
On the Analysis of Population Protocols

Michael Blondin



Overview

Population protocols: distributed computing
model for massive networks of passively mobile
finite-state agents

Can model e.g. networks of passively mobile sensors and
chemical reaction networks

Protocols compute predicates of the form φ : Nd → {0, 1}

e.g. if φ is unary, then φ(n) is computed by n agents

1/13



Overview

Population protocols: distributed computing
model for massive networks of passively mobile
finite-state agents

Can model e.g. networks of passively mobile sensors and
chemical reaction networks

Protocols compute predicates of the form φ : Nd → {0, 1}

e.g. if φ is unary, then φ(n) is computed by n agents

1/13



Overview

Population protocols: distributed computing
model for massive networks of passively mobile
finite-state agents

Can model e.g. networks of passively mobile sensors and
chemical reaction networks

Protocols compute predicates of the form φ : Nd → {0, 1}

e.g. if φ is unary, then φ(n) is computed by n agents

1/13



Overview

Population protocols: distributed computing
model for massive networks of passively mobile
finite-state agents

This talk:

• Automatic verification and testing

• Study of the minimal size of protocols

Can model e.g. networks of passively mobile sensors and
chemical reaction networks

Protocols compute predicates of the form φ : Nd → {0, 1}

e.g. if φ is unary, then φ(n) is computed by n agents

1/13



Population protocols Angluin et al. PODC’04

• anonymous mobile agents with very few resources

• agents change states via random pairwise interactions

• each agent has opinion true/false

• computes by stabilizing agents to some opinion

2/13



Population protocols Angluin et al. PODC’04

• anonymous mobile agents with very few resources

• agents change states via random pairwise interactions

• each agent has opinion true/false

• computes by stabilizing agents to some opinion

2/13



Population protocols Angluin et al. PODC’04

• anonymous mobile agents with very few resources

• agents change states via random pairwise interactions

• each agent has opinion true/false

• computes by stabilizing agents to some opinion

2/13



Population protocols Angluin et al. PODC’04

• anonymous mobile agents with very few resources

• agents change states via random pairwise interactions

• each agent has opinion true/false

• computes by stabilizing agents to some opinion

2/13



Population protocols Angluin et al. PODC’04

• anonymous mobile agents with very few resources

• agents change states via random pairwise interactions

• each agent has opinion true/false

• computes by stabilizing agents to some opinion

2/13



Population protocols Angluin et al. PODC’04

• anonymous mobile agents with very few resources

• agents change states via random pairwise interactions

• each agent has opinion true/false

• computes by stabilizing agents to some opinion

2/13



Population protocols Angluin et al. PODC’04

• anonymous mobile agents with very few resources

• agents change states via random pairwise interactions

• each agent has opinion true/false

• computes by stabilizing agents to some opinion

2/13



Population protocols Angluin et al. PODC’04

• anonymous mobile agents with very few resources

• agents change states via random pairwise interactions

• each agent has opinion true/false

• computes by stabilizing agents to some opinion

2/13



Population protocols Angluin et al. PODC’04

• anonymous mobile agents with very few resources

• agents change states via random pairwise interactions

• each agent has opinion true/false

• computes by stabilizing agents to some opinion

2/13



Population protocols Angluin et al. PODC’04

• anonymous mobile agents with very few resources

• agents change states via random pairwise interactions

• each agent has opinion true/false

• computes by stabilizing agents to some opinion

2/13



Population protocols Angluin et al. PODC’04

• anonymous mobile agents with very few resources

• agents change states via random pairwise interactions

• each agent has opinion true/false

• computes by stabilizing agents to some opinion

2/13



Example: majority protocol

More blue birds than red birds?

Protocol:

• Two large birds of
different colors
become small

• Large birds convert
small birds to their
color

3/13



Example: majority protocol

More blue birds than red birds?

Protocol:

• Two large birds of
different colors
become small

• Large birds convert
small birds to their
color

3/13



Example: majority protocol

More blue birds than red birds?

Protocol:

• Two large birds of
different colors
become small

• Large birds convert
small birds to their
color

3/13



Example: majority protocol

More blue birds than red birds?

Protocol:

• Two large birds of
different colors
become small

• Large birds convert
small birds to their
color

3/13



Example: majority protocol

More blue birds than red birds?

Protocol:

• Two large birds of
different colors
become small

• Large birds convert
small birds to their
color

3/13



Example: majority protocol

More blue birds than red birds?

Protocol:

• Two large birds of
different colors
become small

• Large birds convert
small birds to their
color

3/13



Example: majority protocol

More blue birds than red birds?

Protocol:

• Two large birds of
different colors
become small

• Large birds convert
small birds to their
color

3/13



Example: majority protocol

More blue birds than red birds?

Protocol:

• Two large birds of
different colors
become small

• Large birds convert
small birds to their
color

3/13



Example: majority protocol

More blue birds than red birds?

Protocol:

• Two large birds of
different colors
become small

• Large birds convert
small birds to their
color

3/13



Example: majority protocol

More blue birds than red birds?

Protocol:

• Two large birds of
different colors
become small

• Large birds convert
small birds to their
color

3/13



Example: majority protocol

More blue birds than red birds?

Protocol:

• Two large birds of
different colors
become small

• Large birds convert
small birds to their
color

3/13



Example: majority protocol

More blue birds than red birds?

Protocol:

• Two large birds of
different colors
become small

• Large birds convert
small birds to their
color

3/13



Example: majority protocol

More blue birds than red birds?

Protocol:

• Two large birds of
different colors
become small

• Large birds convert
small birds to their
color

3/13



Example: majority protocol

More blue birds than red birds?

Protocol:

• Two large birds of
different colors
become small

• Large birds convert
small birds to their
color

3/13



Example: majority protocol

More blue birds than red birds?

Protocol:

• Two large birds of
different colors
become small

• Large birds convert
small birds to their
color

3/13



Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

• Each bird is in a
state of {0, 1, 2, 3, 4}

• Sick birds initially in
state 1 and healthy
birds in state 0

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

1

1

1

0

1

4/13



Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

• Each bird is in a
state of {0, 1, 2, 3, 4}

• Sick birds initially in
state 1 and healthy
birds in state 0

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

1

1

1

0

1

4/13



Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

• Each bird is in a
state of {0, 1, 2, 3, 4}

• Sick birds initially in
state 1 and healthy
birds in state 0

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

1

1

1

0

1

4/13



Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

• Each bird is in a
state of {0, 1, 2, 3, 4}

• Sick birds initially in
state 1 and healthy
birds in state 0

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

2

1

1

0

0

4/13



Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

• Each bird is in a
state of {0, 1, 2, 3, 4}

• Sick birds initially in
state 1 and healthy
birds in state 0

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

2

1

1

0

0

4/13



Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

• Each bird is in a
state of {0, 1, 2, 3, 4}

• Sick birds initially in
state 1 and healthy
birds in state 0

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

2

1

1

0

0

4/13



Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

• Each bird is in a
state of {0, 1, 2, 3, 4}

• Sick birds initially in
state 1 and healthy
birds in state 0

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

2

1

1

0

0

4/13



Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

• Each bird is in a
state of {0, 1, 2, 3, 4}

• Sick birds initially in
state 1 and healthy
birds in state 0

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

2

2

0

0

0

4/13



Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

• Each bird is in a
state of {0, 1, 2, 3, 4}

• Sick birds initially in
state 1 and healthy
birds in state 0

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

2

2

0

0

0

4/13



Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

• Each bird is in a
state of {0, 1, 2, 3, 4}

• Sick birds initially in
state 1 and healthy
birds in state 0

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

4

4

0

0

0

4/13



Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

• Each bird is in a
state of {0, 1, 2, 3, 4}

• Sick birds initially in
state 1 and healthy
birds in state 0

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

4

4

0

0

0

4/13



Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

• Each bird is in a
state of {0, 1, 2, 3, 4}

• Sick birds initially in
state 1 and healthy
birds in state 0

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

4

4

0

4

0

4/13



Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

• Each bird is in a
state of {0, 1, 2, 3, 4}

• Sick birds initially in
state 1 and healthy
birds in state 0

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

4

4

0

4

0

4/13



Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

• Each bird is in a
state of {0, 1, 2, 3, 4}

• Sick birds initially in
state 1 and healthy
birds in state 0

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

4

4

0

4

4

4/13



Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

• Each bird is in a
state of {0, 1, 2, 3, 4}

• Sick birds initially in
state 1 and healthy
birds in state 0

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

4

4

0

4

4

4/13



Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

• Each bird is in a
state of {0, 1, 2, 3, 4}

• Sick birds initially in
state 1 and healthy
birds in state 0

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

4

4

4

4

4

4/13



Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

• Each bird is in a
state of {0, 1, 2, 3, 4}

• Sick birds initially in
state 1 and healthy
birds in state 0

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

4

4

4

4

4

4/13



Demonstration

4/13



Population protocols: formal model

• States: finite set Q

• Opinions: O : Q → {0, 1}

• Initial states: I ⊆ Q

• Transitions: T ⊆ Q2 × Q2

5/13



Population protocols: formal model

• States: finite set Q

• Opinions: O : Q → {0, 1}

• Initial states: I ⊆ Q

• Transitions: T ⊆ Q2 × Q2

5/13



Population protocols: formal model

• States: finite set Q

• Opinions: O : Q → {0, 1}

• Initial states: I ⊆ Q

• Transitions: T ⊆ Q2 × Q2

5/13



Population protocols: formal model

• States: finite set Q

• Opinions: O : Q → {0, 1}

• Initial states: I ⊆ Q

• Transitions: T ⊆ Q2 × Q2

5/13



Population protocols: formal model

Reachability graph:

5/13



Population protocols: formal model

Executions must be fair:

5/13



Population protocols: formal model

Executions must be fair:

5/13



Population protocols: formal model

A protocol computes a predicate f : NNNI → {0, 1}
if fair executions reach common consensus

Init0

0 0

Init1

1 1

Init2

1

. . .

5/13



Population protocols: formal model

A protocol computes a predicate f : NNNI → {0, 1}
if fair executions reach common consensus

Expressive power Angluin, Aspnes, Eisenstat PODC’06

Population protocols compute precisely predicates
definable in Presburger arithmetic, i.e. FO(N, +, <)

5/13



Analysis of protocols

Protocols can become complex, even forB ≥ R:

6/13



Analysis of protocols

Protocols can become complex, even forB ≥ R:

How to verify

correctness
automatically?

6/13



Analysis of protocols

Number of states corresponds to amount of memory,
relevant to keep it minimal for embedded systems

• B ≥ R requires at least 4 states (Mertzios et al. ICALP’14)

• X ≥ c requires at most c + 1 states

6/13



Analysis of protocols

Number of states corresponds to amount of memory,
relevant to keep it minimal for embedded systems

• B ≥ R requires at least 4 states (Mertzios et al. ICALP’14)

• X ≥ c requires at most c + 1 states

What is the state complexity

of common predicates?

6/13



Analysis of protocols

Convergence speed may vary wildly,
challenging to establish bounds

0 2 4 6 8 10 12 14 16 18 20
100

102

104

106

108

1010

1012

1014

1016

1018

1020

Initial Amount of R’s

A
ve

ra
ge

nu
m
be

r
of

st
ep

s
to

co
nv

er
ge

nc
e

AVC
3-state
4-state

4-state tiebreaker

6/13



Analysis of protocols

Convergence speed may vary wildly,
challenging to establish bounds

0 2 4 6 8 10 12 14 16 18 20
100

102

104

106

108

1010

1012

1014

1016

1018

1020

Initial Amount of R’s

A
ve

ra
ge

nu
m
be

r
of

st
ep

s
to

co
nv

er
ge

nc
e

AVC
3-state
4-state

4-state tiebreaker

How to derive

asymptotic

bounds
automatically?

6/13



Analysis of protocols

1. Automatic verification of correctness
• PODC’17 with Javier, Stefan and Philipp
• Submission to CAV’18 with Javier and Stefan
• Interns: Philip Offtermatt and Amrita Suresh

2. State complexity of common predicates
• STACS’18 with Javier and Stefan

3. Automatic analysis of convergence speed
• Ongoing work with Javier and Antonín Kučera

6/13



Analysis of protocols

1. Automatic verification of correctness
• PODC’17 with Javier, Stefan and Philipp
• Submission to CAV’18 with Javier and Stefan

• Interns: Philip Offtermatt and Amrita Suresh

2. State complexity of common predicates
• STACS’18 with Javier and Stefan

3. Automatic analysis of convergence speed
• Ongoing work with Javier and Antonín Kučera

This talk
6/13



Verification: state of the art

Existing verification tools:

• PAT: model checker with global fairness
(Sun, Liu, Song Dong and Pang CAV’09)

• bp-ver: graph exploration
(Chatzigiannakis, Michail and Spirakis SSS’10)

• Conversion to counter machines + PRISM/Spin
(Clément, Delporte-Gallet, Fauconnier and Sighireanu ICDCS’11)

Only for populations of fixed size!

Not automatic!
Challenge: verifying automatically

all sizes

7/13



Verification: state of the art

Existing verification tools:

• PAT: model checker with global fairness
(Sun, Liu, Song Dong and Pang CAV’09)

• bp-ver: graph exploration
(Chatzigiannakis, Michail and Spirakis SSS’10)

• Conversion to counter machines + PRISM/Spin
(Clément, Delporte-Gallet, Fauconnier and Sighireanu ICDCS’11)

Only for populations of fixed size!

Not automatic!
Challenge: verifying automatically

all sizes

7/13



Verification: state of the art

Sometimes possible to verify all sizes:

• Verification with the interactive theorem prover Coq
(Deng and Monin TASE’09)

• bp-ver: graph exploration
(Chatzigiannakis, Michail and Spirakis SSS’10)

• Conversion to counter machines + PRISM/Spin
(Clément, Delporte-Gallet, Fauconnier and Sighireanu ICDCS’11)

Only for populations of fixed size!

Not automatic!
Challenge: verifying automatically

all sizes

7/13



Verification: state of the art

Sometimes possible to verify all sizes:

• Verification with the interactive theorem prover Coq
(Deng and Monin TASE’09)

• bp-ver: graph exploration
(Chatzigiannakis, Michail and Spirakis SSS’10)

• Conversion to counter machines + PRISM/Spin
(Clément, Delporte-Gallet, Fauconnier and Sighireanu ICDCS’11)

Only for populations of fixed size!

Not automatic!

Challenge: verifying automatically
all sizes

7/13



Verification: state of the art

Sometimes possible to verify all sizes:

• Verification with the interactive theorem prover Coq
(Deng and Monin TASE’09)

• bp-ver: graph exploration
(Chatzigiannakis, Michail and Spirakis SSS’10)

• Conversion to counter machines + PRISM/Spin
(Clément, Delporte-Gallet, Fauconnier and Sighireanu ICDCS’11)

Only for populations of fixed size!

Not automatic!

Challenge: verifying automatically
all sizes

7/13



Verification: our approach PODC’17

Testing whether a protocol computes φ
amounts to testing:

¬∃C,D : C ∗−−→ D ∧
C is initial ∧
D is in a BSCC∧
opinion(D) ̸= φ(C)

7/13



Verification: our approach PODC’17

Testing whether a protocol computes φ
amounts to testing:

¬∃C,D : C ∗−−→ D ∧
C is initial ∧
D is in a BSCC∧
opinion(D) ̸= φ(C)

As difficult as verification
7/13



Verification: our approach PODC’17

Testing whether a protocol computes φ
amounts to testing:

¬∃C,D : C ∗99K D ∧
C is initial ∧
D is in a BSCC∧
opinion(D) ̸= φ(C)

Relaxed with Presburger-definable
overapproximation!

7/13



Verification: our approach PODC’17

Testing whether a protocol computes φ
amounts to testing:

¬∃C,D : C ∗99K D ∧
C is initial ∧
D is in a BSCC∧
opinion(D) ̸= φ(C)

Difficult to express

7/13



Verification: our approach PODC’17

Testing whether a protocol computes φ
amounts to testing:

¬∃C,D : C ∗99K D ∧
C is initial ∧
D is terminal ∧
opinion(D) ̸= φ(C)

BSCCs are of size 1
for most protocols!

7/13



Verification: our approach PODC’17

Testing whether a protocol computes φ
amounts to testing:

¬∃C,D : C ∗99K D ∧
C is initial ∧
D is terminal ∧
opinion(D) ̸= φ(C)

Testable with an SMT solver

7/13



Verification: our approach PODC’17

Testing whether a protocol computes φ
amounts to testing:

¬∃C,D : C ∗99K D ∧
C is initial ∧
D is terminal ∧
opinion(D) ̸= φ(C)

But how to know whether

all BSCCs are of size 1?
7/13



Silent protocols PODC’17

Protocol is silent if fair executions reach terminal configurations

• Testing silentness is as hard as verification of correctness

• But most protocols satisfy a common design

. . .

BSCCs of size 1
8/13



Silent protocols PODC’17

Protocol is silent if fair executions reach terminal configurations

• Testing silentness is as hard as verification of correctness

• But most protocols satisfy a common design

. . .

BSCCs of size 1
8/13



Common design: layered termination PODC’17

Partition T = T1 ∪ T2 ∪ · · · ∪ Tn s.t. for every i

• all executions restricted to Ti terminate

• if T1 ∪ · · · ∪ Ti−1 disabled in C and C Ti∗−−→ D, then
T1 ∪ · · · ∪ Ti−1 also disabled in D

C
T1∗ T2∗ Tn∗

8/13



Common design: layered termination PODC’17

Partition T = T1 ∪ T2 ∪ · · · ∪ Tn s.t. for every i

• all executions restricted to Ti terminate

• if T1 ∪ · · · ∪ Ti−1 disabled in C and C Ti∗−−→ D, then
T1 ∪ · · · ∪ Ti−1 also disabled in D

C
T1∗ T2∗ Tn∗

8/13



Common design: layered termination PODC’17

Partition T = T1 ∪ T2 ∪ · · · ∪ Tn s.t. for every i

• all executions restricted to Ti terminate

• if T1 ∪ · · · ∪ Ti−1 disabled in C and C Ti∗−−→ D, then
T1 ∪ · · · ∪ Ti−1 also disabled in D

C
T1∗ T2∗ Tn∗

8/13



Common design: layered termination PODC’17

Partition T = T1 ∪ T2 ∪ · · · ∪ Tn s.t. for every i

• all executions restricted to Ti terminate

• if T1 ∪ · · · ∪ Ti−1 disabled in C and C Ti∗−−→ D, then
T1 ∪ · · · ∪ Ti−1 also disabled in D

C
T1∗ T2∗ Tn∗

8/13



Common design: layered termination PODC’17

Partition T = T1 ∪ T2 ∪ · · · ∪ Tn s.t. for every i

• all executions restricted to Ti terminate

• if T1 ∪ · · · ∪ Ti−1 disabled in C and C Ti∗−−→ D, then
T1 ∪ · · · ∪ Ti−1 also disabled in D

C Cterm
T1∗ T2∗ Tn∗

8/13



Common design: layered termination PODC’17

B R −→ b r
R b −→ R r
B r −→ B b
b r −→ b b

T1

8/13



Common design: layered termination PODC’17

B R −→ b r
R b −→ R r
B r −→ B b
b r −→ b b

Bad partition: not all executions over T1 terminate

T1

8/13



Common design: layered termination PODC’17

B R −→ b r
R b −→ R r
B r −→ B b
b r −→ b b

Bad partition: not all executions over T1 terminate

{B,B,R,R} −→ {B,b, r,R} −→ {B,b,b,R} −→
{B,b, r,R} −→ {B,b,b,R} −→ · · ·

T1

8/13



Common design: layered termination PODC’17

B R −→ b r R b −→ R r B r −→ B b
b r −→ b b

T1 T2 T3

8/13



Common design: layered termination PODC’17

B R −→ b r R b −→ R r B r −→ B b
b r −→ b b

T1 T2 T3

{B∗, R∗}
#B ≥ #R:

8/13



Common design: layered termination PODC’17

B R −→ b r R b −→ R r B r −→ B b
b r −→ b b

T1 T2 T3

{B∗, R∗}
#B ≥ #R:

{B∗, b∗, r∗}*

8/13



Common design: layered termination PODC’17

B R −→ b r R b −→ R r B r −→ B b
b r −→ b b

T1 T2 T3

{B∗, R∗}
#B ≥ #R:

{B∗, b∗, r∗}*

8/13



Common design: layered termination PODC’17

B R −→ b r R b −→ R r B r −→ B b
b r −→ b b

T1 T2 T3

{B∗, R∗}
#B ≥ #R:

{B∗, b∗, r∗}* {B∗, b∗}*

8/13



Common design: layered termination PODC’17

B R −→ b r R b −→ R r B r −→ B b
b r −→ b b

T1 T2 T3

{B∗, R∗}
#B ≥ #R:

{B∗, b∗, r∗}* {B∗, b∗}*

{R+, B∗}
#R > #B:

8/13



Common design: layered termination PODC’17

B R −→ b r R b −→ R r B r −→ B b
b r −→ b b

T1 T2 T3

{B∗, R∗}
#B ≥ #R:

{B∗, b∗, r∗}* {B∗, b∗}*

{R+, B∗}
#R > #B:

{R+, r∗, b∗}*

8/13



Common design: layered termination PODC’17

B R −→ b r R b −→ R r B r −→ B b
b r −→ b b

T1 T2 T3

{B∗, R∗}
#B ≥ #R:

{B∗, b∗, r∗}* {B∗, b∗}*

{R+, B∗}
#R > #B:

{R+, r∗, b∗}* {R+, r∗}*

8/13



Common design: layered termination PODC’17

B R −→ b r R b −→ R r B r −→ B b
b r −→ b b

T1 T2 T3

{B∗, R∗}
#B ≥ #R:

{B∗, b∗, r∗}* {B∗, b∗}*

{R+, B∗}
#R > #B:

{R+, r∗, b∗}* {R+, r∗}*

8/13



Common design: layered termination PODC’17

Theorem PODC’17

Deciding whether a protocol is strongly silent ∈ NP

Proof sketch
Guess partition T = T1 ∪ T2 ∪ · · · ∪ Tn and test whether it is
correct by verifying

• Petri net structural termination

• Additional simple structural properties

8/13



Common design: layered termination PODC’17

Theorem PODC’17

Strongly silent protocols as expressive as general protocols

Proof sketch

• Protocols for

a1x1 + . . .+ anxn ≥ b

a1x1 + . . .+ anxn ≡ b (mod m)

have layered termination partitions

• Conjunction and negation preserve layered termination
8/13



A new tool: Peregrine PODC’17 / CAV’18 submission

Peregrine: + Z3 + JavaScript (front end)

gitlab.lrz.de/i7/peregrine

Protocol Predicate # states # trans. Time (secs.)
Majority [a] x ≥ y 4 4 0.1
Broadcast [b] x1 ∨ · · · ∨ xn 2 1 0.1
Linear ineq. [c]

∑
aixi ≥ 9 75 2148 2376

Modulo [c]
∑

aixi = 0 mod 70 72 2555 3177
Threshold [d] x ≥ 50 51 1275 182
Threshold [b] x ≥ 325 326 649 3471
Threshold [e] x ≥ 107 37 155 19

[a] Draief et al. 2012 [c] Angluin et al. 2006 [e] Offtermatt 2017 (bachelor thesis)

[b] Clément et al. 2011 [d] Chatzigiannakis et al. 2010 9/13



Demonstration

9/13



Threshold state complexity: logarithmic bounds

Given: Presburger-definable predicateφ

Question: Smallest number of states
necessary to compute φ?

10/13



Threshold state complexity: logarithmic bounds

Given: Presburger-definable predicateφ

Question: Smallest number of states
necessary to compute φ?

Difficult problem...

What about basic predicates?

10/13



Threshold state complexity: logarithmic bounds

Given: c ∈ N

Question: Smallest number of states
necessary to compute x ≥ c?

10/13



Threshold state complexity: logarithmic bounds

Given: c ∈ N Upper bound: c+ 1

Question: Smallest number of states
necessary to compute x ≥ c?

Lower bound: 2

10/13



Threshold state complexity: logarithmic bounds

Given: c ∈ N Upper bound: c+ 1

Question: Smallest number of states
necessary to compute x ≥ c?

Lower bound: 2

Theorem STACS’18

Computable with O(log c) states, if c = 2n.

Proof sketch
(1, 1) 7→ (2,0)
(2, 2) 7→ (4,0)

...
...

(2n−1, 2n−1) 7→ (2n,0)
(2n,m) 7→ (2n, 2n)

10/13



Threshold state complexity: logarithmic bounds

Given: c ∈ N Upper bound: c+ 1

Question: Smallest number of states
necessary to compute x ≥ c?

Lower bound: 2

Theorem STACS’18

Computable with O(log c) states, if c = 2n.

Proof sketch
(1, 1) 7→ (2,0)
(2, 2) 7→ (4,0)

...
...

(2n−1, 2n−1) 7→ (2n,0)
(2n,m) 7→ (2n, 2n)

+ extra states
and transitions

10/13



Threshold state complexity: logarithmic bounds

Given: c ∈ N Upper bound: O(log c)

Question: Smallest number of states
necessary to compute x ≥ c?

Lower bound: 2

10/13



Threshold state complexity: logarithmic bounds

Given: c ∈ N Upper bound: O(log c)

Question: Smallest number of states
necessary to compute x ≥ c?

Lower bound: 2

Theorem STACS’18

Let P0,P1, . . . be protocols such that Pc computes x ≥ c.
There are infinitely many c s.t. Pc has ≥ (log c)1/4 states.

Proof sketch
Counting argument on # unary predicates vs. # protocols.

10/13



Threshold state complexity: logarithmic bounds

Given: c ∈ N Upper bound: O(log c)

Question: Smallest number of states
necessary to compute x ≥ c?

Lower bound: O(log1/4 c)︸ ︷︷ ︸
for inf. many c

10/13



Threshold state complexity: logarithmic bounds

Given: c ∈ N Upper bound: O(log c)

Question: Smallest number of states
necessary to compute x ≥ c?

Lower bound: O(log1/4 c)︸ ︷︷ ︸
for inf. many c

Possible to go below
log c for some c?

10/13



Threshold state complexity: logarithmic bounds

Given: c ∈ N Upper bound: O(log c)

Question: Smallest number of states
necessary to compute x ≥ c?

Lower bound: O(log1/4 c)︸ ︷︷ ︸
for inf. many c

Possible to go below
log c for some c?

Yes!
10/13



Threshold state complexity: sublogarithmic bounds

Theorem STACS’18

There exist protocols P0,P1, . . . and numbers c0 < c1 < · · ·
such that Pi computes x ≥ ci and has O(log log ci) states.

11/13



Threshold state complexity: sublogarithmic bounds

Theorem STACS’18

There exist protocols P0,P1, . . . and numbers c0 < c1 < · · ·
such that Pi computes x ≥ ci and has O(log log ci) states.

Lemma Mayr and Meyer ’82

For every c ∈ N, there exists a reversible multiset rewriting
system Rc over alphabet Σ ⊇ {x, y, z,w} of size O(c) with
rewriting rules T ⊆ Σ≤5 × Σ≤5 such that

{x, y} ∗−→ M and w ∈ M ⇐⇒ M = {y, z22
c
,w}

11/13



Threshold state complexity: sublogarithmic bounds

Theorem STACS’18

There exist protocols P0,P1, . . . and numbers c0 < c1 < · · ·
such that Pi computes x ≥ ci and has O(log log ci) states.

Proof sketch

• Rc can be simulated by adding a padding symbol ⊥

• New rule: agents in state w can convert others to w

• Simulate Rc from {x, y,⊥,⊥, . . . ,⊥}

• {w,w, . . . ,w} reachable ⇐⇒ initially ≥ 22c agents in ⊥

• By reversibility and fairness, cannot avoid {w,w, . . . ,w}

11/13



Threshold state complexity: sublogarithmic bounds

Theorem STACS’18

There exist protocols P0,P1, . . . and numbers c0 < c1 < · · ·
such that Pi computes x ≥ ci and has O(log log ci) states.

Proof sketch

• Rc can be simulated by adding a padding symbol ⊥

• New rule: agents in state w can convert others to w

• Simulate Rc from {x, y,⊥,⊥, . . . ,⊥}

• {w,w, . . . ,w} reachable ⇐⇒ initially ≥ 22c agents in ⊥

• By reversibility and fairness, cannot avoid {w,w, . . . ,w}

Rewriting system Rc 5-way population protocol
(e, f,g) 7→ (h, i) (e, f,g,⊥,⊥) 7→ (h, i,⊥,⊥,⊥)

(e, f) 7→ (g,h, i) (e, f,⊥,⊥,⊥) 7→ (g,h, i,⊥,⊥)

11/13



Threshold state complexity: sublogarithmic bounds

Theorem STACS’18

There exist protocols P0,P1, . . . and numbers c0 < c1 < · · ·
such that Pi computes x ≥ ci and has O(log log ci) states.

Proof sketch

• Rc can be simulated by adding a padding symbol ⊥

• New rule: agents in state w can convert others to w

• Simulate Rc from {x, y,⊥,⊥, . . . ,⊥}

• {w,w, . . . ,w} reachable ⇐⇒ initially ≥ 22c agents in ⊥

• By reversibility and fairness, cannot avoid {w,w, . . . ,w}

Each 5-way transition is converted to
a “gadget” of 2-way transitions

11/13



Threshold state complexity: sublogarithmic bounds

Theorem STACS’18

There exist protocols P0,P1, . . . and numbers c0 < c1 < · · ·
such that Pi computes x ≥ ci and has O(log log ci) states.

Proof sketch

• Rc can be simulated by adding a padding symbol ⊥

• New rule: agents in state w can convert others to w

• Simulate Rc from {x, y,⊥,⊥, . . . ,⊥}

• {w,w, . . . ,w} reachable ⇐⇒ initially ≥ 22c agents in ⊥

• By reversibility and fairness, cannot avoid {w,w, . . . ,w}

11/13



Threshold state complexity: sublogarithmic bounds

Theorem STACS’18

There exist protocols P0,P1, . . . and numbers c0 < c1 < · · ·
such that Pi computes x ≥ ci and has O(log log ci) states.

Proof sketch

• Rc can be simulated by adding a padding symbol ⊥

• New rule: agents in state w can convert others to w

• Simulate Rc from {x, y,⊥,⊥, . . . ,⊥}

• {w,w, . . . ,w} reachable ⇐⇒ initially ≥ 22c agents in ⊥

• By reversibility and fairness, cannot avoid {w,w, . . . ,w}

11/13



Threshold state complexity: sublogarithmic bounds

Theorem STACS’18

There exist protocols P0,P1, . . . and numbers c0 < c1 < · · ·
such that Pi computes x ≥ ci and has O(log log ci) states.

Proof sketch

• Rc can be simulated by adding a padding symbol ⊥

• New rule: agents in state w can convert others to w

• Simulate Rc from {x, y,⊥,⊥, . . . ,⊥}

• {w,w, . . . ,w} reachable ⇐⇒ initially ≥ 22c agents in ⊥

• By reversibility and fairness, cannot avoid {w,w, . . . ,w}

11/13



Threshold state complexity: sublogarithmic bounds

Theorem STACS’18

There exist protocols P0,P1, . . . and numbers c0 < c1 < · · ·
such that Pi computes x ≥ ci and has O(log log ci) states.

Proof sketch

• Rc can be simulated by adding a padding symbol ⊥

• New rule: agents in state w can convert others to w

• Simulate Rc from {x, y,⊥,⊥, . . . ,⊥}

• {w,w, . . . ,w} reachable ⇐⇒ initially ≥ 22c agents in ⊥

• By reversibility and fairness, cannot avoid {w,w, . . . ,w}
11/13



State complexity: beyond threshold

Let A ∈ Zm×k, let c ∈ Zm and let n be the largest absolute
value of numbers occurring in A and c.

Observation
Classical protocol computing Ax+ c > 0 has O(nm) states.

Theorem STACS’18

There exists a protocol that computes Ax+ c > 0 and has

• at most O((m+ k) · logmn) states

• at most O(m · logmn) leaders

12/13



State complexity: beyond threshold

Let A ∈ Zm×k, let c ∈ Zm and let n be the largest absolute
value of numbers occurring in A and c.

Observation
Classical protocol computing Ax+ c > 0 has O(nm) states.

Theorem STACS’18

There exists a protocol that computes Ax+ c > 0 and has

• at most O((m+ k) · logmn) states

• at most O(m · logmn) leaders

12/13



Conclusion

Peregrine:

• Graphical and command-line tool for designing,
simulating and verifiying population protocols

• Can verify silent protocols

Future work:

• Verification of non silent protocols (ongoing with Amrita)

• Convergence speed analysis (ongoing with Javier and Tony)

• Failure ratio analysis

• LTL model checking

13/13



Conclusion

Peregrine:

• Graphical and command-line tool for designing,
simulating and verifiying population protocols

• Can verify silent protocols

Future work:

• Verification of non silent protocols (ongoing with Amrita)

• Convergence speed analysis (ongoing with Javier and Tony)

• Failure ratio analysis

• LTL model checking

13/13



Conclusion

State complexity:

• Complexity of x ≥ c can be decreased from O(c) to
O(log c) and sometimes O(log log c)

• Similar results for systems of linear inequalities

Future work:

• Is O(log log log c) sometimes possible?
(not for the class of 1-aware protocols)

• State complexity of Presburger-definable predicates

• Study of the trade-off between size and speed

13/13



Conclusion

State complexity:

• Complexity of x ≥ c can be decreased from O(c) to
O(log c) and sometimes O(log log c)

• Similar results for systems of linear inequalities

Future work:

• Is O(log log log c) sometimes possible?
(not for the class of 1-aware protocols)

• State complexity of Presburger-definable predicates

• Study of the trade-off between size and speed

13/13



Thank you! Vielen Dank!

13/13


