On the Analysis of Population Protocols

Michael Blondin

Population protocols: distributed computing model for massive networks of passively mobile finite-state agents

Overview

Can model *e.g.* networks of passively mobile sensors and chemical reaction networks

Overview

Population protocols: distributed computing model for massive networks of passively mobile finite-state agents

Can model *e.g.* networks of passively mobile sensors and chemical reaction networks

Protocols compute predicates of the form $\varphi \colon \mathbb{N}^d \to \{0, 1\}$ e.g. if φ is unary, then $\varphi(n)$ is computed by n agents

Overview

Population protocols: distributed computing model for massive networks of passively mobile finite-state agents

This talk:

- Automatic verification and testing
- Study of the minimal size of protocols

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

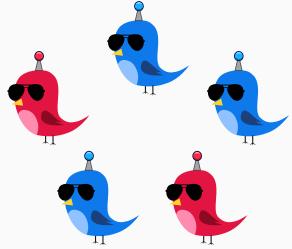
- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

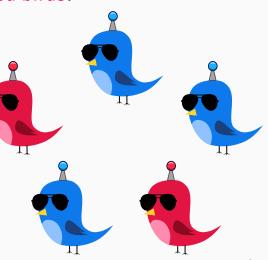
- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

More blue birds than red birds?



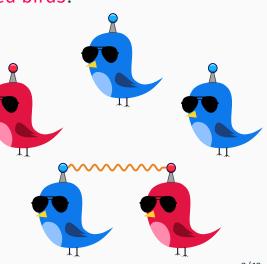
More blue birds than red birds?

- Two large birds of different colors become small
- Large birds convert small birds to their color



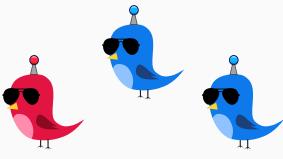
More blue birds than red birds?

- Two large birds of different colors become small
- Large birds convert small birds to their color



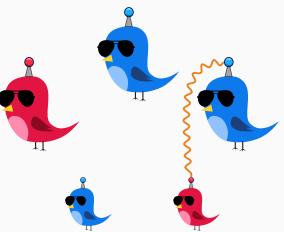
More blue birds than red birds?

- Two large birds of different colors become small
- Large birds convert small birds to their color



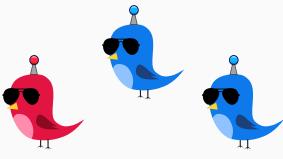
More blue birds than red birds?

- Two large birds of different colors become small
- Large birds convert small birds to their color



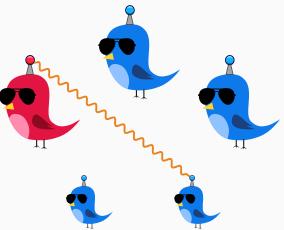
More blue birds than red birds?

- Two large birds of different colors become small
- Large birds convert small birds to their color



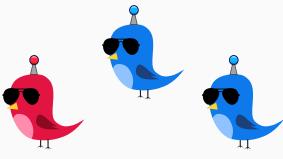
More blue birds than red birds?

- Two large birds of different colors become small
- Large birds convert small birds to their color



More blue birds than red birds?

- Two large birds of different colors become small
- Large birds convert small birds to their color



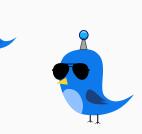
More blue birds than red birds?

Л

- Two large birds of different colors become small
- Large birds convert small birds to their color

Protocol:

 Two large birds of different colors become small



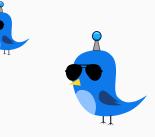
• Large birds convert small birds to their color

- Two large birds of different colors become small
- Large birds convert small birds to their color



Protocol:

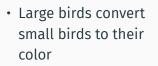
 Two large birds of different colors become small

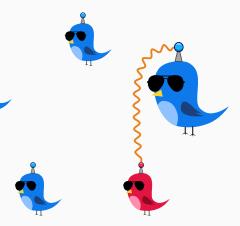


• Large birds convert small birds to their color

Protocol:

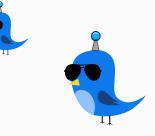
 Two large birds of different colors become small



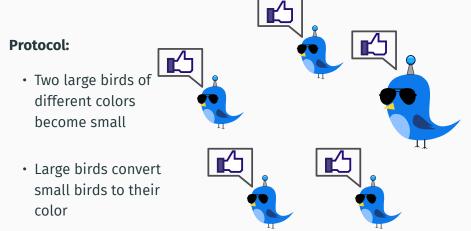


Protocol:

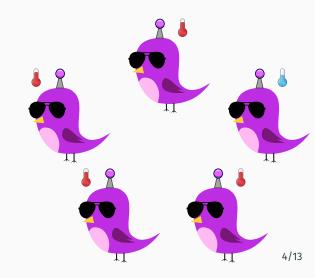
 Two large birds of different colors become small



• Large birds convert small birds to their color

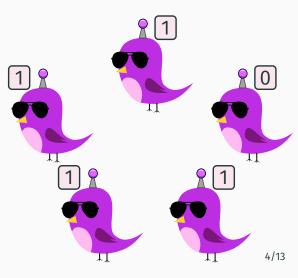


Are there at least 4 sick birds?



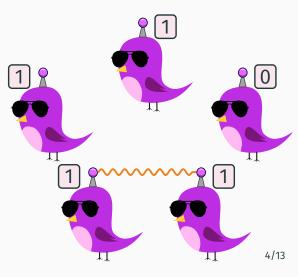
Are there at least 4 sick birds?

- Each bird is in a state of {0, 1, 2, 3, 4}
- Sick birds initially in state 1 and healthy birds in state 0
- $(m,n) \mapsto (m+n,0)$ if m+n < 4
- $(m,n) \mapsto (4,4)$ if $m+n \ge 4$



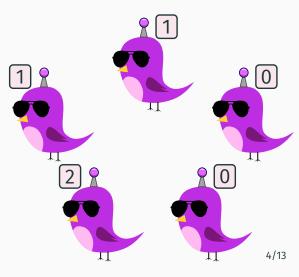
Are there at least 4 sick birds?

- Each bird is in a state of {0, 1, 2, 3, 4}
- Sick birds initially in state 1 and healthy birds in state 0
- $(m,n) \mapsto (m+n,0)$ if m+n < 4
- $(m,n) \mapsto (4,4)$ if $m+n \ge 4$



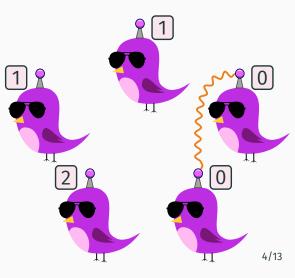
Are there at least 4 sick birds?

- Each bird is in a state of {0, 1, 2, 3, 4}
- Sick birds initially in state 1 and healthy birds in state 0
- $(m,n) \mapsto (m+n,0)$ if m+n < 4
- $(m,n) \mapsto (4,4)$ if $m+n \ge 4$



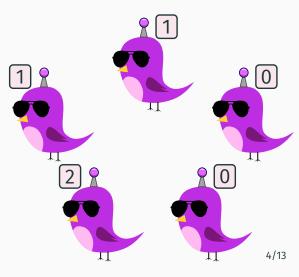
Are there at least 4 sick birds?

- Each bird is in a state of {0, 1, 2, 3, 4}
- Sick birds initially in state 1 and healthy birds in state 0
- $(m,n) \mapsto (m+n,0)$ if m+n < 4
- $(m,n) \mapsto (4,4)$ if $m+n \ge 4$



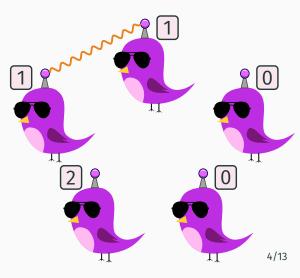
Are there at least 4 sick birds?

- Each bird is in a state of {0, 1, 2, 3, 4}
- Sick birds initially in state 1 and healthy birds in state 0
- $(m,n) \mapsto (m+n,0)$ if m+n < 4
- $(m,n) \mapsto (4,4)$ if $m+n \ge 4$



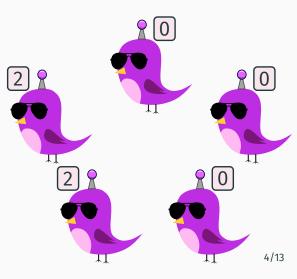
Are there at least 4 sick birds?

- Each bird is in a state of {0, 1, 2, 3, 4}
- Sick birds initially in state 1 and healthy birds in state 0
- $(m,n) \mapsto (m+n,0)$ if m+n < 4
- $(m,n) \mapsto (4,4)$ if $m+n \ge 4$



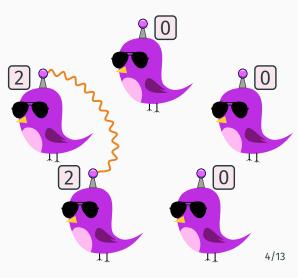
Are there at least 4 sick birds?

- Each bird is in a state of {0, 1, 2, 3, 4}
- Sick birds initially in state 1 and healthy birds in state 0
- $(m,n) \mapsto (m+n,0)$ if m+n < 4
- $(m,n) \mapsto (4,4)$ if $m+n \ge 4$



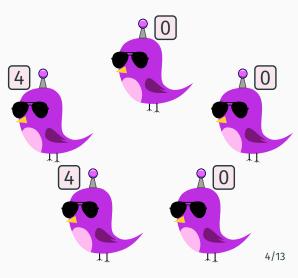
Are there at least 4 sick birds?

- Each bird is in a state of {0, 1, 2, 3, 4}
- Sick birds initially in state 1 and healthy birds in state 0
- $(m,n) \mapsto (m+n,0)$ if m+n < 4
- $(m,n) \mapsto (4,4)$ if $m+n \geq 4$



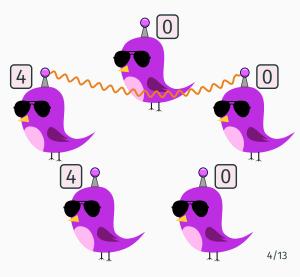
Are there at least 4 sick birds?

- Each bird is in a state of {0, 1, 2, 3, 4}
- Sick birds initially in state 1 and healthy birds in state 0
- $(m,n) \mapsto (m+n,0)$ if m+n < 4
- $(m,n) \mapsto (4,4)$ if $m+n \ge 4$



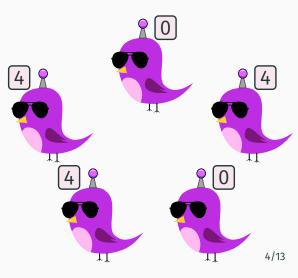
Are there at least 4 sick birds?

- Each bird is in a state of {0, 1, 2, 3, 4}
- Sick birds initially in state 1 and healthy birds in state 0
- $(m,n) \mapsto (m+n,0)$ if m+n < 4
- $(m,n) \mapsto (4,4)$ if $m+n \ge 4$



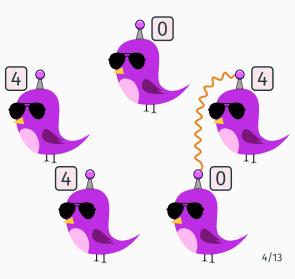
Are there at least 4 sick birds?

- Each bird is in a state of {0, 1, 2, 3, 4}
- Sick birds initially in state 1 and healthy birds in state 0
- $(m,n) \mapsto (m+n,0)$ if m+n < 4
- $(m,n) \mapsto (4,4)$ if $m+n \ge 4$



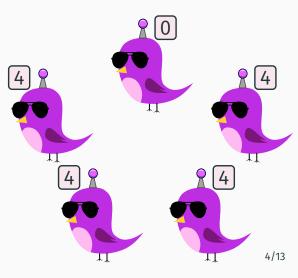
Are there at least 4 sick birds?

- Each bird is in a state of {0, 1, 2, 3, 4}
- Sick birds initially in state 1 and healthy birds in state 0
- $(m,n) \mapsto (m+n,0)$ if m+n < 4
- $(m,n) \mapsto (4,4)$ if $m+n \ge 4$



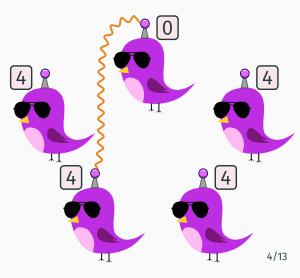
Are there at least 4 sick birds?

- Each bird is in a state of {0, 1, 2, 3, 4}
- Sick birds initially in state 1 and healthy birds in state 0
- $(m,n) \mapsto (m+n,0)$ if m+n < 4
- $(m,n) \mapsto (4,4)$ if $m+n \ge 4$



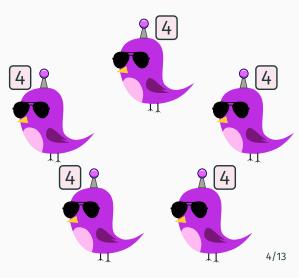
Are there at least 4 sick birds?

- Each bird is in a state of {0, 1, 2, 3, 4}
- Sick birds initially in state 1 and healthy birds in state 0
- $(m,n) \mapsto (m+n,0)$ if m+n < 4
- $(m,n) \mapsto (4,4)$ if $m+n \ge 4$



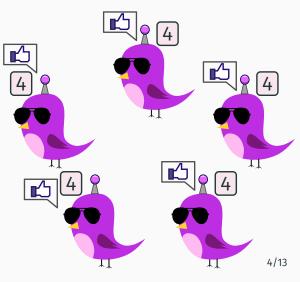
Are there at least 4 sick birds?

- Each bird is in a state of {0, 1, 2, 3, 4}
- Sick birds initially in state 1 and healthy birds in state 0
- $(m,n) \mapsto (m+n,0)$ if m+n < 4
- $(m,n) \mapsto (4,4)$ if $m+n \ge 4$



Are there at least 4 sick birds?

- Each bird is in a state of {0, 1, 2, 3, 4}
- Sick birds initially in state 1 and healthy birds in state 0
- $(m,n) \mapsto (m+n,0)$ if m+n < 4
- $(m,n) \mapsto (4,4)$ if $m+n \ge 4$



Demonstration

- States: finite set Q
- Opinions: $O: Q \rightarrow \{0, 1\}$

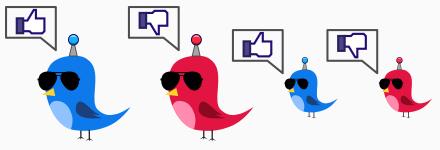
 $I \subset Q$

- Initial states:
- Transitions: $T \subseteq Q^2 \times Q^2$

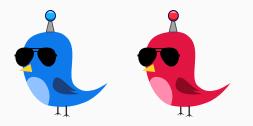
- *States*: finite set *Q*
- Opinions:
- Initial states:

 $O: Q \rightarrow \{0, 1\}$

- $I \subseteq Q$
- Transitions: $T \subseteq Q^2 \times Q^2$



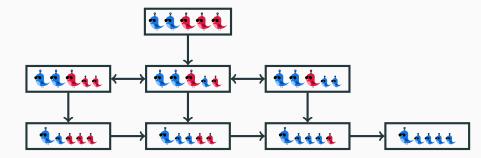
- *States*: finite set *Q*
- Opinions: $O: Q \rightarrow \{0, 1\}$
- Initial states:
- $I \subset Q$
- Transitions: $T \subseteq Q^2 \times Q^2$



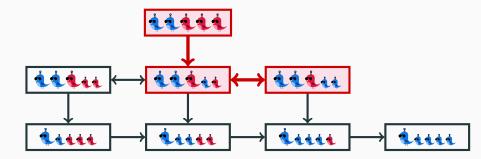
- *States*: finite set *Q*
- Opinions: $O: Q \rightarrow \{0, 1\}$
- Initial states:
- Transitions:
- $T \subseteq Q^2 \times Q^2$

 $I \subset Q$

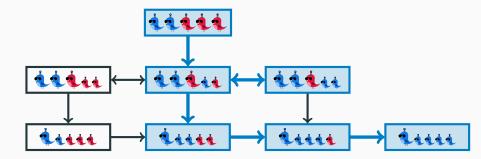
Reachability graph:



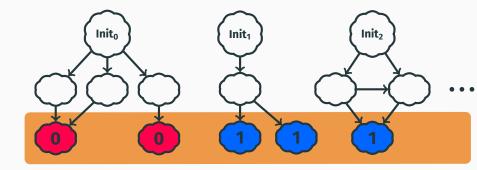
Executions must be fair:



Executions must be fair:



A protocol computes a predicate $f: \mathbb{N}^{\prime} \rightarrow \{0, 1\}$ if fair executions reach common consensus



A protocol computes a predicate $f: \mathbb{N}' \to \{0, 1\}$ if fair executions reach common **consensus**

Expressive power

Angluin, Aspnes, Eisenstat PODC'06

Population protocols compute precisely predicates definable in Presburger arithmetic, *i.e.* $FO(\mathbb{N}, +, <)$

Analysis of protocols

Protocols can become complex, even for $B \ge R$:

Fast and Exact Majority in Population Protocols

Dan Alistarh Rati Gelashvili^{*} Microsoft Research MIT

Milan Vojnović Microsoft Research

 $\label{eq:constant} \mathbf{1} \ \ weight(x) = \left\{ \begin{array}{ll} |x| & \text{ if } x \in StrongStates \text{ or } x \in WeakStates; \\ 1 & \text{ if } x \in IntermediateStates. \end{array} \right.$ **2** $sgn(x) = \begin{cases} 1 & \text{if } x \in \{+0, 1_d, \dots, 1_1, 3, 5, \dots, m\}; \\ -1 & \text{otherwise.} \end{cases}$ 3 $value(x) = san(x) \cdot weight(x)$ /* Functions for rounding state interactions */ 4 $\phi(x) = -1_1$ if $x = -1; 1_1$ if x = 1; x, otherwise 5 $R_1(k) = \phi(k \text{ if } k \text{ odd integer}, k-1 \text{ if } k \text{ even})$ 6 R_↑(k) = φ(k if k odd integer, k+1 if k even) $\begin{array}{l} \textbf{7} \hspace{0.5cm} Shift-to-Zero(x) = \left\{ \begin{array}{ll} -1_{j+1} & \text{if } x = -1_j \text{ for some index } j < d \\ 1_{j+1} & \text{if } x = -1_j \text{ for some index } j < d \\ x & \text{otherwise} \end{array} \right. \\ \textbf{8} \hspace{0.5cm} Sign-to-Zero(x) = \left\{ \begin{array}{ll} -0 & \text{if } sgn(x) > 0 \\ 0 & \text{otherwise.} \end{array} \right. \end{array}$ 9 procedure update $\langle x, y \rangle$ if (weight(x) > 0 and weight(y) > 1) or (weight(y) > 0 and weight(x) > 1) then 10 $x' \leftarrow R_{\downarrow}\left(\frac{value(x)+value(y)}{2}\right)$ and $y' \leftarrow R_{\uparrow}\left(\frac{value(x)+value(y)}{2}\right)$ 11 12 else if $weight(x) \cdot weight(y) = 0$ and value(x) + value(y) > 0 then 13 if $weight(x) \neq 0$ then $x' \leftarrow Shift-to-Zero(x)$ and $y' \leftarrow Sign-to-Zero(x)$ 14 else $y' \leftarrow Shift-to-Zero(y)$ and $x' \leftarrow Sign-to-Zero(y)$ else if $(x \in \{-1_d, +1_d\}$ and weight(y) = 1 and $sgn(x) \neq sgn(y)$ or 15 16 $(y \in \{-1_d, +1_d\}$ and weight(x) = 1 and $sgn(y) \neq sgn(x)$ then $x' \leftarrow -0$ and $y' \leftarrow +0$ 17 18 else 19 $x' \leftarrow Shift-to-Zero(x)$ and $y' \leftarrow Shift-to-Zero(y)$

Analysis of protocols

Protocols can become complex, even for $B \ge R$:

Fast and Exact Majority in Population Protocols

Dan Alistarh Microsoft Research Rati Gelashvili

Milan Voinović Microsoft Research

 $\mathbf{1} \ \ weight(x) = \left\{ \begin{array}{ll} |x| & \text{ if } x \in StrongStates \text{ or } x \in WeakStates; \\ 1 & \text{ if } x \in IntermediateStates. \end{array} \right.$ How to verify **2** $sgn(x) = \begin{cases} 1 & \text{if } x \in \{+0, 1_d, \dots, 1_1, 3, 5, \dots, m\}; \\ -1 & \text{otherwise.} \end{cases}$ correctness 3 $value(x) = san(x) \cdot weight(x)$ /* Functions for rounding state interactions */ 4 $\phi(x) = -1_1$ if $x = -1; 1_1$ if x = 1; x, otherwise 5 $R_1(k) = \phi(k \text{ if } k \text{ odd integer}, k-1 \text{ if } k \text{ even})$ 6 $R_{\uparrow}(k) = \phi(k \text{ if } k \text{ odd integer}, k+1 \text{ if } k \text{ even})$ $\begin{array}{l} \textbf{7} \hspace{0.5cm} Shift-to-Zero(x) = \left\{ \begin{array}{ll} -1_{j+1} & \text{if } x = -1_j \text{ for some index } j < d \\ 1_{j+1} & \text{if } x = -1_j \text{ for some index } j < d \\ x & \text{otherwise} \end{array} \right. \\ \textbf{8} \hspace{0.5cm} Sign-to-Zero(x) = \left\{ \begin{array}{ll} -0 & \text{if } sgn(x) > 0 \\ 0 & \text{otherwise.} \end{array} \right. \end{array}$ automatically? 9 procedure update $\langle x, y \rangle$ if (weight(x) > 0 and weight(y) > 1) or (weight(y) > 0 and weight(x) > 1) then 10 $x' \leftarrow R_{\downarrow}\left(\frac{value(x)+value(y)}{2}\right)$ and $y' \leftarrow R_{\uparrow}\left(\frac{value(x)+value(y)}{2}\right)$ 11 12 else if $weight(x) \cdot weight(y) = 0$ and value(x) + value(y) > 0 then 13 if $weight(x) \neq 0$ then $x' \leftarrow Shift-to-Zero(x)$ and $y' \leftarrow Sign-to-Zero(x)$ 14 else $y' \leftarrow Shift-to-Zero(y)$ and $x' \leftarrow Sign-to-Zero(y)$ else if $(x \in \{-1_d, +1_d\}$ and weight(y) = 1 and $sgn(x) \neq sgn(y)$) or 15 16 $(y \in \{-1_d, +1_d\}$ and weight(x) = 1 and $sgn(y) \neq sgn(x)$) then $x' \leftarrow -0$ and $y' \leftarrow +0$ 17 18 else 19 $x' \leftarrow Shift-to-Zero(x)$ and $y' \leftarrow Shift-to-Zero(y)$

Number of states corresponds to amount of memory, relevant to keep it minimal for embedded systems

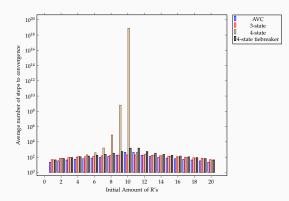
- B ≥ R requires at least 4 states (Mertzios et al. ICALP'14)
- X ≥ C requires at most c + 1 states

Number of states corresponds to amount of memory, relevant to keep it minimal for embedded systems

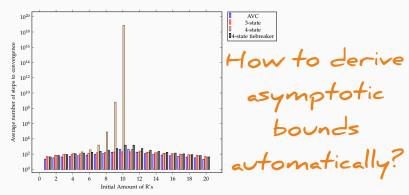
- **B 2 R** requires at least 4 states (Mertzios *et al.* ICALP'14)
- X ≥ C requires at most c + 1 states

What is the state complexity of common predicates?

Convergence speed may vary wildly, challenging to establish bounds



Convergence speed may vary wildly, challenging to establish bounds



Analysis of protocols

1. Automatic verification of correctness

- PODC'17 with Javier, Stefan and Philipp
- Submission to CAV'18 with Javier and Stefan
- Interns: Philip Offtermatt and Amrita Suresh

2. State complexity of common predicates

• STACS'18 with Javier and Stefan

3. Automatic analysis of convergence speed

Ongoing work with Javier and Antonín Kučera

Analysis of protocols

1. Automatic verification of correctness

- PODC'17 with Javier, Stefan and Philipp
- Submission to CAV'18 with Javier and Stefan

2. State complexity of common predicates

• STACS'18 with Javier and Stefan

Existing verification tools:

- PAT: model checker with global fairness (Sun, Liu, Song Dong and Pang CAV'09)
- bp-ver: graph exploration

(Chatzigiannakis, Michail and Spirakis SSS'10)

• Conversion to counter machines + PRISM/Spin (Clément, Delporte-Gallet, Fauconnier and Sighireanu ICDCS'11)

Existing verification tools:

- PAT: model checker with global fairness (Sun, Liu, Song Dong and Pang CAV'09)
- bp-ver: graph exploration

(Chatzigiannakis, Michail and Spirakis SSS'10)

• Conversion to counter machines + PRISM/Spin (Clément, Delporte-Gallet, Fauconnier and Sighireanu ICDCS'11)

Only for populations of fixed size!

Sometimes possible to verify all sizes:

• Verification with the interactive theorem prover Coq (Deng and Monin TASE'09)

Sometimes possible to verify all sizes:

• Verification with the interactive theorem prover Coq (Deng and Monin TASE'09)

Not automatic!

Sometimes possible to verify all sizes:

• Verification with the interactive theorem prover Coq (Deng and Monin TASE'09)

Challenge: verifying automatically all sizes

Testing whether a protocol computes φ amounts to testing:

 $\neg \exists C, D: C \xrightarrow{*} D \land$ C is initial \land D is in a BSCC \land opinion(D) $\neq \varphi(C)$ **PODC'17**

 $\neg \exists C, D: C \xrightarrow{*} D \land$ C is initial \land D is in a BSCC \land opinion(D) $\neq \varphi(C)$

As difficult as verification

 $\neg \exists C, D: C \xrightarrow{*} D \land$ C is initial \land D is in a BSCC \land opinion(D) $\neq \varphi(C)$

Relaxed with Presburger-definable overapproximation!

$$\neg \exists C, D: C \xrightarrow{*} D \land$$

C is initial \land
D is in a BSCC \land
opinion(D) $\neq \varphi(C)$

 $\neg \exists C, D: C \xrightarrow{*} D \land$ C is initial \land D is terminal \land opinion(D) $\neq \varphi(C)$

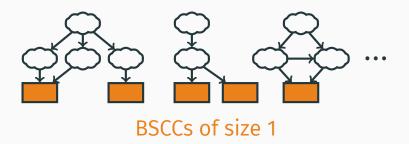
BSCCs are of size 1 for most protocols!

 $\neg \exists C, D: C \xrightarrow{*} D \land$ C is initial \land D is terminal \land opinion(D) $\neq \varphi(C)$

Testable with an SMT solver

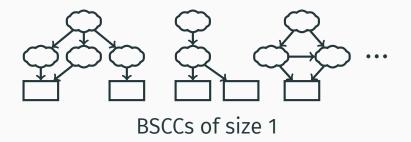
Testing whether a protocol computes φ amounts to testing: $\neg \exists C, D: C \xrightarrow{*} D \land$ C is initial \wedge D is terminal \wedge opinion(D) $\neq \varphi(C)$ But how to know whether all BSCCs are of size 1?

Protocol is silent if fair executions reach terminal configurations



Protocol is silent if fair executions reach terminal configurations

- Testing silentness is as hard as verification of correctness
- But most protocols satisfy a common design

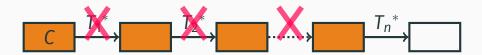


- all executions restricted to T_i terminate
- if $T_1 \cup \cdots \cup T_{i-1}$ disabled in C and C $\xrightarrow{T_i^*} D$, then $T_1 \cup \cdots \cup T_{i-1}$ also disabled in D

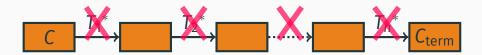
- all executions restricted to T_i terminate
- if $T_1 \cup \cdots \cup T_{i-1}$ disabled in C and C $\xrightarrow{T_i^*} D$, then $T_1 \cup \cdots \cup T_{i-1}$ also disabled in D

- all executions restricted to T_i terminate
- if $T_1 \cup \cdots \cup T_{i-1}$ disabled in C and C $\xrightarrow{T_i^*} D$, then $T_1 \cup \cdots \cup T_{i-1}$ also disabled in D

- all executions restricted to T_i terminate
- if $T_1 \cup \cdots \cup T_{i-1}$ disabled in C and C $\xrightarrow{T_i^*} D$, then $T_1 \cup \cdots \cup T_{i-1}$ also disabled in D



- all executions restricted to T_i terminate
- if $T_1 \cup \cdots \cup T_{i-1}$ disabled in C and C $\xrightarrow{T_i^*} D$, then $T_1 \cup \cdots \cup T_{i-1}$ also disabled in D



```
T_{1}
B R \rightarrow b r
R b \rightarrow R r
B r \rightarrow B b
b r \rightarrow b b
```

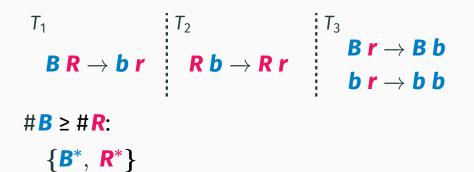
 T_{1} $B R \rightarrow b r$ $R b \rightarrow R r$ $B r \rightarrow B b$ $b r \rightarrow b b$

Bad partition: not all executions over T_1 terminate

$$\begin{array}{c}
\mathbf{B} \ \mathbf{R} \to \mathbf{b} \ \mathbf{r} \\
\mathbf{R} \ \mathbf{b} \to \mathbf{R} \ \mathbf{r} \\
\mathbf{B} \ \mathbf{r} \to \mathbf{B} \ \mathbf{b} \\
\mathbf{b} \ \mathbf{r} \to \mathbf{b} \ \mathbf{b}
\end{array}$$

Bad partition: not all executions over T_1 terminate

$$\{\mathbf{B}, \mathbf{B}, \mathbf{R}, \mathbf{R}\} \rightarrow \{\mathbf{B}, \mathbf{b}, \mathbf{r}, \mathbf{R}\} \rightarrow \{\mathbf{B}, \mathbf{b}, \mathbf{b}, \mathbf{R}\} \rightarrow$$
$$\{\mathbf{B}, \mathbf{b}, \mathbf{r}, \mathbf{R}\} \rightarrow \{\mathbf{B}, \mathbf{b}, \mathbf{b}, \mathbf{R}\} \rightarrow \cdots$$



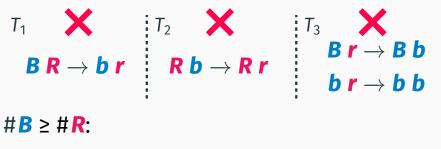
PODC'17

 $#B \ge #R:$ $\{B^*, R^*\} \xrightarrow{*} \{B^*, b^*, r^*\}$

PODC'17

 $#B \ge #R:$ $\{B^*, R^*\} \xrightarrow{*} \{B^*, b^*, r^*\}$

PODC'17



 $\{\mathbf{B}^*, \ \mathbf{R}^*\} \xrightarrow{*} \{\mathbf{B}^*, \ \mathbf{b}^*, \ \mathbf{r}^*\} \xrightarrow{*} \{\mathbf{B}^*, \ \mathbf{b}^*\}$

PODC'17



 $#B \ge #R:$ $\{B^*, R^*\} \xrightarrow{*} \{B^*, b^*, r^*\} \xrightarrow{*} \{B^*, b^*\}$

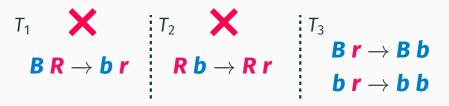
#**R** > #**B**:

PODC'17

 $#B \ge #R:$ $\{B^*, R^*\} \xrightarrow{*} \{B^*, b^*, r^*\} \xrightarrow{*} \{B^*, b^*\}$

$\mathbf{R} >$ # \mathbf{B} : { \mathbf{R}^+ , \mathbf{B}^* } \longrightarrow { \mathbf{R}^+ , \mathbf{r}^* , \mathbf{b}^* }

PODC'17



 $#B \ge #R:$ $\{B^*, R^*\} \xrightarrow{*} \{B^*, b^*, r^*\} \xrightarrow{*} \{B^*, b^*\}$

$\mathbf{R} >$ # \mathbf{B} : { \mathbf{R}^+ , \mathbf{B}^* } $\xrightarrow{*}$ { \mathbf{R}^+ , \mathbf{r}^* , \mathbf{b}^* } $\xrightarrow{*}$ { \mathbf{R}^+ , \mathbf{r}^* }

PODC'17

 $#B \ge #R:$ $\{B^*, R^*\} \xrightarrow{*} \{B^*, b^*, r^*\} \xrightarrow{*} \{B^*, b^*\}$

#**R** > #**B**: {**R**⁺, **B**^{*}} → {**R**⁺, **r**^{*}, **b**^{*}} → {**R**⁺, **r**^{*}}

Theorem

PODC'17

PODC'17

Deciding whether a protocol is strongly silent $\in \mathsf{NP}$

Proof sketch

Guess partition $T = T_1 \cup T_2 \cup \cdots \cup T_n$ and test whether it is correct by verifying

- Petri net structural termination
- Additional simple structural properties

Theorem

PODC'17

PODC'17

Strongly silent protocols as expressive as general protocols

Proof sketch

Protocols for

$$a_1x_1+\ldots+a_nx_n\geq b$$

 $a_1x_1+\ldots+a_nx_n\equiv b \pmod{m}$

have layered termination partitions

• Conjunction and negation preserve layered termination

Peregrine: »= Haskell + Z3 + JavaScript (front end)

gitlab.lrz.de/i7/peregrine

Protocol	Predicate	# states	# trans.	Time (secs.)
Majority [a]	$x \ge y$	4	4	0.1
Broadcast [b]	$x_1 \lor \cdots \lor x_n$	2	1	0.1
Linear ineq. [c]	$\sum a_i x_i \ge 9$	75	2148	2376
Modulo [c]	$\sum a_i x_i = 0 \mod 70$	72	2555	3177
Threshold [d]	$x \ge 50$	51	1275	182
Threshold [b]	<i>x</i> ≥ 325	326	649	3471
Threshold [e]	$x \ge 10^{7}$	37	155	19

[a] Draief et al. 2012 [c] Angluin et al. 2006 [b] Clément et al. 2011

[d] Chatzigiannakis et al. 2010

[e] Offtermatt 2017 (bachelor thesis)

Demonstration

- **Given:** Presburger-definable predicate φ
- Question:Smallest number of statesnecessary to compute φ ?

- **Given:** Presburger-definable predicate φ
- Question:Smallest number of statesnecessary to compute φ ?

Difficult problem... What about basic predicates?

Given: $c \in \mathbb{N}$

Question: Smallest number of states necessary to compute $x \ge c$?

Given: $c \in \mathbb{N}$

Upper bound: c + 1

Question: Smallest number of states **Lower bound:** 2 necessary to compute $x \ge c$?

Given: $c \in \mathbb{N}$ **Upper bound:** c + 1**Question:** Smallest number of states **Lower bound:** 2 necessary to compute x > c? Theorem STACS'18 Computable with $O(\log c)$ states, if $c = 2^n$. **Proof sketch** $(1,1) \qquad \mapsto \quad (2,0)$ $(2,2) \mapsto (4,0)$: : $(2^{n-1}, 2^{n-1}) \mapsto (2^n, 0)$ $(2^n,m) \mapsto (2^n,2^n)$

Given: $c \in \mathbb{N}$

Upper bound: c + 1

Question: Smallest number of states **Lower bound:** 2 necessary to compute $x \ge c$?

Theorem

Computable with $O(\log c)$ states, if $c = 2^{\prime\prime}$.

Proof sketch

$$\begin{array}{ccccc} (1,1) & \mapsto & (2,0) \\ (2,2) & \mapsto & (4,0) \\ \vdots & \vdots & & \vdots \\ (2^{n-1},2^{n-1}) & \mapsto & (2^n,0) \\ (2^n,m) & \mapsto & (2^n,2^n) \end{array}$$

STACS'18

Given: $c \in \mathbb{N}$

Upper bound: $O(\log c)$

Question: Smallest number of states **Lower bound:** 2 necessary to compute $x \ge c$?

Given: $c \in \mathbb{N}$ Upper bound: $O(\log c)$ Question:Smallest number of states
necessary to compute $x \ge c$?Lower bound:2

Theorem

STACS'18

Let P_0, P_1, \ldots be protocols such that P_c computes $x \ge c$. There are infinitely many c s.t. P_c has $\ge (\log c)^{1/4}$ states.

Proof sketch

Counting argument on # unary predicates vs. # protocols.

Given: $c \in \mathbb{N}$

Upper bound: $O(\log c)$ **Lower bound:** $O(\log^{1/4} c)$ **Question:** Smallest number of states necessary to compute $x \ge c$? for inf. many c

Given: $c \in \mathbb{N}$ Upper bound: $O(\log c)$ Question:Smallest number of states
necessary to compute $x \ge c$?Lower bound: $O(\log^{1/4} c)$
for inf. many c

Given: $c \in \mathbb{N}$ Upper bound: $O(\log c)$ Question:Smallest number of states
necessary to compute $x \ge c$?Lower bound: $O(\log^{1/4} c)$
for inf. many c

STACS'18

There exist protocols P_0, P_1, \ldots and numbers $c_0 < c_1 < \cdots$ such that P_i computes $x \ge c_i$ and has $O(\log \log c_i)$ states.

STACS'18

There exist protocols P_0, P_1, \ldots and numbers $c_0 < c_1 < \cdots$ such that P_i computes $x \ge c_i$ and has $O(\log \log c_i)$ states.

Lemma

Mayr and Meyer '82

For every $c \in \mathbb{N}$, there exists a reversible multiset rewriting system \mathcal{R}_c over alphabet $\Sigma \supseteq \{x, y, z, w\}$ of size O(c) with rewriting rules $T \subseteq \Sigma^{\leq 5} \times \Sigma^{\leq 5}$ such that

$$\{x,y\} \xrightarrow{*} M \text{ and } w \in M \iff M = \{y, z^{2^{2^{c}}}, w\}$$

Theorem

STACS'18

There exist protocols P_0, P_1, \ldots and numbers $c_0 < c_1 < \cdots$ such that P_i computes $x \ge c_i$ and has $O(\log \log c_i)$ states.

Proof sketch

+ \mathcal{R}_c can be simulated by adding a padding symbol \perp

STACS'18

There exist protocols P_0, P_1, \ldots and numbers $c_0 < c_1 < \cdots$ such that P_i computes $x \ge c_i$ and has $O(\log \log c_i)$ states.

Proof sketch

+ \mathcal{R}_c can be simulated by adding a padding symbol \perp

Rewriting system \mathcal{R}_c 5-way population protocol $(e,f,g) \mapsto (h,i)$ $(e,f,g,\bot,\bot) \mapsto (h,i,\bot,\bot,\bot)$ $(e,f) \mapsto (g,h,i)$ $(e,f,\bot,\bot,\bot) \mapsto (g,h,i,\bot,\bot)$

STACS'18

There exist protocols P_0, P_1, \ldots and numbers $c_0 < c_1 < \cdots$ such that P_i computes $x \ge c_i$ and has $O(\log \log c_i)$ states.

Proof sketch

+ \mathcal{R}_c can be simulated by adding a padding symbol \perp

Each 5-way transition is converted to a "gadget" of 2-way transitions

STACS'18

There exist protocols P_0, P_1, \ldots and numbers $c_0 < c_1 < \cdots$ such that P_i computes $x \ge c_i$ and has $O(\log \log c_i)$ states.

- + \mathcal{R}_c can be simulated by adding a padding symbol \perp
- New rule: agents in state w can convert others to w

STACS'18

There exist protocols P_0, P_1, \ldots and numbers $c_0 < c_1 < \cdots$ such that P_i computes $x \ge c_i$ and has $O(\log \log c_i)$ states.

- + \mathcal{R}_c can be simulated by adding a padding symbol \perp
- New rule: agents in state w can convert others to w
- Simulate \mathcal{R}_c from $\{x, y, \bot, \bot, \ldots, \bot\}$

STACS'18

There exist protocols P_0, P_1, \ldots and numbers $c_0 < c_1 < \cdots$ such that P_i computes $x \ge c_i$ and has $O(\log \log c_i)$ states.

- + \mathcal{R}_c can be simulated by adding a padding symbol \perp
- New rule: agents in state w can convert others to w
- Simulate \mathcal{R}_c from $\{x, y, \bot, \bot, \bot, \bot\}$
- $\{w, w, \dots, w\}$ reachable \iff initially $\ge 2^{2^c}$ agents in \bot

STACS'18

There exist protocols P_0, P_1, \ldots and numbers $c_0 < c_1 < \cdots$ such that P_i computes $x \ge c_i$ and has $O(\log \log c_i)$ states.

- + \mathcal{R}_c can be simulated by adding a padding symbol \perp
- New rule: agents in state w can convert others to w
- Simulate \mathcal{R}_c from $\{x, y, \bot, \bot, \bot, \bot\}$
- $\{w, w, \dots, w\}$ reachable \iff initially $\ge 2^{2^c}$ agents in \bot
- By reversibility and fairness, cannot avoid {*w*, *w*, ..., *w*}

Let $A \in \mathbb{Z}^{m \times k}$, let $\boldsymbol{c} \in \mathbb{Z}^m$ and let *n* be the largest absolute value of numbers occurring in A and \boldsymbol{c} .

Observation

Classical protocol computing $A\mathbf{x} + \mathbf{c} > \mathbf{0}$ has $O(n^m)$ states.

Let $A \in \mathbb{Z}^{m \times k}$, let $\mathbf{c} \in \mathbb{Z}^m$ and let n be the largest absolute value of numbers occurring in A and \mathbf{c} .

Observation

Classical protocol computing $A\mathbf{x} + \mathbf{c} > \mathbf{0}$ has $O(n^m)$ states.

TheoremSTACS'18There exists a protocol that computes $A\mathbf{x} + \mathbf{c} > \mathbf{0}$ and has

- at most $O((m+k) \cdot \log mn)$ states
- at most $O(m \cdot \log mn)$ leaders

Conclusion

Peregrine:

- Graphical and command-line tool for designing, simulating and verifiying population protocols
- Can verify silent protocols

Future work:

- Verification of non silent protocols (ongoing with Amrita)
- Convergence speed analysis (ongoing with Javier and Tony)
- Failure ratio analysis
- LTL model checking

Conclusion

Peregrine:

- Graphical and command-line tool for designing, simulating and verifiying population protocols
- Can verify silent protocols

Future work:

- Verification of non silent protocols (ongoing with Amrita)
- Convergence speed analysis (ongoing with Javier and Tony)
- Failure ratio analysis
- LTL model checking

State complexity:

- Complexity of $x \ge c$ can be decreased from O(c) to $O(\log c)$ and sometimes $O(\log \log c)$
- Similar results for systems of linear inequalities

Future work:

• Is $O(\log \log \log c)$ sometimes possible?

(not for the class of 1-aware protocols)

- State complexity of Presburger-definable predicates
- Study of the trade-off between size and speed

Conclusion

State complexity:

- Complexity of $x \ge c$ can be decreased from O(c) to $O(\log c)$ and sometimes $O(\log \log c)$
- Similar results for systems of linear inequalities

Future work:

• Is $O(\log \log \log c)$ sometimes possible?

(not for the class of 1-aware protocols)

- State complexity of Presburger-definable predicates
- Study of the trade-off between size and speed

Thank you! Vielen Dank!