On the Analysis of Population Protocols

Michael Blondin

Technical
University
of Munich

7111

Overview

Population protocols: distributed computing model for massive networks of passively mobile finite-state agents

Overview

Can model e.g. networks of passively mobile sensors and chemical reaction networks

Overview

Can model e.g. networks of passively mobile sensors and chemical reaction networks

Protocols compute predicates of the form $\varphi: \mathbb{N}^{d} \rightarrow\{0,1\}$
e.g. if φ is unary, then $\varphi(n)$ is computed by n agents

Overview

This talk:

- Automatic verification and testing
- Study of the minimal size of protocols

Population protocols

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion
- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

Example: majority protocol

More blue birds than red birds?

Example: majority protocol

More blue birds than red birds?

Protocol:

- Two large birds of different colors become small

- Large birds convert small birds to their color

Example: majority protocol

More blue birds than red birds?

Protocol:

- Two large birds of different colors become small

Example: majority protocol

More blue birds than red birds?

Protocol:

- Two large birds of different colors become small

- Large birds convert small birds to their color

Example: majority protocol

More blue birds than red birds?

Protocol:

- Two large birds of different colors become small

- Large birds convert small birds to their color

Example: majority protocol

More blue birds than red birds?

Protocol:

- Two large birds of different colors become small

- Large birds convert small birds to their color

Example: majority protocol

More blue birds than red birds?

Protocol:

- Two large birds of different colors become small

- Large birds convert small birds to their color

Example: majority protocol

More blue birds than red birds?

Protocol:

- Two large birds of different colors become small

- Large birds convert small birds to their color

Example: majority protocol

More blue birds than red birds?

Protocol:

- Two large birds of different colors become small

- Large birds convert small birds to their color

Example: majority protocol

More blue birds than red birds?

Protocol:

- Two large birds of different colors become small

- Large birds convert small birds to their color

Example: majority protocol

More blue birds than red birds?

Protocol:

- Two large birds of different colors become small

- Large birds convert small birds to their color

Example: majority protocol

More blue birds than red birds?

Protocol:

- Two large birds of different colors become small

- Large birds convert small birds to their color

Example: majority protocol

More blue birds than red birds?

Protocol:

- Two large birds of different colors become small

- Large birds convert small birds to their color

Example: majority protocol

More blue birds than red birds?

Protocol:

- Two large birds of different colors become small

- Large birds convert small birds to their color

Example: majority protocol

More blue birds than red birds?

Protocol:

- Two large birds of different colors become small
- Large birds convert small birds to their color

Example: threshold protocol

Are there at least 4 sick birds?

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each bird is in a state of $\{0,1,2,3,4\}$
- Sick birds initially in state 1 and healthy birds in state 0
- $(m, n) \mapsto(m+n, 0)$

$$
\text { if } m+n<4
$$

- $(m, n) \mapsto(4,4)$

$$
\text { if } m+n \geq 4
$$

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each bird is in a state of $\{0,1,2,3,4\}$
- Sick birds initially in state 1 and healthy birds in state 0
- $(m, n) \mapsto(m+n, 0)$

$$
\text { if } m+n<4
$$

- $(m, n) \mapsto(4,4)$

$$
\text { if } m+n \geq 4
$$

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each bird is in a state of $\{0,1,2,3,4\}$
- Sick birds initially in state 1 and healthy birds in state 0
- $(m, n) \mapsto(m+n, 0)$

$$
\text { if } m+n<4
$$

- $(m, n) \mapsto(4,4)$

$$
\text { if } m+n \geq 4
$$

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each bird is in a state of $\{0,1,2,3,4\}$
- Sick birds initially in state 1 and healthy birds in state 0
- $(m, n) \mapsto(m+n, 0)$

$$
\text { if } m+n<4
$$

- $(m, n) \mapsto(4,4)$

$$
\text { if } m+n \geq 4
$$

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each bird is in a state of $\{0,1,2,3,4\}$
- Sick birds initially in state 1 and healthy birds in state 0
- $(m, n) \mapsto(m+n, 0)$

$$
\text { if } m+n<4
$$

- $(m, n) \mapsto(4,4)$

$$
\text { if } m+n \geq 4
$$

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each bird is in a state of $\{0,1,2,3,4\}$
- Sick birds initially in state 1 and healthy birds in state 0
- $(m, n) \mapsto(m+n, 0)$

$$
\text { if } m+n<4
$$

- $(m, n) \mapsto(4,4)$

$$
\text { if } m+n \geq 4
$$

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each bird is in a state of $\{0,1,2,3,4\}$
- Sick birds initially in state 1 and healthy birds in state 0
- $(m, n) \mapsto(m+n, 0)$

$$
\text { if } m+n<4
$$

- $(m, n) \mapsto(4,4)$

$$
\text { if } m+n \geq 4
$$

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each bird is in a state of $\{0,1,2,3,4\}$
- Sick birds initially in state 1 and healthy birds in state 0
- $(m, n) \mapsto(m+n, 0)$

$$
\text { if } m+n<4
$$

- $(m, n) \mapsto(4,4)$

$$
\text { if } m+n \geq 4
$$

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each bird is in a state of $\{0,1,2,3,4\}$
- Sick birds initially in state 1 and healthy birds in state 0
- $(m, n) \mapsto(m+n, 0)$

$$
\text { if } m+n<4
$$

- $(m, n) \mapsto(4,4)$

$$
\text { if } m+n \geq 4
$$

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each bird is in a state of $\{0,1,2,3,4\}$
- Sick birds initially in state 1 and healthy birds in state 0
- $(m, n) \mapsto(m+n, 0)$

$$
\text { if } m+n<4
$$

- $(m, n) \mapsto(4,4)$

$$
\text { if } m+n \geq 4
$$

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each bird is in a state of $\{0,1,2,3,4\}$
- Sick birds initially in state 1 and healthy birds in state 0
- $(m, n) \mapsto(m+n, 0)$

$$
\text { if } m+n<4
$$

- $(m, n) \mapsto(4,4)$

$$
\text { if } m+n \geq 4
$$

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each bird is in a state of $\{0,1,2,3,4\}$
- Sick birds initially in state 1 and healthy birds in state 0
- $(m, n) \mapsto(m+n, 0)$

$$
\text { if } m+n<4
$$

- $(m, n) \mapsto(4,4)$

$$
\text { if } m+n \geq 4
$$

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each bird is in a state of $\{0,1,2,3,4\}$
- Sick birds initially in state 1 and healthy birds in state 0
- $(m, n) \mapsto(m+n, 0)$

$$
\text { if } m+n<4
$$

- $(m, n) \mapsto(4,4)$

$$
\text { if } m+n \geq 4
$$

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each bird is in a state of $\{0,1,2,3,4\}$
- Sick birds initially in state 1 and healthy birds in state 0
- $(m, n) \mapsto(m+n, 0)$

$$
\text { if } m+n<4
$$

- $(m, n) \mapsto(4,4)$

$$
\text { if } m+n \geq 4
$$

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each bird is in a state of $\{0,1,2,3,4\}$
- Sick birds initially in state 1 and healthy birds in state 0
- $(m, n) \mapsto(m+n, 0)$

$$
\text { if } m+n<4
$$

- $(m, n) \mapsto(4,4)$

$$
\text { if } m+n \geq 4
$$

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each bird is in a state of $\{0,1,2,3,4\}$
- Sick birds initially in state 1 and healthy birds in state 0
- $(m, n) \mapsto(m+n, 0)$ if $m+n<4$
- $(m, n) \mapsto(4,4)$

$$
\text { if } m+n \geq 4
$$

Demonstration

Population protocols: formal model

- States:
- Opinions:
- Initial states:
-Transitions:

$T \subseteq Q^{2} \times Q^{2}$

finite set Q

$O: Q \rightarrow\{0,1\}$
$I \subseteq Q$

Population protocols: formal model

- States:
- Opinions:
- Initial states: $I \subseteq Q$
- Transitions:

Population protocols: formal model

- States:
- Opinions:
- Initial states:
$I \subseteq Q$
- Transitions:
$T \subseteq Q^{2} \times Q^{2}$

Population protocols: formal model

- States:
- Opinions:
$O: Q \rightarrow\{0,1\}$
- Initial states: $I \subseteq Q$
-Transitions:
$T \subseteq Q^{2} \times Q^{2}$

+ \rightarrow -

Population protocols: formal model

Reachability graph:

Population protocols: formal model

Executions must be fair:

Population protocols: formal model

Executions must be fair:

Population protocols: formal model

A protocol computes a predicate $f: \mathbb{N}^{\prime} \rightarrow\{0,1\}$

 if fair executions reach common consensus

Population protocols: formal model

A protocol computes a predicate $f: \mathbb{N}^{\prime} \rightarrow\{0,1\}$ if fair executions reach common consensus

Expressive power

Angluin, Aspnes, Eisenstat PODC'06
Population protocols compute precisely predicates
definable in Presburger arithmetic, i.e. $\mathrm{FO}(\mathbb{N},+,<)$

Analysis of protocols

Protocols can become complex, even for $B \geq R$:

Fast and Exact Majority in Population Protocols

```
    Dan Alistarh Rati Gelashvili* Milan Vojnović
Microsoft Research
```

Rati Gelashvili ${ }^{*}$ MIT

Milan Vojnović Microsoft Research

```
weight (x)={{ll}|x|\mp@code{if x\inStrongStates or }x\in\mathrm{ WeakStates;
```

weight (x)={{ll}|x|\mp@code{if x\inStrongStates or }x\in\mathrm{ WeakStates;
1 if }x\in\mathrm{ IntermediateStates
1 if }x\in\mathrm{ IntermediateStates
2 }\operatorname{sgn}(x)={\begin{array}{ll}{1}\&{\mathrm{ if }x\in{+0,\mp@subsup{1}{d}{},···,\mp@subsup{1}{1}{},3,5,···,m};}
{-1}\&{\mathrm{ otherwise. }}
2 }\operatorname{sgn}(x)={\begin{array}{ll}{1}\&{\mathrm{ if }x\in{+0,\mp@subsup{1}{d}{},···,\mp@subsup{1}{1}{},3,5,···,m};}
{-1}\&{\mathrm{ otherwise. }}
3 value (x)=\operatorname{sgn}(x)\cdotweight (x)
3 value (x)=\operatorname{sgn}(x)\cdotweight (x)
/* Functions for rounding state interactions */
/* Functions for rounding state interactions */
4}\phi(x)=-11 if x=-1;11 if x=1;x, otherwise
4}\phi(x)=-11 if x=-1;11 if x=1;x, otherwise
\mp@subsup{R}{\downarrow}{}}(k)=\phi(k\mathrm{ if }k\mathrm{ odd integer, }k-1\mathrm{ if }k\mathrm{ even)
\mp@subsup{R}{\downarrow}{}}(k)=\phi(k\mathrm{ if }k\mathrm{ odd integer, }k-1\mathrm{ if }k\mathrm{ even)
| }\mp@subsup{R}{\uparrow}{}(k)=\phi(k\mathrm{ if }k\mathrm{ odd integer, }k+1\mathrm{ if }k\mathrm{ even)

```
| }\mp@subsup{R}{\uparrow}{}(k)=\phi(k\mathrm{ if }k\mathrm{ odd integer, }k+1\mathrm{ if }k\mathrm{ even)
```



```
Shift-to-Zero (x)={}{\begin{array}{ll}{-\mp@subsup{1}{j+1}{}}&{\mathrm{ if }x=-1j\mathrm{ for some index }j<d}\\{\mp@subsup{1}{j+1}{}}&{\mathrm{ if }x=\mp@subsup{1}{j}{}\mathrm{ for some index }j<d}\\{x}&{\mathrm{ otherwise. }}
```

Shift-to-Zero (x)={}{\begin{array}{ll}{-\mp@subsup{1}{j+1}{}}\&{\mathrm{ if }x=-1j\mathrm{ for some index }j<d}
{\mp@subsup{1}{j+1}{}}\&{\mathrm{ if }x=\mp@subsup{1}{j}{}\mathrm{ for some index }j<d}
{x}\&{\mathrm{ otherwise. }}
Sugn-to-Zero (x)={}{\begin{array}{ll}{+0}\&{\mathrm{ if }\operatorname{sgn}(x)>0}
{-0}\&{\mathrm{ oherwise}}
Sugn-to-Zero (x)={}{\begin{array}{ll}{+0}\&{\mathrm{ if }\operatorname{sgn}(x)>0}
{-0}\&{\mathrm{ oherwise}}
procedure update\langlex,y\rangle
procedure update\langlex,y\rangle
if (weight (x)>0 and weight (y)>1) or (weight (y)>0 and weight (x)>1) then
if (weight (x)>0 and weight (y)>1) or (weight (y)>0 and weight (x)>1) then
\mp@subsup{x}{}{\prime}}\leftarrow\mp@subsup{R}{\downarrow}{}(\frac{\operatorname{value}(x)+\mathrm{ value }(y)}{2})\mathrm{ and }\mp@subsup{y}{}{\prime}\leftarrow\mp@subsup{R}{\uparrow}{}(\frac{\mathrm{ value }(x)+\mathrm{ value (y)}}{2}
\mp@subsup{x}{}{\prime}}\leftarrow\mp@subsup{R}{\downarrow}{}(\frac{\operatorname{value}(x)+\mathrm{ value }(y)}{2})\mathrm{ and }\mp@subsup{y}{}{\prime}\leftarrow\mp@subsup{R}{\uparrow}{}(\frac{\mathrm{ value }(x)+\mathrm{ value (y)}}{2}
else if weight (x) - weight (y)=0 and value (x) + value (y)>0 then
else if weight (x) - weight (y)=0 and value (x) + value (y)>0 then
if weight }(x)\not=0\mathrm{ then }\mp@subsup{x}{}{\prime}\leftarrowShift-to-Zero(x) and y'\& Sign-to-Zero(x
if weight }(x)\not=0\mathrm{ then }\mp@subsup{x}{}{\prime}\leftarrowShift-to-Zero(x) and y'\& Sign-to-Zero(x
else }\mp@subsup{y}{}{\prime}\leftarrow\mathrm{ Shift-to-Zero(y) and }\mp@subsup{x}{}{\prime}\leftarrow\mathrm{ Sign-to-Zero(y)
else }\mp@subsup{y}{}{\prime}\leftarrow\mathrm{ Shift-to-Zero(y) and }\mp@subsup{x}{}{\prime}\leftarrow\mathrm{ Sign-to-Zero(y)
else if (x\in{-1 d,+1_d}}\mathrm{ and weight }(y)=1\mathrm{ and }\operatorname{sgn}(x)\not=\operatorname{sgn}(y))\mathrm{ or
else if (x\in{-1 d,+1_d}}\mathrm{ and weight }(y)=1\mathrm{ and }\operatorname{sgn}(x)\not=\operatorname{sgn}(y))\mathrm{ or
(y\in{-1, d,+1}d} and weight (x)=1 and sgn (y)\not=\operatorname{sgn}(x))\mathrm{ then
(y\in{-1, d,+1}d} and weight (x)=1 and sgn (y)\not=\operatorname{sgn}(x))\mathrm{ then
\mp@subsup{x}{}{\prime}\leftarrow-0 and }\mp@subsup{y}{}{\prime}\leftarrow+
\mp@subsup{x}{}{\prime}\leftarrow-0 and }\mp@subsup{y}{}{\prime}\leftarrow+
else
else
x ^ { \prime } \leftarrow Shift-to-Zero(x) and y ^ { \prime } \leftarrow Shift-to-Zero(y)
x ^ { \prime } \leftarrow Shift-to-Zero(x) and y ^ { \prime } \leftarrow Shift-to-Zero(y)

Analysis of protocols

Protocols can become complex, even for $B \geq R$:

Fast and Exact Majority in Population Protocols

Dan Alistarh

``` Microsoft Research
```

Rati Gelashvili ${ }^{*}$ MIT

```
Milan Vojnović Microsoft Research
1 weight \((x)= \begin{cases}|x| & \text { if } x \in \text { StrongStates or } x \in \text { WeakStates; } \\ 1 & \text { if } ;\end{cases}\)
\(2 \operatorname{sgn}(x)=\left\{1 \quad\right.\) if \(x \in\left\{+0,1_{d}, \ldots, 1_{1}, 3,5, \ldots, m\right\}\);
\(3 \operatorname{value}(x)=\operatorname{sgn}(x) \cdot \operatorname{weight}(x)\)
/* Functions for rounding state interactions */
\(4 \phi(x)=-1_{1}\) if \(x=-1 ; 1_{1}\) if \(x=1 ; x\), otherwise
\(5 R_{\downarrow}(k)=\phi(k\) if \(k\) odd integer, \(k-1\) if \(k\) even \()\)
```



```
\(\operatorname{Sign-to-Zero}(x)= \begin{cases}+0 & \text { if } \operatorname{sgn}(x)>0 \\ -0 & \text { oherwise. }\end{cases}\)
procedure update \(\langle x, y\rangle\)
if \((\) weight \((x)>0\) and weight \((y)>1)\) or \((\) weight \((y)>0\) and weight \((x)>1)\) then
\(x^{\prime} \leftarrow R_{\downarrow}\left(\frac{\operatorname{value}(x)+\operatorname{value}(y)}{2}\right)\) and \(y^{\prime} \leftarrow R_{\uparrow}\left(\frac{\operatorname{value}(x)+\operatorname{value}(y)}{2}\right)\)
else if weight \((x) \cdot\) weight \((y)=0\) and value \((x)+\) value \((y)>0\) then
if weight \((x) \neq 0\) then \(x^{\prime} \leftarrow\) Shift-to-Zero \((x)\) and \(y^{\prime} \leftarrow \operatorname{Sign}\)-to-Zero \((x)\)
else \(y^{\prime} \leftarrow \operatorname{Shift-to-Zero}(y)\) and \(x^{\prime} \leftarrow \operatorname{Sign}\)-to-Zero \((y)\)
else if \(\left(x \in\left\{-1_{d},+1_{d}\right\}\right.\) and weight \((y)=1\) and \(\left.\operatorname{sgn}(x) \neq \operatorname{sgn}(y)\right)\) or
\(\left(y \in\left\{-1_{d},+1_{d}\right\}\right.\) and weight \((x)=1\) and \(\left.\operatorname{sgn}(y) \neq \operatorname{sgn}(x)\right)\) then
\(x^{\prime} \leftarrow-0\) and \(y^{\prime} \leftarrow+0\)
else
\(x^{\prime} \leftarrow\) Shift-to-Zero \((x)\) and \(y^{\prime} \leftarrow\) Shift-to-Zero( \(y\) )

\section*{Analysis of protocols}

\title{
Number of states corresponds to amount of memory, relevant to keep it minimal for embedded systems
}
- \(\mathbf{B} \geq \mathbf{R}\) requires at least 4 states (Mertzios et al. ICALP'14)
- \(\mathbf{X} \geq \mathbf{C}\) requires at most \(\mathrm{c}+1\) states

\section*{Analysis of protocols}

Number of states corresponds to amount of memory, relevant to keep it minimal for embedded systems
- \(\mathbf{B} \geq \mathbf{R}\) requires at least 4 states (Mertzios et al. ICALP'14)
- \(\mathbf{X} \geq \mathbf{C}\) requires at most \(\mathrm{c}+1\) states
\[
\begin{aligned}
& \text { What is the state complexity } \\
& \text { of common predicates? }
\end{aligned}
\]

\section*{Analysis of protocols}

\section*{Convergence speed may vary wildly, challenging to establish bounds}


\section*{Analysis of protocols}

Convergence speed may vary wildly, challenging to establish bounds


6/13

\section*{Analysis of protocols}

\section*{1. Automatic verification of correctness}
- PODC'17 with Javier, Stefan and Philipp
- Submission to CAV'18 with Javier and Stefan
- Interns: Philip Offtermatt and Amrita Suresh
2. State complexity of common predicates
- STACS'18 with Javier and Stefan
3. Automatic analysis of convergence speed
- Ongoing work with Javier and Antonín Kučera

\section*{Analysis of protocols}

\section*{1. Automatic verification of correctness}
- PODC'17 with Javier, Stefan and Philipp
- Submission to CAV'18 with Javier and Stefan

\section*{2. State complexity of common predicates}
- STACS'18 with Javier and Stefan

This talk

\section*{Verification: state of the art}

\section*{Existing verification tools:}
- PAT: model checker with global fairness
(Sun, Liu, Song Dong and Pang CAV’09)
- bp-ver: graph exploration
(Chatzigiannakis, Michail and Spirakis SSS'10)
- Conversion to counter machines + PRISM/Spin
(Clément, Delporte-Gallet, Fauconnier and Sighireanu ICDCS'11)

\section*{Verification: state of the art}

\section*{Existing verification tools:}
- PAT: model checker with global fairness
(Sun, Liu, Song Dong and Pang CAV’09)
- bp-ver: graph exploration
(Chatzigiannakis, Michail and Spirakis SSS'10)
- Conversion to counter machines + PRISM/Spin
(Clément, Delporte-Gallet, Fauconnier and Sighireanu ICDCS'11)
Only for populations of fixed size!

\section*{Verification: state of the art}

\section*{Sometimes possible to verify all sizes:}
- Verification with the interactive theorem prover Coq
(Deng and Monin TASE’09)

\section*{Verification: state of the art}

\section*{Sometimes possible to verify all sizes:}
- Verification with the interactive theorem prover Coq
(Deng and Monin TASE'09)

> Not automatic!

Verification: state of the art

Sometimes possible to verify all sizes:
- Verification with the interactive theorem prover Co
(Deng and Monin TASE'09)

Challenge: verifying automatically all sizes

Testing whether a protocol computes \(\varphi\) amounts to testing:
\[
\begin{aligned}
\neg \exists C, D: & C \xrightarrow{*} D \wedge \\
& C \text { is initial } \wedge \\
& D \text { is in a } B S C C \wedge \\
& \text { opinion }(D) \neq \varphi(C)
\end{aligned}
\]

Testing whether a protocol computes \(\varphi\) amounts to testing:
\[
\begin{aligned}
\neg \exists C, D: & C \xrightarrow{*} D \wedge \\
& C \text { is initial } \wedge \\
& D \text { is in a } B S C C \wedge \\
& \text { opinion }(D) \neq \varphi(C)
\end{aligned}
\]

As difficult as verification

Testing whether a protocol computes \(\varphi\) amounts to testing:
\[
\begin{aligned}
\neg \exists C, D: & C \xrightarrow{*} \rightarrow D \wedge \\
& C \text { is initial } \wedge \\
& D \text { is in a } B S C C \wedge \\
& \text { opinion }(D) \neq \varphi(C)
\end{aligned}
\]

Relaxed with Presburger-definable overapproximation!

Testing whether a protocol computes \(\varphi\) amounts to testing:
\[
\begin{aligned}
\neg \exists C, D: & C \xrightarrow{*} \rightarrow D \wedge \\
& C \text { is initial } \wedge \\
& D \text { is in a } B S C C \wedge \\
& \text { opinion }(D) \neq \varphi(C)
\end{aligned}
\]

Difficult to express

Testing whether a protocol computes \(\varphi\) amounts to testing:
\[
\begin{aligned}
\neg \exists C, D: & C \xrightarrow{*} D \wedge \\
& C \text { is initial } \wedge \\
& D \text { is terminal } \wedge \\
& \text { opinion }(D) \neq \varphi(C)
\end{aligned}
\]

BSCCs are of size 1 for most protocols!

Testing whether a protocol computes \(\varphi\) amounts to testing:
\[
\neg \exists C, D: \quad \begin{aligned}
& C \rightarrow D \wedge \\
& C \text { is initial } \wedge \\
& D \text { is terminal } \wedge \\
& \text { opinion }(D) \neq \varphi(C)
\end{aligned}
\]

Testable with an SMT solver

Testing whether a protocol computes \(\varphi\) amounts to testing:
\[
\begin{aligned}
\neg \exists C, D: & C \xrightarrow{*} D \wedge \\
& C \text { is initial } \wedge \\
& D \text { is terminal } \wedge \\
& \text { opinion }(D) \neq \varphi(C)
\end{aligned}
\]

But how to know whether all BSCCs are of size 1?

Protocol is silent if fair executions reach terminal configurations


\section*{Protocol is silent if fair executions reach terminal configurations}
- Testing silentness is as hard as verification of correctness
- But most protocols satisfy a common design


BSCCs of size 1

\section*{Partition \(T=T_{1} \cup T_{2} \cup \cdots \cup T_{n}\) s.t. for every \(i\)}
- all executions restricted to \(T_{i}\) terminate
- if \(T_{1} \cup \cdots \cup T_{i-1}\) disabled in \(C\) and \(C \xrightarrow{T_{i}^{*}} D\), then \(T_{1} \cup \cdots \cup T_{i-1}\) also disabled in \(D\)


\section*{Partition \(T=T_{1} \cup T_{2} \cup \cdots \cup T_{n}\) s.t. for every \(i\)}
- all executions restricted to \(T_{i}\) terminate
- if \(T_{1} \cup \cdots \cup T_{i-1}\) disabled in \(C\) and \(C \xrightarrow{T_{i}^{*}} D\), then \(T_{1} \cup \cdots \cup T_{i-1}\) also disabled in \(D\)


\section*{Partition \(T=T_{1} \cup T_{2} \cup \cdots \cup T_{n}\) s.t. for every \(i\)}
- all executions restricted to \(T_{i}\) terminate
- if \(T_{1} \cup \cdots \cup T_{i-1}\) disabled in \(C\) and \(C \xrightarrow{T_{i}^{*}} D\), then \(T_{1} \cup \cdots \cup T_{i-1}\) also disabled in \(D\)


\section*{Partition \(T=T_{1} \cup T_{2} \cup \cdots \cup T_{n}\) s.t. for every \(i\)}
- all executions restricted to \(T_{i}\) terminate
- if \(T_{1} \cup \cdots \cup T_{i-1}\) disabled in \(C\) and \(C \xrightarrow{T_{i}^{*}} D\), then \(T_{1} \cup \cdots \cup T_{i-1}\) also disabled in \(D\)


\section*{Partition \(T=T_{1} \cup T_{2} \cup \cdots \cup T_{n}\) s.t. for every \(i\)}
- all executions restricted to \(T_{i}\) terminate
- if \(T_{1} \cup \cdots \cup T_{i-1}\) disabled in \(C\) and \(C \xrightarrow{T_{i}^{*}} D\), then \(T_{1} \cup \cdots \cup T_{i-1}\) also disabled in \(D\)

\(T_{1}\)
\[
\begin{aligned}
& B R \rightarrow b r \\
& R b \rightarrow R r \\
& B r \rightarrow B b \\
& b r \rightarrow b b
\end{aligned}
\]
\[
\begin{array}{r}
T_{1} \\
B R \rightarrow b r \\
R b \rightarrow R r \\
B r \rightarrow B b \\
b r \rightarrow b b
\end{array}
\]

Bad partition: not all executions over \(T_{1}\) terminate

\section*{\(T_{1}\) \\ \[
\begin{aligned}
& B R \rightarrow b r \\
& R b \rightarrow R r \\
& B r \rightarrow B b \\
& b r \rightarrow b b
\end{aligned}
\]}

Bad partition: not all executions over \(T_{1}\) terminate
\[
\begin{aligned}
\{\boldsymbol{B}, \boldsymbol{B}, \boldsymbol{R}, \boldsymbol{R}\} \rightarrow & \{\boldsymbol{B}, \boldsymbol{b}, \boldsymbol{r}, \boldsymbol{R}\} \rightarrow\{\boldsymbol{B}, \boldsymbol{b}, \boldsymbol{b}, \boldsymbol{R}\} \rightarrow \\
& \{\boldsymbol{B}, \boldsymbol{b}, \boldsymbol{r}, \boldsymbol{R}\} \rightarrow\{\boldsymbol{B}, \boldsymbol{b}, \boldsymbol{b}, \boldsymbol{R}\} \rightarrow \cdots
\end{aligned}
\]

\[
\begin{array}{l:l}
T_{1} & T_{2} \\
\mathbf{B} \boldsymbol{R} \rightarrow \boldsymbol{b} \boldsymbol{r} & \boldsymbol{R} \boldsymbol{b} \rightarrow \boldsymbol{R} \boldsymbol{r}
\end{array} \quad \begin{gathered}
T_{3} \\
\end{gathered}: \begin{aligned}
& \boldsymbol{b} \boldsymbol{r} \rightarrow \boldsymbol{B} \boldsymbol{b} \boldsymbol{b}
\end{aligned}
\]
\# \(B \geq\) \# R:
\[
\left\{B^{*}, R^{*}\right\}
\]

\section*{\(\begin{array}{lll:l}T_{1} & \vdots & T_{2} & T_{3}\end{array}\) \\ \[
B R \rightarrow b r \quad R b \rightarrow R r
\] \\ \[
B r \rightarrow B b
\] \\ br r b b}
\#B \(\geq\) \# :
\[
\left\{B^{*}, \boldsymbol{R}^{*}\right\} \xrightarrow{*}\left\{B^{*}, \boldsymbol{b}^{*}, \boldsymbol{r}^{*}\right\}
\]

\section*{\(\begin{array}{c:c:c}T_{1}> & T_{2} \quad & T_{3} \\ \mathbf{B R} \rightarrow \boldsymbol{b r} & \boldsymbol{R} \boldsymbol{b} \rightarrow \boldsymbol{R r} & \mathbf{B r} \rightarrow \boldsymbol{B} \boldsymbol{b} \\ & & \boldsymbol{b r} \rightarrow \boldsymbol{b} \boldsymbol{b}\end{array}\)}
\# \(B \geq\) \# R:
\[
\left\{B^{*}, R^{*}\right\} \xrightarrow{*}\left\{B^{*}, b^{*}, r^{*}\right\}
\]

\# \(B \geq\) \#R:
\[
\left\{B^{*}, \boldsymbol{R}^{*}\right\} \xrightarrow{*}\left\{B^{*}, \boldsymbol{b}^{*}, \boldsymbol{r}^{*}\right\} \xrightarrow{*}\left\{B^{*}, \boldsymbol{b}^{*}\right\}
\]
\[
\begin{array}{c:c:c}
T_{1} & T_{2} & T_{3} \\
\boldsymbol{B} \boldsymbol{R} \rightarrow \boldsymbol{b} \boldsymbol{r} & \boldsymbol{R} \boldsymbol{b} \rightarrow \boldsymbol{R} \boldsymbol{r} & \mathbf{B r} \rightarrow \boldsymbol{B} \boldsymbol{b} \\
& \boldsymbol{b} \boldsymbol{r} \rightarrow \boldsymbol{b} \boldsymbol{b}
\end{array}
\]
\# \(B \geq\) \# :
\[
\left.\left\{\boldsymbol{B}^{*}, \boldsymbol{R}^{*}\right\} \xrightarrow{*}\left\{\boldsymbol{B}^{*}, \boldsymbol{b}^{*}, \boldsymbol{r}^{*}\right\} \longrightarrow \boldsymbol{B}^{*}, \boldsymbol{b}^{*}\right\}
\]
\#R > \# B:
\[
\left\{R^{+}, B^{*}\right\}
\]

\section*{Common design: layered termination}

\section*{\(\begin{array}{c:c}T_{1} \quad \boldsymbol{B} & T_{2} \\ \boldsymbol{B} \boldsymbol{R} \rightarrow \boldsymbol{b} \boldsymbol{r} & \boldsymbol{R} \boldsymbol{b} \rightarrow \boldsymbol{R} \boldsymbol{r}\end{array}\) \\ \(T_{3}\) \\ \(B r \rightarrow B b\) \\ \(b r \rightarrow b b\)}
\# \(B \geq\) \# R:
\[
\left\{\boldsymbol{B}^{*}, \boldsymbol{R}^{*}\right\} \xrightarrow{*}\left\{\boldsymbol{B}^{*}, \boldsymbol{b}^{*}, \boldsymbol{r}^{*}\right\} \longrightarrow \text { * }\left\{\boldsymbol{B}^{*}, \boldsymbol{b}^{*}\right\}
\]
\#R > \# B:
\[
\left\{\boldsymbol{R}^{+}, \boldsymbol{B}^{*}\right\} \xrightarrow{*}\left\{\boldsymbol{R}^{+}, \boldsymbol{r}^{*}, \boldsymbol{b}^{*}\right\}
\]

\section*{Common design: layered termination}

\section*{\(T_{1}\) \\ \[
T_{3}
\] \\ \[
B R \rightarrow b r: R b \rightarrow R r
\] \\ \[
B r \rightarrow B b
\] \\ \[
b r \rightarrow b b
\]}
\# \(B \geq\) \# R:
\[
\left.\left\{\boldsymbol{B}^{*}, \boldsymbol{R}^{*}\right\} \xrightarrow{*}\left\{\boldsymbol{B}^{*}, \boldsymbol{b}^{*}, \boldsymbol{r}^{*}\right\} \longrightarrow \boldsymbol{B}^{*}, \boldsymbol{b}^{*}\right\}
\]
\# R > \# B:
\[
\left\{\boldsymbol{R}^{+}, \boldsymbol{B}^{*}\right\} \longrightarrow{ }^{*}\left\{\boldsymbol{R}^{+}, \boldsymbol{r}^{*}, \boldsymbol{b}^{*}\right\} \longrightarrow{ }^{*}\left\{\boldsymbol{R}^{+}, \boldsymbol{r}^{*}\right\}
\]

\section*{Common design: layered termination}

\section*{\(T_{1}\) \\ \[
T_{3}
\] \\ \[
B R \rightarrow b r: R b \rightarrow R r
\] \\ \[
B r \rightarrow B b
\] \\ \[
b r \rightarrow b b
\]}
\# \(B \geq\) \#R:
\[
\left\{\boldsymbol{B}^{*}, \boldsymbol{R}^{*}\right\} \xrightarrow{*}\left\{\boldsymbol{B}^{*}, \boldsymbol{b}^{*}, \boldsymbol{r}^{*}\right\} \longrightarrow{ }^{*}\left\{\boldsymbol{B}^{*}, \boldsymbol{b}^{*}\right\}
\]
\# R > \# B:
\[
\left\{\boldsymbol{R}^{+}, \boldsymbol{B}^{*}\right\} \longrightarrow{ }^{*}\left\{\boldsymbol{R}^{+}, \boldsymbol{r}^{*}, \boldsymbol{b}^{*}\right\} \longrightarrow{ }^{*}\left\{\boldsymbol{R}^{+}, \boldsymbol{r}^{*}\right\}
\]

\section*{Theorem \\ Deciding whether a protocol is strongly silent \(\in\) NP}

PODC'17

\section*{Proof sketch}

Guess partition \(T=T_{1} \cup T_{2} \cup \cdots \cup T_{n}\) and test whether it is correct by verifying
- Petri net structural termination
- Additional simple structural properties

\section*{Theorem}

Strongly silent protocols as expressive as general protocols

\section*{Proof sketch}
- Protocols for
\[
\begin{aligned}
& a_{1} x_{1}+\ldots+a_{n} x_{n} \geq b \\
& a_{1} x_{1}+\ldots+a_{n} x_{n} \equiv b(\bmod m)
\end{aligned}
\]
have layered termination partitions
- Conjunction and negation preserve layered termination

\section*{A new tool: Peregrine}

\section*{Peregrine: \(\lambda\) =Haskell + Z3 + JavaScript (front end) gitlab.lrz.de/i7/peregrine}
\begin{tabular}{l|l|r|r|r} 
Protocol & Predicate & \# states & \# trans. & Time (secs.) \\
\hline Majority [a] & \(x \geq y\) & 4 & 4 & 0.1 \\
Broadcast [b] & \(x_{1} \vee \cdots \vee x_{n}\) & 2 & 1 & 0.1 \\
Linear ineq. [c] & \(\sum a_{i} x_{i} \geq 9\) & 75 & 2148 & 2376 \\
Modulo [c] & \(\sum a_{i} x_{i}=0\) mod 70 & 72 & 2555 & 3177 \\
Threshold [d] & \(x \geq 50\) & 51 & 1275 & 182 \\
Threshold [b] & \(x \geq 325\) & 326 & 649 & 3471 \\
Threshold [e] & \(x \geq 10^{7}\) & 37 & 155 & 19
\end{tabular}
[a] Draief et al. 2012 [c] Angluin et al. 2006
[e] Offtermatt 2017 (bachelor thesis)
[b] Clément et al. 2011 [d] Chatzigiannakis et al. 2010

\section*{Demonstration}

\section*{Threshold state complexity: logarithmic bounds}

Given: \(\quad\) Presburger-definable predicate \(\varphi\)
Question: Smallest number of states
necessary to compute \(\varphi\) ?

\section*{Threshold state complexity: logarithmic bounds}

Given: \(\quad\) Presburger-definable predicate \(\varphi\)
Question: Smallest number of states necessary to compute \(\varphi\) ?

Difficult problem...
What about basic predicates?

\title{
Threshold state complexity: logarithmic bounds
}

Given: \(\quad c \in \mathbb{N}\)
Question: Smallest number of states necessary to compute \(x \geq c\) ?

\section*{Threshold state complexity: logarithmic bounds}

Given: \(\quad c \in \mathbb{N}\)
Question: Smallest number of states necessary to compute \(x \geq c\) ?

\section*{Upper bound: c+1}

Lower bound: 2

\section*{Threshold state complexity: logarithmic bounds}

Given: \(\quad c \in \mathbb{N}\)
Question: Smallest number of states necessary to compute \(x \geq c\) ?

Upper bound: c+1
Lower bound: 2

Theorem
Computable with \(O(\log c)\) states, if \(c=2^{n}\).

\section*{Proof sketch}
\[
\begin{array}{ccc}
(1,1) & \mapsto & (2,0) \\
(2,2) & \mapsto & (4,0) \\
\vdots & & \vdots \\
\left(2^{n-1}, 2^{n-1}\right) & \mapsto & \left(2^{n}, 0\right) \\
\left(2^{n}, m\right) & \mapsto & \left(2^{n}, 2^{n}\right)
\end{array}
\]

\section*{Threshold state complexity: logarithmic bounds}

Given: \(\quad c \in \mathbb{N}\)
Question: Smallest number of states necessary to compute \(x \geq c\) ?

Upper bound: c+1
Lower bound: 2

Theorem
Computable with \(O(\log c)\) states, if \(c=2^{\prime \prime}\).

\section*{Proof sketch}
\[
\begin{array}{clc}
(1,1) & \mapsto & (2,0) \\
(2,2) & \mapsto & (4,0) \\
\vdots & & \vdots \\
\text { + extrastates } \\
\left(2^{n-1}, 2^{n-1}\right) & \mapsto & \left(2^{n}, 0\right) \\
\left(2^{n}, m\right) & \mapsto & \left(2^{n}, 2^{n}\right)
\end{array}
\]

\section*{Threshold state complexity: logarithmic bounds}

Given: \(\quad c \in \mathbb{N}\)
Question: Smallest number of states necessary to compute \(x \geq c\) ?

Upper bound: \(O(\log c)\)
Lower bound: 2

\section*{Threshold state complexity: logarithmic bounds}

Given: \(\quad c \in \mathbb{N}\)
Question: Smallest number of states necessary to compute \(x \geq c\) ?

Upper bound: \(O(\log c)\)
Lower bound: 2

Theorem
Let \(P_{0}, P_{1}, \ldots\) be protocols such that \(P_{c}\) computes \(x \geq c\). There are infinitely many \(c\) s.t. \(P_{c}\) has \(\geq(\log c)^{1 / 4}\) states.

\section*{Proof sketch}

Counting argument on \# unary predicates vs. \# protocols.

\section*{Threshold state complexity: logarithmic bounds}

Given: \(\quad c \in \mathbb{N}\)
Question: Smallest number of states necessary to compute \(x \geq c\) ?

Upper bound: \(O(\log c)\)
Lower bound: \(\underbrace{O\left(\log ^{1 / 4} c\right)}_{\text {for inf. many } c}\)

\section*{Threshold state complexity: logarithmic bounds}

Given: \(\quad c \in \mathbb{N}\)
Question: Smallest number of states necessary to compute \(x \geq c\) ?

Upper bound: \(O(\log c)\)
Lower bound: \(\underbrace{O\left(\log ^{1 / 4} c\right)}\) for inf. many c
\[
\begin{aligned}
& \text { Possible to go below } \\
& \log \text { a for some c? }
\end{aligned}
\]

\section*{Threshold state complexity: logarithmic bounds}

Given: \(\quad c \in \mathbb{N}\)
Question: Smallest number of states necessary to compute \(x \geq c\) ?

Upper bound: \(O(\log c)\)
Lower bound: \(\underbrace{O\left(\log ^{1 / 4} c\right)}\) for inf. many c

Possible to go below \(\log _{c}\) for some c?
Yes!

\section*{Threshold state complexity: sublogarithmic bounds}

\section*{Theorem}

There exist protocols \(P_{0}, P_{1}, \ldots\) and numbers \(c_{0}<c_{1}<\cdots\) such that \(P_{i}\) computes \(x \geq c_{i}\) and has \(O\left(\log \log c_{i}\right)\) states.

\section*{Threshold state complexity: sublogarithmic bounds}

\section*{Theorem}

There exist protocols \(P_{0}, P_{1}, \ldots\) and numbers \(c_{0}<c_{1}<\cdots\) such that \(P_{i}\) computes \(x \geq c_{i}\) and has \(O\left(\log \log c_{i}\right)\) states.

\section*{Lemma}

Mayr and Meyer '82
For every \(c \in \mathbb{N}\), there exists a reversible multiset rewriting system \(\mathcal{R}_{c}\) over alphabet \(\Sigma \supseteq\{x, y, z, w\}\) of size \(O(c)\) with rewriting rules \(T \subseteq \Sigma^{\leq 5} \times \Sigma \leq 5\) such that
\[
\{x, y\} \xrightarrow{*} M \text { and } w \in M \Longleftrightarrow M=\left\{y, z^{2^{2^{c}}}, w\right\}
\]

\section*{Threshold state complexity: sublogarithmic bounds}

\section*{Theorem}

There exist protocols \(P_{0}, P_{1}, \ldots\) and numbers \(c_{0}<c_{1}<\cdots\) such that \(P_{i}\) computes \(x \geq c_{i}\) and has \(O\left(\log \log c_{i}\right)\) states.

\section*{Proof sketch}
- \(\mathcal{R}_{c}\) can be simulated by adding a padding symbol \(\perp\)

\section*{Threshold state complexity: sublogarithmic bounds}

\section*{Theorem}

There exist protocols \(P_{0}, P_{1}, \ldots\) and numbers \(c_{0}<c_{1}<\cdots\) such that \(P_{i}\) computes \(x \geq c_{i}\) and has \(O\left(\log \log c_{i}\right)\) states.

\section*{Proof sketch}
- \(\mathcal{R}_{c}\) can be simulated by adding a padding symbol \(\perp\)
\begin{tabular}{c|c} 
Rewriting system \(\mathcal{R}_{c}\) & 5-way population protocol \\
\hline\((e, f, g) \mapsto(h, i)\) & \((e, f, g, \perp, \perp) \mapsto(h, i, \perp, \perp, \perp)\) \\
\((e, f) \mapsto(g, h, i)\) & \((e, f, \perp, \perp, \perp) \mapsto(g, h, i, \perp, \perp)\)
\end{tabular}

\section*{Threshold state complexity: sublogarithmic bounds}

\section*{Theorem}

There exist protocols \(P_{0}, P_{1}, \ldots\) and numbers \(c_{0}<c_{1}<\cdots\) such that \(P_{i}\) computes \(x \geq c_{i}\) and has \(O\left(\log \log c_{i}\right)\) states.

\section*{Proof sketch}
- \(\mathcal{R}_{c}\) can be simulated by adding a padding symbol \(\perp\)

> Each 5-way transition is converted to a "gadget" of 2-way transitions

\section*{Threshold state complexity: sublogarithmic bounds}

\section*{Theorem}

There exist protocols \(P_{0}, P_{1}, \ldots\) and numbers \(c_{0}<c_{1}<\cdots\) such that \(P_{i}\) computes \(x \geq c_{i}\) and has \(O\left(\log \log c_{i}\right)\) states.

\section*{Proof sketch}
- \(\mathcal{R}_{c}\) can be simulated by adding a padding symbol \(\perp\)
- New rule: agents in state w can convert others to w

\section*{Threshold state complexity: sublogarithmic bounds}

\section*{Theorem}

There exist protocols \(P_{0}, P_{1}, \ldots\) and numbers \(c_{0}<c_{1}<\cdots\) such that \(P_{i}\) computes \(x \geq c_{i}\) and has \(O\left(\log \log c_{i}\right)\) states.

\section*{Proof sketch}
- \(\mathcal{R}_{c}\) can be simulated by adding a padding symbol \(\perp\)
- New rule: agents in state w can convert others to w
- Simulate \(\mathcal{R}_{C}\) from \(\{x, y, \perp, \perp, \ldots, \perp\}\)

\section*{Threshold state complexity: sublogarithmic bounds}

\section*{Theorem}

There exist protocols \(P_{0}, P_{1}, \ldots\) and numbers \(c_{0}<c_{1}<\cdots\) such that \(P_{i}\) computes \(x \geq c_{i}\) and has \(O\left(\log \log c_{i}\right)\) states.

\section*{Proof sketch}
- \(\mathcal{R}_{c}\) can be simulated by adding a padding symbol \(\perp\)
- New rule: agents in state w can convert others to w
- Simulate \(\mathcal{R}_{c}\) from \(\{x, y, \perp, \perp, \ldots, \perp\}\)
- \(\{w, w, \ldots, w\}\) reachable \(\Longleftrightarrow\) initially \(\geq 2^{2^{c}}\) agents in \(\perp\)

\section*{Threshold state complexity: sublogarithmic bounds}

Theorem
There exist protocols \(P_{0}, P_{1}, \ldots\) and numbers \(c_{0}<c_{1}<\cdots\) such that \(P_{i}\) computes \(x \geq c_{i}\) and has \(O\left(\log \log c_{i}\right)\) states.

\section*{Proof sketch}
- \(\mathcal{R}_{c}\) can be simulated by adding a padding symbol \(\perp\)
- New rule: agents in state w can convert others to w
- Simulate \(\mathcal{R}_{c}\) from \(\{x, y, \perp, \perp, \ldots, \perp\}\)
- \(\{w, w, \ldots, w\}\) reachable \(\Longleftrightarrow\) initially \(\geq 2^{2^{c}}\) agents in \(\perp\)
- By reversibility and fairness, cannot avoid \(\{w, w, \ldots, w\}\)

\section*{State complexity: beyond threshold}

Let \(A \in \mathbb{Z}^{m \times k}\), let \(\boldsymbol{c} \in \mathbb{Z}^{m}\) and let \(n\) be the largest absolute value of numbers occurring in \(A\) and \(c\).

\section*{Observation}

Classical protocol computing \(A \boldsymbol{x}+\mathbf{c}>\mathbf{0}\) has \(O\left(n^{m}\right)\) states.

\section*{State complexity: beyond threshold}

Let \(A \in \mathbb{Z}^{m \times k}\), let \(\boldsymbol{c} \in \mathbb{Z}^{m}\) and let \(n\) be the largest absolute value of numbers occurring in \(A\) and \(c\).

\section*{Observation}

Classical protocol computing \(A \mathbf{x}+\mathbf{c}>\mathbf{0}\) has \(O\left(n^{m}\right)\) states.

Theorem
There exists a protocol that computes \(A \boldsymbol{x}+\boldsymbol{c}>\mathbf{0}\) and has
- at most \(O((m+k) \cdot \log m n)\) states
- at most \(O(m \cdot \log m n)\) leaders

\section*{Conclusion}

\section*{Peregrine:}
- Graphical and command-line tool for designing, simulating and verifiying population protocols
- Can verify silent protocols

\section*{Future work:}
- Verification of non silent protocols (ongoing with Amrita)
- Convergence speed analysis (ongoing with Javier and Tony)
- Failure ratio analysis
- LTL model checking

\section*{Conclusion}

\section*{Peregrine:}
- Graphical and command-line tool for designing, simulating and verifiying population protocols
- Can verify silent protocols

\section*{Future work:}
- Verification of non silent protocols (ongoing with Amrita)
- Convergence speed analysis (ongoing with Javier and Tony)
- Failure ratio analysis
- LTL model checking

\section*{Conclusion}

\section*{State complexity:}
- Complexity of \(x \geq c\) can be decreased from \(O(c)\) to \(O(\log c)\) and sometimes \(O(\log \log c)\)
- Similar results for systems of linear inequalities

\section*{Future work:}
- Is \(O(\log \log \log c)\) sometimes possible? (not for the class of 1-aware protocols)
- State complexity of Presburger-definable predicates
- Study of the trade-off between size and speed

\section*{Conclusion}

\section*{State complexity:}
- Complexity of \(x \geq c\) can be decreased from \(O(c)\) to \(O(\log c)\) and sometimes \(O(\log \log c)\)
- Similar results for systems of linear inequalities

\section*{Future work:}
- Is \(O(\log \log \log c)\) sometimes possible? (not for the class of 1-aware protocols)
- State complexity of Presburger-definable predicates
- Study of the trade-off between size and speed

\section*{Thank you! Vielen Dank!}```

