p, ti)/(2/w(p) · βi)
≤ Pre(p, ti)/(2/w(p) ·Pre(p, ti))

= w(p)/2.
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Therefore,

w(p)− αi ·Pre(p, ti) ≥ w(p)−w(p)/2

= w(p)/2

> 0 (by (8)).

This implies that w αiti−−→→Q+
vi for some vi ∈ QP+ such that JviK = JwK ∪ t•i . Let

σ′
def
= (α1/k)t1 (α2/k)t2 · · · (αk/k)tk

and v
def
= (v1 + v2 + · · · + vk)/k. By [6, Lemma 12], we have w

σ′−→→Q+
v. Therefore, u σσ′−−→→Q+

v, which implies that (a)
and (b) hold.

It remains to show (c). First note that

JvK = Jv1K ∪ Jv2K ∪ · · · ∪ JvkK
= JwK ∪ t•1 ∪ t•2 ∪ · · · ∪ t•k
= (Pn−1 ∪ T •n−1) ∪ S• (by (7))
= Pn−1 ∪ T •n (by def. of S).

By definition of ψn, Pn−1 ⊆ Pn. Thus, JvK ⊆ Pn ∪ T •n .
We conclude by proving that Pn ⊆ Pn−1 ∪ T •n . Let p ∈ Pn. By definition of ψn, either p ∈ Pn−1 or xn,t > 0 for some

t ∈ •p. If p ∈ Pn−1, then we are done. If xn,t > 0 for some t ∈ •p, then t ∈ Tn which implies that p ∈ t• ⊆ T •n .

Corollary A.4: Let u ∈ QP+ and y ∈ QT+. If ϕ is satisfied by (u,y), then there exists π ∈ TH such that π is a firing
sequence from u, and JπK = JyK.

Proof: Assume ϕ is satisfied by (u,y). There exist x0,x1, . . . ,x|T | ∈ QP∪T+ such that Φn(x0,x1, . . . ,x|T |) is satisfied.
By Lemma A.3, there exists π ∈ TH such that π is a firing sequence from u, and

JπK = {t ∈ T : x|T |,n > i for some 0 ≤ i ≤ |T |}.

We are done since by definition of ϕ, JyK = {t ∈ T : x|T |,n > i for some 0 ≤ i ≤ |T |}.

Lemma A.5: ϕ belongs to CSP(Γc).
Proof: By definition, ϕ is a conjunction of constraints of the form

• x = 0,
• x > 0↔

∨
y∈Y y > 0, and

• x > 0→
∧
y∈Y y > 0.

Constraints of the first type can be written as −x ≥ 0. The two other types of constraints can be rewritten by using the
following equivalences:

x > 0↔
∨
y∈Y

y > 0 ≡ (x = 0 ∨
∨
y∈Y

y > 0) ∧
∧
y∈Y

(y = 0 ∨ x > 0),

and

x > 0→
∧
y∈Y

y > 0 ≡ x = 0 ∨
∧
y∈Y

y > 0.

B. Missing proofs from Section III-C

We detail the construction described in the proof of Lemma 3.7:
Formal construction of Lemma 3.7: First note that we can we assume coefficients appearing in a and c to have integer

values, since (a1/d1)x1 + · · ·+ (am/dm)xm ∼ c has the same solutions as λ(a1/d1)x1 + · · ·+ λ(am/dm)xm ∼ λ · c where
λ

def
= d1 · · · dm. Note that λ can be computed in logarithmic space.
Formally, N is defined as N def

= (P, T,Pre,Post) where

P
def
= {pi : i ∈ [n]} ∪ {qpos, qneg, q≥, q>, q

′
>, qθ},

T
def
= {si : i ∈ [n]} ∪ {s′i : i ∈ [m]} ∪ {tp : p ∈ P} ∪ {u1, u2, u3, u4, u5}.
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For every i ∈ [n], we have

Post(qpos, si) = ai if ai ≥ 0,

Post(qpos, u1) = c if c ≥ 0,

Post(qneg, si) = |ai| if ai < 0,

Post(qneg, u1) = |c| if c < 0.

Moreover,

Post(qpos, u5) = 1, Post(q•pos, tqpos)= 1,

Post(qneg, u5) = 1, Post(q•pos, tqneg)= 1.

The remaining arcs, labeled by 1, are defined by:

•pi = {s′j : j ∈ [m] and xi ∈ θj}, p•i = •pi ∪ {si, tpi},
•q≥ = ∅, q•≥= {u1, tq≥},
•q′> = {u2, u3}, q′•>= {u3, u4, tq′>},
•q> = ∅, q•>= {u3, tq>},
•qθ = {tp : p ∈ P \ {qθ}}, q•θ = {tp : p ∈ P}.

It can be proven that any firing sequence π not using transitions from {s′i : i ∈ [m]} ∪ {tp : p ∈ P} can be rearranged into a
firing sequence π′ such that δ(π′) = δ(π) and π′ ∈ sH

1 s
H
2 · · · sH

nu
H
1 u

H
2 u

H
3 u

H
4 u

H
5 .

Theorem 3.8: Let Φ(x) be an instance of CSP(Γc) with free variables x. There exists a logarithmic-space computable
continuous Petri net N defining the set JΦK of solutions of Φ(x).

Proof: Let x = (x1, x2, . . . , xn) and Φ = {ψ1, ψ2, . . . , ψk}. For every i ∈ [k], let Ni and yi be respectively the
continuous Petri net and marking obtained from Lemma 3.7 for ψi. We construct the required continuous Petri net N as
follows. First, we take the disjoint union of N1,N2, . . . ,Nk. Next, we add new places p1, p2, . . . , pn and new transitions
t1, t2, . . . , tn. Each place pi initially contains the value of xi, and ti allows to “transfer” the content of pi simultaneously
to the places of N1,N2, . . . ,Nk that correspond to xi. It then follows from Lemma 3.7 that Φ(x) holds if and only if
(x,0,y1,0,y2, . . . ,0,yk)

∗−→→Q+
0.

C. Missing proofs from Section III-D

Corollary 3.11: Safe schedulability and safe reachability in constant-rate MMS are logarithmic-space reducible to continuous
Petri net reachability problems and thus belong to P.

Proof: An MMS H = (M,n,R) with an initial configuration u can be viewed as a continuous Petri net N in which
there are two places per continuous variable such that the value of a continuous variable is encoded as the difference between
the corresponding two places. At any time, N can invoke transitions that simultaneously decrease the two places simulating
a continuous variable, analogously to the orange transitions in the continuous Petri nets constructed in Lemma 3.7. A safety
region S : A · x ≥ b can be incorporated into this Petri net by adding one place for each row aᵀ

i · x ≥ bi of S which initially
carries aᵀ

i · u− bi many tokens. Any transition corresponding to a mode m then also needs to push or respectively consume
|aᵀ
i ·R(m)| from those additional places. Theorem 3.6 then yields the desired upper bound.

APPENDIX B
MISSING PROOFS FROM SECTION IV

Proposition 4.1: Let N = (P, T,Pre,Post) be a continuous Petri net. There exist a logarithmic-space computable
(|T |+|P |)-CVASS V = (Q,S) and q ∈ Q such that

u
∗−→→Q+

v in N if and only if q(0,u)
∗−→→Q+

q(0,v) in V.

Proof: Let T = {t1, t2, . . . , tn}. We let V def
= (Q,S) be the continuous (|T |+|P |)-VASS such that

Q
def
= {q} ∪ {pi : i ∈ [n]} and S def

= {si, ti : i ∈ [n]},

where si
def
= (q, [ei,−Prei], pi) and ti

def
= (pi, [−ei,Posti], q) for every i ∈ [n]. We illustrate the construction in Figure 6.
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t1

t2

t3

3 5

2

qp1

p2

p3

(1, 0, 0, -2, -1)

(-1, 0, 0, 1, 0)

(0, 1, 0, -3, 0) (0, -1, 0, 0, 5)

(0, 0, 1, 0, -1)

(0, 0, -1, 0, 0)

Fig. 6. Example of conversion from a continuous Petri net to a CVASS.

If u ∗−→→Q+
v in N , then it is clear that q(0,u)

∗−→→Q+
q(0,v) in V . Let us show the converse. Suppose there exists π ∈ SH

such that q(0,u)
π−→→Q+

q(0,v) in V . First note that π is of the form π = α1s`1β1t`1 · · ·αks`kβkt`k . If αi = βi, we say that
i is good, otherwise we say that i is bad. We claim that π can be rearranged into an equivalent run with fewer bad indices.
Formally, we show that there exists π′ ∈ SH such that δ(π′) = δ(π), path(π′) = path(π), π′ is q-admissible, and π′ has
fewer bad indices than π. The claim implies that the number of bad indices can be decreased until there are only good indices,
in which case we obtain a run in V corresponding to a run of N .

Let us prove the claim. Let i ∈ [k] be the smallest bad index. We must have αi > βi, otherwise counter `i would drop
below zero. Since δ(π)(`i) = 0, there exists j ∈ (i, k] such that `j = `i and βj > αj . Let j be the smallest such index. We
consider two cases.

• Suppose βj − αj ≥ αi − βi. Let

π′
def
= α′1s`1β

′
1t`1 · · ·α′ks`kβ′kt`k

where α′x
def
= α′x for every x ∈ [k], and

β′x
def
=


αi if x = i,

βj − (αi − βi) if x = j,

βx otherwise.

Note that β′i, β
′
j ∈ (0, 1], hence π′ ∈ SH. We have δ(π′) = δ(π) since β′i+β′j = βi+βj . Moreover, path(π′) = path(π),

and i is now good in π′. It remains to argue that π′ is q-admissible. Recall that δ(t`i) = [−e`i ,Post`i ]. Since `i = `j ,
Post`i ≥ 0 and βi is increased at the expense of decreasing βj , the n last counters still never drop below zero. By
minimality of j, we have αx ≥ βx for every x ∈ (i, j). Thus, for every y ∈ [i, j), we have

y∑
x=1

(α′x − β′x) =

y∑
x=1
x 6=i

(αx − βx) + (αi − β′i) =

y∑
x=i+1

(αx − βx) + (αi − β′i) ≥ αi − β′i = 0.

Moreover,

j∑
x=1

(α′x − β′x) =

j−1∑
x=1

(α′x − β′x) + (α′j + β′j) ≥ α′j − β′j = αj − (βj − (αi − βi)) = (αj − βj)− (αi − βi) ≥ 0.

Therefore, counter `i never drops below zero, which implies that π′ is q-admissible.

• Suppose βj −αj < αi− βi. We can make j good by choosing π′ def
= α′1s`1β

′
1t`1 · · ·α′ks`kβ′kt`k where α′x

def
= α′x for every

x ∈ [k], and

β′x
def
=


βi + (βj − αj) if x = i,

αj if x = j,

βx otherwise.

The proof is symmetric to the previous case.
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A. Missing proofs from Section IV-A

We first introduce some notation for this subsection. Let π = α1t1α2t2 · · ·αntn ∈ TH. For every 1 ≤ i ≤ j ≤ n, we define
π[i..j] as the subsequence π[i..j]

def
= αitiαi+1ti+1 · · ·αjtj .

Lemma 4.2: The following statements hold for every π ∈ TH and α, α′ ∈ (0, 1]:

(a) p(u)
π−→→Q+

q(v) if and only if p(α · u)
α·π−−→→Q+

q(α · v),

(b) if p(u)
απ−−→→Q+

q(v), p(u′) α′π−−→→Q+
q(v′) and α+ α′ ≤ 1, then p(u + u′)

(α+α′)π−−−−−→→Q+
q(v + v′),

(c) if p(u)
π−→→Q+

q(v), then p(u)
απ−−→→Q+

q((1− α) · u + α · v),

(d) p(u)
π−→→Q+

q(v) in V if and only if q(v)
π†−→→Q+

p(u) in V†.
Proof: All claims are immediate for π = ε. Let π = β1t1β2t2 · · ·βntn where n > 0. We prove all claims by induction

on n.

(a) Follows by a simple induction on n using the fact that a · x + a · b · δ(t) ≥ 0 ⇐⇒ x + b · δ(t) ≥ 0 for every x ∈ Qd+,
a, b ∈ (0, 1] and t ∈ T .

(b) Assume the claim holds for sequences of length less than n. Let r(w), r(w′) ∈ Q×Qd+ be such that

p(u)
απ[1..n−1]−−−−−−−→→Q+

r(w)
αβntn−−−−→→Q+

q(v),

p(u′)
α′π[1..n−1]−−−−−−−→→Q+

r(w′)
α′βntn−−−−→→Q+

q(v′).

By induction hypothesis,

p(u + u′)
(α+α′)π[1..n−1]−−−−−−−−−−→→Q+

r(w + w′).

Now, observe that (α+ α′) · βn ∈ (0, 1], hence (α+ α′) · βntn ∈ TH. We are done since,

w + w′ + (α+ α′) · βn · δ(tn) = (w + α · βn · δ(tn)) + (w′ + α′ · βn · δ(tn))

= v + v′

≥ 0.

(c) Assume the claim holds for sequences of length less than n. Let r(w) ∈ Q×Qd+ be such that

p(u)
π[1..n−1]−−−−−−→→Q+

r(w)
βntn−−−→→Q+

q(v).

By induction hypothesis, p(u)
απ[1..n−1]−−−−−−−→→Q+

r(w′) where w′
def
= (1− α) · u + α ·w. Since, w + βn · δ(tn) = v ≥ 0 and

w′ ≥ α ·w, we obtain

r(w′)
α·βntn−−−−→→Q+

q(w′ + α · βn · δ(tn))

Now, we are done since

w′ + α · βn · δ(tn) = (1− α) · u + α ·w + α · βn · δ(tn)

= (1− α) · u + α · (w + ·βn · δ(tn))

= (1− α) · u + α · v.

(d) Follows by a simple induction on n using the fact that r(x)
at−→→Q+

r′(x′) if and only if r′(x′) at†−−→→Q+
r(x) for every

r(x), r′(x′) ∈ Q×Qd+ and at ∈ TH.

Lemma 4.3: Let q ∈ Q, u,v ∈ Qd+, and π ∈ TH be such that

(a) q(u)
π−→→Q q(v),

(b) Jδ(t)K− ⊆ JuK for every t ∈ JπK, and
(c) Jδ(t)K+ ⊆ JvK for every t ∈ JπK.

There exists π′ ∈ TH such that q(u)
π′−→→Q+

q(v) and Ψ(π′) = Ψ(π).
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Proof: Let

neg(i)
def
=

∑
t∈T

i∈Jδ(t)K−

Ψ(π)(t) · |δ(t)(i)|,

pos(i) def
=

∑
t∈T

i∈Jδ(t)K+

Ψ(π)(t) · δ(t)(i) .

Let

α
def
= min(1,min{u(i)/neg(i) : i ∈ [d] and neg(i) > 0}),

β
def
= min(1,min{v(i)/pos(i) : i ∈ [d] and pos(i) > 0}).

By (b) and (c), α > 0 and β > 0. Let n def
= max(d 1

αe, d
1
β e, 2). Let σ def

= 1
nπ and π′ def

= σn. We show that π′ is as required. It is

readily seen that Ψ(π) = Ψ(π′). It remains to show that q(u)
π′−→→Q+

q(v).
For every i ∈ [n], let ui

def
= u + i

nδ(π). We claim that q(u0)
σ−→→Q+

q(u1). Let 1 ≤ ` ≤ |π| and i ∈ [d]. If neg(i) = 0, then

u0(i) + δ(σ[1..`])(i) ≥ u0(i).

If neg(i) > 0, then

u0(i) + δ(σ[1..`])(i) = u(i) +
∑

αt∈π[1..`]

α

n
· δ(t)(i)

≥ u(i) +
1

n
·
∑

αt∈π[1..`]

i∈Jδ(t)K−

α · δ(t)(i)

≥ u(i)− 1

n
· neg(i)

≥ u(i)− 1

d1/αe
· neg(i)

≥ u(i)− α · neg(i)

≥ u(i)− (u(i)/neg(i)) · neg(i)

≥ 0.

Similarly, q(un−1)
σ−→→Q+

q(un). Let i ∈ [2, n− 1], γi
def
= n−1−i

n−1 and γ′i
def
= i

n−1 . By Lemma 4.2(a),

q(γiu0)
γiσ−−→→Q+

q(γiu1) and q(γ′iun−1)
γ′iσ−−→→Q+

q(γ′iun).

Hence, by Lemma 4.2(b) and γi + γ′i = 1, we obtain

q(γiu0 + γ′iun−1)
σ−→→Q+

q(γiu1 + γ′iun). (9)

Now,

γiu0 + γ′iun−1 = γiu + γ′i

(
u +

n− 1

n
· δ(π)

)
= u + γ′i ·

n− 1

n
· δ(π)

= u +
i

n− 1
· n− 1

n
· δ(π)

= u +
i

n
· δ(π)

= ui.

Similarly, γiu1 + γ′iun = ui+1. Therefore, by (9), we conclude that q(ui)
σ−→→Q+

q(ui+1), which hence q(u)
π′−→→Q+

q(v).

Lemma 4.4: Let p, q ∈ Q, u,v ∈ Qd+ and π ∈ TH. If p(u)
π−→→Q+

q(v), then there exists π′ ∈ TH such that
(a) π′ is q-admissible from p(u),
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(b) path(π′) = path(π), and
(c) Jδ(t)K ⊆ Jv′K for every t ∈ Jπ′K, where v′

def
= u + δ(π′).

Proof: Let π = α1t1α2t2 · · ·αktk. We have,

p0(u0)
α1t1−−−→→Q+

p1(u1)
α2t2−−−→→Q+

. . .
αktk−−−→→Q+

pk(uk)

for some p0(u0), p1(u1), . . . , pk(uk) ∈ Q×Qd+ such that p0(u0) = p(u) and pk(uk) = p(v).
We claim that π′ = α1

2 t1
α2

4 t2 · · ·
αk
2k
tk is as required. By definition of π′, (b) holds. To see that (a) and (c) also hold, let us

show, by induction on ` ∈ [0, k], that

p0(u0)
π′[1..`]−−−−→→Q+

p`

 1

2`
u` +

`−1∑
j=0

1

2j+1
uj

 . (10)

The base case ` = 0 is immediate. Assume (10) holds for some ` > 0. Since p`(u`)
α`t`−−−→→Q+

p`+1(u`+1), by Lemma 4.2(a)
we have

p`

(
1

2`
u`

)
1

2`
α`t`

−−−−→→Q+
p`+1

(
1

2`
u`+1

)
.

By applying Lemma 4.2(c) with α = 1/2, we obtain

p`

(
1

2`
u`

)
1

2`+1 α`t`−−−−−−→→Q+
p`+1

(
1

2`+1
u` +

1

2`+1
u`+1

)
. (11)

By adding
∑`−1
j=0

1
2j+1uj on both sides of 11, we obtain

p`

 1

2`
u`+1 +

`−1∑
j=0

1

2j+1
uj

 1

2`+1 α`t`−−−−−−→→Q+
p`+1

 1

2`+1
u` +

∑̀
j=0

1

2j+1
uj

 . (12)

Therefore, by combining (10) and (12), we conclude that

p0(u0)
π′[1...`+1]−−−−−−→→Q+

p`+1

 1

2`+1
u`+1 +

∑̀
j=0

1

2j+1
uj

 .

Now, (a) holds since (10) is a run over Qd+. It remains to prove (c). For the sake of contradiction, suppose there exist t ∈ Jπ′K
and i ∈ [d] such that δ(t)(i) 6= 0 and u(i) + δ(π′)(i) = 0. By (10), this implies that

1

2k
uk(i) +

k−1∑
j=0

1

2j+1
uj(i) = 0.

Hence, u0(i) = u1(i) = · · · = uk(i) = 0, and we must have δ(t)(i) = 0.

Proposition 4.5: Let q ∈ Q, u,v ∈ Qd+ and w ∈ QT+. There exists π ∈ TH such that q(u)
π−→→Q+

q(v) and Ψ(π) = w if
and only if there exist π, πfwd, πbwd ∈ TH such that
(a) q(u)

π−→→Q q(v),
(b) πfwd is q-admissible from q(u) in V ,
(c) π†bwd is q-admissible from q(v) in V†,
(d) Ψ(π) = w and JπK = JπfwdK = JπbwdK = JwK.

Proof: The “only if’ direction is immediate. Therefore, we assume (a–d) hold, and we show that q(u)
∗−→→Q+

q(v).
By Lemma 4.4, there exists π′fwd ∈ TH such that
• π′fwd is q-admissible from q(u) in V ,
• path(π′fwd) = path(πfwd), and
• Jδ(t)K ⊆ JxK for every t ∈ Jπ′fwdK, where x

def
= u + δ(π′fwd)

Note that q(u)
π′fwd−−→→Q+

q(x).
By Lemma 4.4, there exists π′bwd ∈ TH such that
• π′†bwd is q-admissible from q(v) in V†,
• path(π′†bwd) = path(π†bwd), and
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• Jδ(t)K ⊆ JyK for every t ∈Jπ′†bwdK, where y
def
= v + δ(π′†bwd).

Note that q(v)
π′†bwd−−→→Q+

q(y), which implies, together with Lemma 4.2(d), that q(y)
π′bwd−−→→Q+

q(v).
Let π = α1t1α2t2 · · ·αktk. For every j ∈ [k], let

aj
def
= Ψ(π′fwd)(tj) / Ψ(path(π))(tj)

bj
def
= Ψ(π′bwd)(tj) / Ψ(path(π))(tj).

Let 0 < λ ≤ 1 be small enough so that αj − λ(aj + bj) ≥ 0 for every j ∈ [k]. Let cj
def
= αj − λ(aj + bj) for every j ∈ [k],

and let σ def
= c1t1c2t2 · · · cktk. By Lemma 4.2(c), we have

q(u)
λπ′fwd−−−→→Q+

q(

x′︷ ︸︸ ︷
u + λδ(π′fwd)).

Similarly, by applying Lemma 4.2(d), Lemma 4.2(c) and again Lemma 4.2(d), we obtain

q(v − λδ(π′bwd)︸ ︷︷ ︸
y′

)
λπ′bwd−−−→→Q+

q(v).

Moreover,

δ(σ) =
∑
j∈[k]

cj · δ(tj)

=
∑
j∈[k]

(αj − λ(aj + bj)) · δ(tj)

=
∑
j∈[k]

αj · δ(tj)− λ
∑
j∈[k]

(aj + bj) · δ(tj)

= δ(π)− λ
∑
j∈[k]

(aj + bj) · δ(tj)

= δ(π)− λ
∑
j∈[k]

Ψ(π′fwd)(tj) + Ψ(π′bwd)(tj)

Ψ(path(π))(tj)
· δ(tj)

= δ(π)− λ
∑
t∈JπK

(Ψ(π′fwd)(t) + Ψ(π′bwd)(t)) · δ(t)

= δ(π)− λδ(π′fwd)− λδ(π′bwd)

= v − u− λδ(π′fwd)− λδ(π′bwd)

= (v − λδ(π′bwd))− (u + λδ(π′fwd))

= y′ − x′.

Therefore, q(x′) σ−→→Q q(y
′). By definition of x′ and y′, and since 0 < λ ≤ 1, we have JxK ⊆ Jx′K and JyK ⊆ Jy′K. Thus,

Jδ(t)K ⊆ Jx′K for every t ∈ Jπ′fwdK,
Jδ(t)K ⊆ Jy′K for every t ∈ Jπ′bwdK, and

hence σ satisfies all of the conditions of Lemma 4.3. Thus, there exists σ′ ∈ TH such that Ψ(σ′) = Ψ(σ) and q(x′) σ′−→→Q+
q(y′).

We obtain

q(u)
λπ′fwd−−−→→Q+

q(x′)
σ′−→→Q+

q(y′)
λπ′bwd−−−→→Q+

q(v).

Therefore, it only remains to show that Ψ(π′) = Ψ(π) where π′ def
= λπ′fwd · σ′ · λπ′bwd. Let S def

= JwK. Note that

JπK = Jπ′K = JσK = Jσ′K = S.
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Let t ∈ S, we have

Ψ(σ′)(t) = Ψ(σ)

=
∑
j∈[k]
tj=t

cj

=
∑
j∈[k]
tj=t

αj − λ(aj + bj)

=
∑
j∈[k]
tj=t

αj − λ(Ψ(π′fwd)(tj) + Ψ(π′bwd)(tj))/Ψ(path(π))(tj)

= Ψ(π)(t) + λ ·
∑
j∈[k]
tj=t

(Ψ(π′fwd)(t) + Ψ(π′bwd)(t))/Ψ(path(π))(t)

= Ψ(π)(t) + λ · (Ψ(π′fwd)(t) + Ψ(π′bwd)(t)).

Now, we are done since

Ψ(π′)(t) = Ψ(λπ′fwd · σ′ · λπ′bwd)(t)

= λ ·Ψ(π′fwd)(t) + Ψ(σ′)(t) + λ ·Ψ(π′bwd)(t)

= Ψ(σ′)(t) + λ(Ψ(π′fwd)(t) + Ψ(π′bwd)(t))

= Ψ(π)(t) + λ · (Ψ(π′fwd)(t) + Ψ(π′bwd)(t))− λ(Ψ(π′fwd)(t) + Ψ(π′bwd)(t))

= Ψ(π)(t).

B. Missing proofs from Section IV-B

Lemma 4.6: Let q ∈ Q, u,v ∈ Qd and w ∈ QT+. There exists π ∈ TH such that q(u)
π−→→Q q(v) and Ψ(π) = w if and

only if there exist g ∈ QT+ such that

(a) v = u +
∑
t∈T w(t) · δ(t),

(b) JgK = JwK and g(t) ≥ w(t) for every t ∈ S,
(c) GV [JgK] is strongly connected and contains q, and
(d)

∑
t∈in(p) g(t) =

∑
t∈out(p) g(t) for every p ∈ Q.

Proof: ⇒) Let π = α1t1α2t2 · · ·αktk be such that q(u)
π−→→Q q(v) and Ψ(π) = w. Let g(t)

def
= Ψ(path(π))(t) for every

t ∈ T . Note that (a) immediately holds, and that (b) holds since 0 < αi ≤ 1 for every i ∈ [k]. Let S def
= JgK. Since path(π)

is a path from q to q, GV [S] is strongly connected and contains q. It remains to show (d). Let H be the directed multigraph
obtained from GV [S] by replacing each edge t ∈ S by Ψ(path(π))(t) many arcs from in(t) to out(t). It is readily seen that
path(π) yields an Eulerian cycle in H . Therefore, |in(H, p)| = |out(H, p)| for every p ∈ Q, which implies (d). Indeed, for
every p ∈ Q, we have ∑

t∈in(GV ,p)

g(t)

=
∑

t∈in(GV ,p)

Ψ(path(π))(t)

= |in(H, p)| = |out(H, p)|

=
∑

t∈out(GV ,p)

Ψ(path(π))(t)

=
∑

t∈out(GV ,p)

g(t).
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⇐) Let S def
= JgK. For every t ∈ S, let at ∈ N and bt ∈ N>0 be such that g(t) = at/bt. Let λ def

= lcm{bt : t ∈ S}, and let
H be the directed multigraph obtained from GV [S] by replacing each arc t ∈ S by λ · g(t) arcs from in(t) to out(t). By (c),
GV [S] is strongly connected and contains q. Thus, H is strongly connected and contains q. Moreover, for every p ∈ Q,

in(H, p) =
∑

t∈in(GV ,p)

λ · g(t)

= λ ·
∑

t∈in(GV ,p)

g(t)

= λ ·
∑

t∈out(GV ,p)

g(t) (by (d))

=
∑

t∈out(GV ,p)

λ · g(t) = out(H, p).

Therefore, H has an Eulerian cycle σ from q to q. Let σ′ = t1t2 · · · tk be the path of GV obtained from σ. Let i ∈ [k],
and αi

def
= w(ti)/Ψ(σ′)(ti). Note that Ψ(σ′)(ti) = λ · g(ti). Moreover, 0 < w(ti) ≤ g(ti) by (b). Thus, 0 < αi ≤ 1. Let

π
def
= α1t1α2t2 · · ·αktk. We have

δ(π) =
∑
i∈[k]

αi · δ(ti)

=
∑
i∈[k]

(w(ti)/Ψ(σ′)(ti)) · δ(ti)

=
∑
t∈JπK

Ψ(σ′)(t) · (w(t)/Ψ(σ′)(t)) · δ(t)

=
∑
t∈JπK

w(t) · δ(t)

= v − u (by (a)).

Therefore, we obtain q(u)
π−→→Q q(v). Moreover, for every t ∈ S,

Ψ(π)(t) =
∑
i∈[k]
ti=t

αi

=
∑
i∈[k]
ti=t

w(ti)/Ψ(σ′)(ti)

= Ψ(σ′)(t) · (w(t)/Ψ(σ′)(t))

= w(t).

Note that in the proof of the Lemma 4.6, λ is defined as lcm{bt : t ∈ S} where each bt is the denominator of g(t). If we
were considering CVASS over R, then g(t) could be irrational for some t ∈ T . We argue that this does not matter. First note
g is obtained as a solution of the following system of linear inequalities:

(v = u +
∑
t∈T

w(t) · δ(t)) ∧
∧
t∈T

g(t) ≥ w(t) > 0) ∧
∧
p∈Q

∑
t∈in(p)

g(t) =
∑

t∈out(p)

g(t).

If the system has a real solution, then it also has a rational solution (see, e.g. [28]), which can then be used for the argument.

Lemma B.1: Let p(u), q(v) ∈ Q×Qd and π = α1t1α2t2 · · ·αktk ∈ TH be such that p(u)
π−→→Q q(v). If u ≥ 0 and

Jδ(ti)K− ⊆ JuK ∪
⋃

1≤j<i

Jδ(tj)K+,

for every i ∈ [k] then there exists π′ ∈ TH such that path(π′) = path(π) and π′ is q-admissible from p(u).
Proof: Let π = α1t1α2t2 . . . αktk. We prove the claim by induction on 0 ≤ i ≤ k. For i = 0, we trivially have

p(u)
ε−→→Q+

p(u). Let 0 < i ≤ k and assume the claim holds for i− 1. By induction hypothesis, we have

p(u)
α′1t1α

′
2t2···α

′
i−1ti−1−−−−−−−−−−−−−→→Q+

r(v′)
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for some α′1, α
′
2, . . . , α

′
i−1 ∈ (0, 1] and r(v′) ∈ Q × Qd+. By Lemma 4.4, there exist β1, β2, . . . , βi−1 ∈ (0, 1] and w ∈ Qd+

such that

p(u)
β1t1β2t2···βi−1ti−1−−−−−−−−−−−−→→Q+

r(w), (13)

and ⋃
1≤j<i

Jδ(tj)K ⊆ JwK. (14)

We argue that JuK ⊆ JwK. For the sake of contradiction, assume there exists ` ∈ [d] such that u(`) > 0 and w(`) = 0.
Altogether with (13), there exists some 1 ≤ j < i such that δ(tj)(`) < 0. By (14), we have ` ∈ JwK which is a contradiction.

Therefore

JuK ∪
⋃

1≤j<i

Jδ(tj)K ⊆ JwK. (15)

Let
βi

def
= min(1, {b−w(j)/δ(ti)(j)c : j ∈ Jδ(ti)K−}).

By hypothesis on π, we have
Jδ(ti)K− ⊆ JuK ∪

⋃
1≤j<i

Jδ(tj)K+.

By (15), this implies that βi 6= 0 and hence that 0 < βi ≤ 1. We claim that w + βi · δ(ti) ≥ 0, in which case we are done by
extending (13) with βiti.

Let us prove the claim. Let j ∈ [d]. If j 6∈ Jδ(ti)K−, then w(j) + βi · δ(ti)(j) ≥ 0 is immediate. If j ∈ Jδ(ti)K−, we have

w(j) + βi · δ(ti)(j) ≥ w(j) +

⌊
−w(j)

δ(ti)(j)

⌋
· δ(ti)(j)

≥ w(j) +
−w(j)

δ(ti)(j)
· δ(ti)(j)

≥ 0.

Lemma 4.7: Let p(u) ∈ Q×Qd+, q ∈ Q and S ⊆ T . There exists π ∈ TH such that
• π is q-admissible from p(u), and
• JπK = S.

if and only if there exists an injection f : S → Q>0 such that for every t, t′ ∈ S,
(a) if f(t) = min{f(s) : s ∈ S}, then in(t) = p,
(b) if f(t) < f(t′), then there exists a path π in GV from out(t) to in(t′) such that JπK ⊆ {s ∈ S : f(s) < f(t′)},
(c) if f(t) = max{f(s) : s ∈ S}, then there exists a path π in GV from out(t) to q such that JπK ⊆ S, and
(d) Jδ(t)K− ⊆ JuK ∪

⋃
s∈S

f(s)<f(t)

Jδ(s)K+.

Proof: ⇒) Let π ∈ TH be such that JπK = S and π is q-admissible from p(u). Let π = α1t1α2t2 · · ·αktk. We build f
from the order in which transitions first occur. More formally, for every t ∈ S, let it

def
= min{j ∈ [k] : tj = t}. We define f as

follows:

f(t)
def
=

{
1 if it = 1,

max{f(s) : s ∈ S, is < it}+ 1 otherwise.

It is readily seen that (a), (b) and (c) hold. We prove (d). Let t ∈ S and i ∈ [d] be such that δ(t)(i) < 0. For the sake
of contradiction, suppose that u(i) = 0 and δ(s)(i) ≤ 0 for every s ∈ S such that f(s) < f(t). By construction of f ,
f(tj) < f(tit) for every j < it, hence

u(i) + δ(α1t1α2t2 · · ·αittit)(i) ≤ δ(αittit)(i)
= αit · δ(t)(i)
< 0,

which contradicts the fact that π is q-admissible from p(u).
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⇐) We order transitions of S with respect to the total order induced by f . More formally, let `min
def
= min{f(s) : s ∈ S}, let

k
def
= |S| and let g : S → [k] be such that

g(t)
def
=

{
1 if f(t) = `min,

max{g(s) : s ∈ S, f(s)<f(t)}+ 1 otherwise.

Note that g is a bijection since f is injective. We define ti
def
= g−1(i) for every i ∈ [k]. Let σ0 be the path from p to in(t1)

given by (a), and let σk be the path from out(tk) to q given by (c). For every 1 ≤ i < k, let σi be the path from out(ti) to
in(ti+1) given by (b). Let

π
def
= t1σ1t2σ2 · · · tkσk.

By construction, π is a path from p to q, hence p(u)
π−→→Q q(v) for some v ∈ Qd. Since u ≥ 0 and (d) holds, we may apply

Lemma B.1. Therefore, there exists π′ ∈ TH such that path(π′) = path(π) and π′ is q-admissible from p(u).

In order to show that CVASS cyclic reachability can be translated into existential FO(Q,+, <), we will need some
intermediary formulas for graph reachability, strong connectivity and CVASS cyclic Q-reachability. Even though defining
these formulas in existential FO(Q,+, <) would suffice for this purpose, we show that they can be defined in CSP(Γc), which
is useful for other applications.

Lemma B.2: Let G = (V,E) be a directed graph. There exists a logarithmic-space computable formula ϕpaths
G (x, r)

of CSP(Γc), where x ∈ QE+ and r ∈ QV×V+ , such that ϕG is satisfied by (x, r) if and only if ru,v > 0 ⇐⇒
v is reachable from u in G[JxK] for every nodes u, v ∈ V .

Proof: We define the formula as follows:

ϕpaths
G (x, r)

def
= ∃y ∈ QV×V×[0,|E|−1]

+

∧
u∈V

yu,u,0 > 0 ∧
∧

v∈V \{u}

yu,v,0 = 0


∧
∧

u,v∈V

∧
1≤i<|E|

yu,v,i > 0→
∨

e∈in(v)

(xe > 0 ∧ yu,in(e),i−1 > 0)


∧
∧

u,v∈V
ru,v > 0↔

∨
0≤i<|E|

yu,v,i > 0.

A simple induction shows that ϕpaths
G is as required.

Lemma B.3: Let G = (V,E) be a directed graph and let u ∈ V . There exists a logarithmic-space computable formula
ϕstrong-conn
G,u (x) of CSP(Γc), where y ∈ QE+, such that ϕG,u is satisfied by x if and only if G[JxK] is strongly connected and

contains u.
Proof: Let ϕpaths

G be the formula obtained from Lemma B.2 for graph reachability. We define the formula as follows,
where gv represents whether node v occurs in G[JxK]:

ϕstrong-conn
G,u (x)

def
= ∃r ∈ QV×V+ , g ∈ QV+

ϕpaths
G (x, r) ∧

∧
v∈V

gv > 0↔
∨

e∈edges(v)

xe > 0

∧ gu > 0 ∧
∧
v∈V

gv > 0→ (ru,v > 0 ∧ rv,u > 0).

By Lemma B.2, it follows that ϕstrong-conn
G,u is as required.

Lemma B.4: Let q ∈ Q. There exists a logarithmic-space computable formula ϕQ-reach
V,q (x,y, z) of CSP(Γc), where x,y ∈ Qd+

and z ∈ QT+, such that ϕG,u is satisfied by (u,v,w) if and only if there exists π ∈ TH such that q(u)
π−→→Q q(v) in V and

Ψ(π) = w.
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Proof: Let ϕstrong-conn
GV ,q

be the formula obtained from Lemma B.3 for strong connectivity. We build ϕQ-reach
V,q from the

characterization of Lemma 4.6:

ϕQ-reach
V,q (x,y, z)

def
= ∃g ∈ QT+

x +
∑
t∈T

zt · δ(t) = y

∧
∧
t∈T

(gt > 0↔ zt > 0)

∧
∧
t∈T

gt ≥ zt

∧ Φstrong-conn
GV ,q

(g)

∧
∧
p∈Q

 ∑
t∈in(p)

gt =
∑

t∈out(p)

gt

 .

By Lemma B.3 and Lemma 4.6, the formula is as required.

We may now translate CVASS cyclic reachability into existental FO(Q,+, <).

Lemma 4.8: There exists a logarithmic-space computable existential FO(Q,+, <) formula ϕV,q(x,y, z) such that
ϕV,q(u,v,w) holds if and only if there exists π ∈ TH such that q(u)

π−→→Q+
q(v) and Ψ(π) = w.

Proof: We build a formula for the characterization obtained in Proposition 4.5. First, we build a formula ϕadm
V,q for

Proposition 4.5(b), i.e. for the existence of some π such that π is q-admissible from q(u) and JπK = JzK.
Let ϕpaths

G be the formula for graph reachability obtained from Lemma B.2. Formula ϕadm
V,q is derived from the characterization

of obtained in Lemma 4.7:

ϕadm
V,q(x, z)

def
= ∃f ∈ QT+∧

t∈T
(ft > 0↔ zt > 0)

∧
∧

t,t′∈T
t 6=t′

[(ft > 0 ∧ ft′ > 0)→ ft 6= ft′ ]

∧
∧
t∈T

ϕmin
t (f)→ in(t) = q

∧
∧

t,t′∈T
(0 < ft < ft′)→ ∃y ∈ QT+, r ∈ QQ×Q+

∧
s∈T

[ys > 0↔ (0 < fs < ft′)] ∧ ϕpaths
GV

(y, r) ∧ rout(t),in(t′) > 0

∧
∧
t∈T

ϕmax
t (f)→ ∃r ∈ QQ×Q+ ϕpaths

GV
(f , r) ∧ rout(t),q > 0

∧
∧
t∈T

ft > 0→

∧
i∈[d]

δ(t)(i) < 0→

[
xi > 0 ∨

∨
s∈T

(0 < fs < ft ∧ δ(t)(i) > 0)

]
where

ϕmin
t (f)

def
= ft > 0 ∧

∧
t′∈T\{t}

(ft′ > 0→ ft < ft′)

ϕmax
t (f)

def
=

∧
t′∈T\{t}

ft > ft′ .

Let ϕQ-reach
V,q be the formula for CVASS cyclic Q-reachability obtained from Lemma B.4. Altogether, we obtain the following

formula whose validity follows from Proposition 4.5, Lemma 4.6 and Lemma 4.7:

ϕV,q(x,y, z)
def
= ∃ϕQ-reach

V,q (x,y, z) ∧ ϕadm
V,q(x, z) ∧ ϕadm

V†,q(y, z).

We may now translate CVASS reachability into existential FO(Q,+, <):
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Theorem 4.9: Let p, q ∈ Q. There exists a logarithmic-space computable existential FO(Q,+, <) formula ϕV,p,q(x,y, z)

such that ϕV,p,q(u,v,w) holds if and only if there exists π ∈ TH such that p(u)
π−→→Q+

q(v) and Ψ(π) = w.
Proof: We first give a formula ϕrun

p,q,`(x,y, z) for “length ` reachability”, i.e. for the existence of some π ∈ TH such that
|π| = ` and p(x)

π−→→Q+
q(y). If ` = 0, we simply build

ϕrun
p,q,0(x,y, z)

def
= (p = q) ∧

∧
i∈[d]

xi = yi.

If ` > 0, we build a formula that guesses a path with its (0, 1]-coefficients, checks whether counter values do not drop below
zero, and whether y is reached:

ϕrun
p,q,`(x,y, z)

def
= ∃a1,a2, . . . ,a` ∈ QT+, p1,p2, . . . ,p` ∈ Qd∨

t∈out(p)

0 < a1,t ≤ 1

∧
∧

1≤i<`

∧
t∈T

ai,t > 0→
∨
t′∈T

out(t)=in(t′)

0 < ai+1,t′ ≤ 1

∧
∨

t∈in(q)

0 < a`,t ≤ 1

∧
∧
i∈[`]

∧
t∈T

(ai,t > 0→
∧

t′∈T\{t}

ai,t′ = 0)

∧
∧
i∈[`]

∧
t∈T

ai,t > 0→
∧
j∈[d]

pi,j = ai,t · δ(t)(j)


∧
∧
`∈[`]

∧
j∈[d]

x(j) +
∑

1≤i≤`

pi,j ≥ 0

∧
∧
j∈[d]

x(j) +
∑

1≤i≤`

pi,j = y

∧
∧
t∈T

zt =
∑
i∈[`]

ai,t

For every r ∈ Q, let ϕV,r be the formula for cyclic reachability obtained from Lemma 4.8. We give a formula that checks
whether (a–d) from the main text holds for some fixed k:

ϕdecomp
p,q,k (x,y, z)

def
= ∃u0,u1, . . . ,uk+1,v1,v2, . . . ,vk+1 ∈ Qd+ ∃q0, q1, . . . , qk+1 ∈ QQ+,
∃s0, s1 . . . , sk, t1, t2, . . . , tk ∈ QT+∧
1≤i≤k

∨
q∈Q

qi,q = 1 ∧
∑
q∈Q

qi,q = 1


∧ q0,p = 1 ∧ qk+1,q = 1

∧
∧
j∈[d]

u0(j) = x(j) ∧ vk+1(j) = y(j)

∧
∧

0≤i≤k

∧
r,r′∈Q

(xi,r = 1 ∧ xi+1,r′ = 1)→
∨

0≤`<|Q|

ϕrun
r,r′,`(ui,vi+1, si)

∧
∧

0<i≤k

∧
r∈Q

xi,r = 1→ ϕV,r(vi,ui, ti)

∧
∧
t∈T

zt =
∑

0≤i≤k

si,t +
∑

0<i≤k

ti,t.

Altogether, we obtain:

ϕV,p,q(x,y, z)
def
=

∨
0≤k≤|Q|

ϕdecomp
p,q,k (x,y, z).
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C. Missing proofs from Section IV-C

For every d-CVASS V = (Q,T ), let ‖T‖ def
= max{|z(i)| : (p, z, q) ∈ T, i ∈ [d]}. For every formula ψ, let ‖ψ‖ denote the

largest absolute value of a coefficient occurring in ψ. We give a detailed version of Lemma 4.11:

Lemma B.5: Let ψ(x) be an atomic formula and n = |x|. There exists a logarithmic-space computable (2n+3)-CVASS
V = (Q,T ) and states p, r ∈ Q such that
• |Q| = n+ 2, |T | = 3(n+ 1), ‖T‖ ≤ max(1, ‖ψ‖n+2), and
• ψ(u) holds if and only if p(enc(u), 0, 0, 1)

∗−→→Q+
r(0).

Proof: Let ψ(x) = aᵀ · x ∼ c. We can assume that coefficients appearing in a and c have integer values, since
(a1/d1)x1 + · · · + (an/dn)xn ∼ c has the same solutions as λ(a1/d1)x1 + · · · + λ(an/dn)xn ∼ λ · c where λ def

= d1 · · · dn.
Note that λ can be computed in logarithmic space.

We give a construction which is very similar to the one given in the proof of Lemma 3.7. Let V be the CVASS illustrated in
Figure 7. The first 2·n counters encode x and the two next counters encode the “current value” val(V). States p1 to pn compute
aᵀ · x. The transition from pn to q substracts c from val(V), using the last counter to ensure that c is fully substracted. The
self-loop at q allows to decrease val(V) by any non-negative value. The transition from q to r forces val(V) to be decreased
by a positive value if ∼ is strict. Once r(0, y, z, 0) is reached, val(V) = y − z = aᵀ · x − c − λ for some λ ≥ 0 such that
λ > 0 if ∼ is strict. The self-loop on r “normalizes” the encoding of val(V) to test whether val(V) = 0, and equivalently
whether aᵀ · x = c+ λ.

More formally, let b ∈ {0, 1} be such that b = 1 if ∼ is “>” and b = 0 if ∼ is “≥”. We define V def
= (Q,T ) as the continuous

(2n+3)-VASS such that Q def
= {pi : 1 ≤ i ≤ n} ∪ {q, r} and

T
def
= {(pi, (−e2i−1, enc(ai), 0), pi) : 1 ≤ i ≤ n}
∪ {(pi, (−e2i, enc(−ai), 0), pi) : 1 ≤ i ≤ n}
∪ {(pi, ( 0, enc(0), 0), pi+1) : 1 ≤ i < n}
∪ {(pn, ( 0, enc(−c), −1), q)}
∪ {(q, ( 0, enc(−1), 0), q)}
∪ {(q, ( 0, enc(−b), 0), r)}
∪ {(r, ( 0, −1,−1, 0), r)}.

Since we (might) have taken the product of the denominators of ψ, we obtain ‖T‖ ≤ max(1, ‖ψ‖n+2). Note that the binary
encoding of T is still of polynomial size.

p1 p2 pn q r

[−e1, enc(a1), 0]

[−e2, enc(−a1), 0]

[−e3, enc(a2), 0]

[−e4, enc(−a2), 0]

[−e2n−1, enc(an), 0]

[−e2n, enc(−an), 0, 0]

[0, 0, 0] [0, enc(−c),−1]

[0, enc(−1), 0]

[0, enc(−1), 0]
[0,−1,−1, 0]

[0, 0, 0]

Fig. 7. Continuous VASS for ψ(x) = aᵀ · x > c. Colours highlight similarities with the continuous Petri net of Figure 1.

We give a detailed version of Theorem 4.12:

Theorem B.6: Let ϕ(x) be a formula of existential FO(Q,+, <) and n = |x|. There exist k > 0, a (n+k)-CVASS
V = (Q,T ), p, q ∈ Q and v ∈ {0, 1}k, computable in logarithmic space, such that
• |Q|, |T |, k ∈ O(|ϕ|2), ‖T‖ ≤ max(1, ‖ϕ‖n+2), and
• ϕ(u) holds if and only if p(enc(u),v)

∗−→→Q+
q(0).

Proof: We may assume that ϕ(x) = ∃y ∈ Qn′ Φ(x,y) for some n′ ∈ N and some quantifier-free formula Φ made of
conjunctions, disjunctions and atomic formulas over x and y. Indeed, if this is not the case, then quantified variables can be
quantified at the beginning of ϕ, and negations can be removed in polynomial time by successively applying De Morgan’s law
and the rules

¬(a1x1 + · · ·+ anxn ≥ c) = −a1x1 − · · · − anxn > −c,
¬(a1x1 + · · ·+ anxn > c) = −a1x1 − · · · − anxn ≥ −c.
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Let m def
= n + n′ and z

def
= [x,y]. The CVASS for Φ(z) is constructed by recursively composing the (2m+3)-CVASS

gadgets obtained from Lemma B.5 for atomic formulas. Let ψ and ψ′ be quantifier-free formulas over x. Suppose that for
both f ∈ {ψ,ψ′}, we have a (2m+kf )-CVASS Vf = (Qf , Tf ), some states pf , qf ∈ Qf and a vector vf ∈ {0, 1}kf such that

f(x) holds ⇐⇒ (enc(x),vf )
∗−→→Q+

(0,0).

Let ◦ ∈ {∨,∧}. We can compose Vψ and Vψ′ to obtain a (2m+kψ◦ψ′)-CVASS Vψ◦ψ′ for ψ(x) ◦ ψ′(x) as illustrated in
Figure 8.

p

pψ

pψ′

qψ

qψ′

q

p pψ qψ

pψ′qψ′q

[00,vψ,0,−1]

[00,0,vψ′ ,−1]

[00,0,0, 0]

[00,0,0, 0]

[−ei, ei,0, 0, ei,0, 0]

[0,0,vψ,−1,0,0, 0]

[0,0,0, 0,0,vψ′ ,−1]

[0,0,0, 0,0,0, 0]

Fig. 8. Gadgets for ψ(x) ∨ ψ′(x) and ψ(x) ∧ ψ′(x). The CVASS for ψ and ψ′, and their counters, are respectively coloured in and .

More precisely, Vψ∨ψ′ starts with [enc(x),0,0, 1] and non deterministically simulates either Vψ on [enc(x),vψ], or Vψ′ on
[enc(x),vψ′ ]. For conjunction, Vψ∧ψ′ starts with [enc(z),0,0, 1,0,0, 1]. The initial state consumes enc(x) and duplicates it
twice. Then, Vψ∧ψ′ simulates sequentially Vψ on [enc(z),vψ], and Vψ′ on [enc(z),vψ′ ].

Let VΦ be the (2m+kΦ)-CVASS obtained for Φ by performing the above compositions recursively. To obtain a CVASS
Vϕ for ϕ, it remains to simulate “∃y′”. To do so, Vϕ starts with [x,0,vΦ], guesses y and moves to the initial state of VΦ as
illustrated in Figure 9. To see that Vϕ is of the required size, observe that disjunction and conjunction increase the number of

p pΦ qΦ q
[0,0,0]

[0, (1, 0, . . . , 0),0]

[0, (0, 1, . . . , 0),0]
[0,0,0]

[0, (0, 0, . . . , 1),0]

Fig. 9. CVASS gadget for ∃y Φ(x,y).

states, transitions and counters linearly. More precisely,

|Qψ◦ψ′ | = |Qψ|+ |Qψ′ |+ 2 for both ◦ ∈ {∨,∧},
|Tψ∨ψ′ | = |Tψ|+ |Tψ′ |+ 4,

|Tψ∧ψ′ | = |Tψ|+ |Tψ′ |+ 2m+ 3,

kψ∨ψ′ = kψ + kψ′ + 1, and
kψ∧ψ′ = kψ + kψ′ + 4m+ 2.

Altogether with the bounds of Lemma B.5, we obtain

|Qϕ| ≤ (2m+ 2) · (|ϕ|+ 1),

|Tϕ| ≤ (3m+ 4) · (|ϕ|+ 1),

kϕ ≤ (4m+ 3) · |ϕ|.

Finally, note that each number occuring in Vϕ is either 0, −1, 1 or a coefficient from the gadgets obtained from Lemma B.5.

D. Missing proofs from Section IV-D

We detail the NP-hardness reduction of Theorem 4.16 in the next lemma.

Lemma B.7: Coverability, q-admissibility and unboundedness in CVASS are NP-hard.
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Proof: We give a single reduction from 3-SAT to the three problems. Let ϕ be an instance of 3-SAT. As explain in the
proof of Lemma 4.13(b), we may build a CVASS V = (Q,T ) and states p, q ∈ Q such that GV is acyclic, out(q) = ∅, and ϕ
is satisfiable if and only if p(0) is q-admissible. By adding a self-loop labeled by 1 on q, we obtain:

ϕ is satisfiable ⇐⇒ p(0) is q-admissible
⇐⇒ q(0) is coverable from p(0)

⇐⇒ V is unbounded from p(0).

We now detail the proof sketch of Theorem 4.17.

Theorem 4.17: Reachability in CVASS with zero-tests is undecidable.
Proof: Let V = (Q,T ) be a d-VASS with zero-tests on k counters. We show how to simulate V by a (d+2)-CVASS

V ′ = (Q′, T ′) with zero-tests on k + 2 counters. First, we add two new counters to V to ensure that each transition of V is
fully fired in V ′, i.e. by α = 1 and not by some 0 < α < 1. This can be achieved by replacing every transition of V with the
gadget illustrated in Figure 10. We then add a transition from q to a new “trap state” r which allows to decrement the two

p q → p q
z

(−1, 1, z)

(1,−1, z)

zero1?

zero2?

Fig. 10. Gadget to transform a VASS into a CVASS with zero-tests with the same reachability set.

new counters. Formally, we define V ′ as follows:

Q′
def
= Q ∪ {qt, q′t : t ∈ T} ∪ {r},

T ′
def
= {(p, zeroi+2?, q) : (p, zeroi?, q) ∈ T} ∪
{(p, (−1, 1, z), qt), (qt, zero1?, q) : t = (p, z, q) ∈ T} ∪
{(p, (1,−1, z), q′t), (q

′
t, zero2?, q) : t = (p, z, q) ∈ T} ∪

{(q, (0, 0,0), r), (r, (−1, 0,0), r), (r, (0,−1,0), r)}.

It can be shown that p(u)
∗−→N q(v) in V if and only if p(1, 0,u)

∗−→→Q+
r(0, 0,v) in V ′. Since reachability is undecidable for

2-VASS with zero-tests on both counters [25], we conclude that it is also undecidable for CVASS with zero-tests on (at least)
four counters.
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