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Definitions

Problematic

m Well-structured transition systems (WSTS) are known to
encompass a large number of infinite state systems.

m Moreover, multiple decidability results are known on WSTS.

m However, most results and techniques known suppose finite
branching.

m We propose a tool, the WSTS completion, based on work of
Finkel and Goubault-Larrecq, to handle infinitely branching
WSTS.
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Branching

A WSTS (X, —, <) is finitely branching if Post(x) is finite for
every x € X.

Some infinitely branching WSTS

m Inserting FIFO automata (Cécé, Finkel, lyer 1996),

m Inserting automata (Bouyer, Markey, Ouaknine, Schnoebelen,
Worrell 2012),

m w-Petri nets (Geeraerts, Heussner, Praveen & Raskin 2013),

m Essentially finite WSTS (Abdulla, Cerans, Jonsson & Tsay
2000),

m Do you know other ones?
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Problematic

Some decidability results for WSTS based on finite reachability
trees; impossible for infinite branching.

Some rely on upward closed sets; what about downward closed, in
particular with infinite branching?

A tool

Develop from the WSTS completion introduced by Finkel &
Goubault-Larrecq 2009.
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Completion

Ideals

| C X is an ideal if it is

m downward closed: [ = |/,
m directed: a, b€/ = dcelst. a<cand b<c.
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D downward closed — D = U Ideals

finite

Theorem (Finkel & Goubault-Larrecq 2009; GL 2014; BFM 2014)

Every downward closed subset decomposes canonically as the
union of its maximal ideals.
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Applications Coverability

Relating executions of S and S

Let S = (X, —s, <) be a WSTS, then

mif x i>5 y, then for every ideal / O | x there exists an ideal
J 2 Ly such that | % J,

mif / £>§ J, then for every y € J there exists x € / such that
xSsy >y.
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Applications

Relating executions of S and S

Let S = (X, —s, <) be a WSTS with transitive monotony, then

m if x £>5 y, then for every ideal | D | x there exists an ideal
J 2 Ly such that | < J,

m if / Lg J, then for every y € J there exists x € [ such that

>k
x=—sy >y.
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Termination
Input: (X, —,<) a WSTS, x € X.

Question: Bxg — x1 — x0 — ...7

Proposition (Dufourd, Jan¢ar & Schnoebelen 1999)

Termination is undecidable for infinitely branching WSTS.
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Applications

Strong termination
Input: (X, —,<) a WSTS, x € X.

Question: dk bounding length of executions from xg?

Remark

Strong termination and termination are the same in finitely
branching WSTS.
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Applications

Theorem (Blondin, Finkel & McKenzie 2014)

Strong termination is decidable for WSTS with transitive
monotony and such that S is a post-effective WSTS.

Proof

Executions bounded in S iff bounded in §A Since S finitely
branching, we can decide termination in S by Finkel &
Schnoebelen 2001.
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Conclusion

Open questions

m What other applications has the completion?

Boundness and strong control-state maintainability also
decidable for infinitely branching WSTS. Other problems

decidable?
Algorithms working on the completion more efficient for what
WSTS/problems?
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Conclusion

Thank you!
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