Handling Infinite Branching WSTS

Michael Blondin^{1 2}, Alain Finkel¹ & Pierre McKenzie ^{1 2}

¹LSV, ENS Cachan

²DIRO, Université de Montréal

March 31, 2014

Definitions Problematic

 Well-structured transition systems (WSTS) are known to encompass a large number of infinite state systems.

- Well-structured transition systems (WSTS) are known to encompass a large number of infinite state systems.
- Moreover, multiple decidability results are known on WSTS.

- Well-structured transition systems (WSTS) are known to encompass a large number of infinite state systems.
- Moreover, multiple decidability results are known on WSTS.
- However, most results and techniques known suppose finite branching.

- Well-structured transition systems (WSTS) are known to encompass a large number of infinite state systems.
- Moreover, multiple decidability results are known on WSTS.
- However, most results and techniques known suppose finite branching.
- We propose a tool, the WSTS completion, based on work of Finkel and Goubault-Larrecq, to handle infinitely branching WSTS.

Definitions Problematic

Ordered transition system

- $S = (X, \rightarrow, \leq)$ where
 - X set,
 - $\rightarrow \subseteq X \times X,$
 - \leq quasi-ordering X.

Definitions Problematic

Ordered transition system

 $S = (X, \rightarrow, \leq)$ where

- X set: recursively enumerable,
- $\rightarrow \subseteq X \times X$: decidable,
- \leq quasi-ordering X: decidable.

Definitions Problematic

Well-ordered transition system (WSTS)

A WSTS is an ordered transition system (X, $\rightarrow, \leq)$ with

- well-quasi-ordering: $\forall x_0, x_1, \dots \exists i < j \text{ s.t. } x_i \leq x_j$,
- monotony:

$$\begin{array}{cccc} \not & x & \to & y \\ & & & & \\ & & & \\ & x' & \stackrel{}{\longrightarrow} & y' \end{array} \end{array}$$

Definitions Problematic

Well-ordered transition system (WSTS)

A WSTS is an ordered transition system (X, $\rightarrow, \leq)$ with

• well-quasi-ordering: $\forall x_0, x_1, \dots \exists i < j \text{ s.t. } x_i \leq x_j$,

transitive monotony:

$$\begin{array}{cccc} \overleftarrow{x} & \rightarrow & y \\ & & & & \\ & & & & \\ & x' & \stackrel{+}{\longrightarrow} & y' \\ \end{array} \\ \end{array}$$

Definitions Problematic

Branching

A WSTS (X, \rightarrow, \leq) is finitely branching if Post(x) is finite for every $x \in X$.

Definitions Problematic

Branching

A WSTS (X, \rightarrow, \leq) is finitely branching if Post(x) is finite for every $x \in X$.

Some infinitely branching WSTS

■ Inserting FIFO automata (Cécé, Finkel, Iyer 1996),

Definitions Problematic

Branching

A WSTS (X, \rightarrow, \leq) is finitely branching if Post(x) is finite for every $x \in X$.

- Inserting FIFO automata (Cécé, Finkel, Iyer 1996),
- Inserting automata (Bouyer, Markey, Ouaknine, Schnoebelen, Worrell 2012),

Definitions Problematic

Branching

A WSTS (X, \rightarrow, \leq) is finitely branching if Post(x) is finite for every $x \in X$.

- Inserting FIFO automata (Cécé, Finkel, Iyer 1996),
- Inserting automata (Bouyer, Markey, Ouaknine, Schnoebelen, Worrell 2012),
- ω-Petri nets (Geeraerts, Heussner, Praveen & Raskin 2013),

Definitions Problematic

Branching

A WSTS (X, \rightarrow, \leq) is finitely branching if Post(x) is finite for every $x \in X$.

- Inserting FIFO automata (Cécé, Finkel, Iyer 1996),
- Inserting automata (Bouyer, Markey, Ouaknine, Schnoebelen, Worrell 2012),
- ω-Petri nets (Geeraerts, Heussner, Praveen & Raskin 2013),
- Essentially finite WSTS (Abdulla, Cerans, Jonsson & Tsay 2000),

Definitions Problematic

Branching

A WSTS (X, \rightarrow, \leq) is finitely branching if Post(x) is finite for every $x \in X$.

- Inserting FIFO automata (Cécé, Finkel, Iyer 1996),
- Inserting automata (Bouyer, Markey, Ouaknine, Schnoebelen, Worrell 2012),
- ω-Petri nets (Geeraerts, Heussner, Praveen & Raskin 2013),
- Essentially finite WSTS (Abdulla, Cerans, Jonsson & Tsay 2000),
- Do you know other ones?

Definitions Problematic

Problematic

Some decidability results for WSTS based on finite reachability trees; impossible for infinite branching.

Some rely on upward closed sets; what about downward closed, in particular with infinite branching?

Definitions Problematic

Problematic

Some decidability results for WSTS based on finite reachability trees; impossible for infinite branching.

Some rely on upward closed sets; what about downward closed, in particular with infinite branching?

A tool

Develop from the WSTS *completion* introduced by Finkel & Goubault-Larrecq 2009.

Ideals Completion

Ideals

- $I \subseteq X$ is an *ideal* if it is
 - downward closed: $I = \downarrow I$,
 - directed: $a, b \in I \implies \exists c \in I \text{ s.t. } a \leq c \text{ and } b \leq c$.

Ideals Completion

Theorem (Finkel & Goubault-Larrecq 2009; GL 2014)

$$D$$
 downward closed $\implies D = \bigcup_{\text{finite}} \text{Ideals}$

Ideals Completion

Theorem (Finkel & Goubault-Larrecq 2009; GL 2014)

$$D$$
 downward closed $\implies D = \bigcup_{\text{finite}} \text{Ideals}$

Theorem (Finkel & Goubault-Larrecq 2009; GL 2014; BFM 2014)

Every downward closed subset decomposes <u>canonically</u> as the union of its maximal ideals.

Ideals Completion

Completion (Finkel & Goubault-Larrecq 2009; BFM 2014)

The completion of $S = (X, \rightarrow_S, \leq)$ is $\widehat{S} = (\widehat{X}, \rightarrow_{\widehat{S}}, \subseteq)$ such that

Ideals Completion

Completion (Finkel & Goubault-Larrecq 2009; BFM 2014)

The completion of $S = (X, \rightarrow_S, \leq)$ is $\widehat{S} = (\widehat{X}, \rightarrow_{\widehat{S}}, \subseteq)$ such that

$$\widehat{X} = \mathsf{Ideals}(X),$$

Ideals Completion

Completion (Finkel & Goubault-Larrecq 2009; BFM 2014)

The completion of $S = (X, \rightarrow_S, \leq)$ is $\widehat{S} = (\widehat{X}, \rightarrow_{\widehat{S}}, \subseteq)$ such that

$$\widehat{X} = \text{Ideals}(X),$$

$$I \to_{\widehat{S}} J \text{ if } \downarrow \text{Post}(I) = \underbrace{\dots \cup J \cup \dots}_{\text{canonical}}$$

Ideals Completion

Theorem (Finkel & Goubault-Larrecq 2009; BFM 2014)

Let
$$\mathcal{S}=(X,
ightarrow_{\mathcal{S}},\leq)$$
 be a WSTS, then

Ideals Completion

Theorem (Finkel & Goubault-Larrecq 2009; BFM 2014)

Let
$$S = (X,
ightarrow_{\mathcal{S}}, \leq)$$
 be a WSTS, then

• \widehat{S} is finitely branching,

$$\widehat{S}$$
 has (strong) monotony,

Ideals Completion

Theorem (Finkel & Goubault-Larrecq 2009; BFM 2014)

- Let $S = (X, \rightarrow_{\mathcal{S}}, \leq)$ be a WSTS, then
 - \widehat{S} is finitely branching,
 - \widehat{S} has (strong) monotony,
 - \hat{S} is not always a WSTS

Ideals Completion

Theorem (Finkel & Goubault-Larrecq 2009; BFM 2014)

Let
$$S = (X,
ightarrow_{\mathcal{S}}, \leq)$$
 be a WSTS, then

- \widehat{S} is finitely branching,
- \widehat{S} has (strong) monotony,
- \hat{S} is not always a WSTS

Termination Coverability

Let
$$S = (X, \rightarrow_{\mathcal{S}}, \leq)$$
 be a WSTS, then

• if
$$x \xrightarrow{k} g$$
,

Termination Coverability

Relating executions of S and \widehat{S}

Let $S = (X, \rightarrow_S, \leq)$ be a WSTS, then

• if
$$x \xrightarrow{k} S y$$
, then for every ideal $I \supseteq \downarrow x$

Termination Coverability

Let
$$S = (X, \rightarrow_{\mathcal{S}}, \leq)$$
 be a WSTS, then

• if
$$x \xrightarrow{k} S y$$
, then for every ideal $I \supseteq \downarrow x$ there exists an ideal $J \supseteq \downarrow y$

Termination Coverability

Let
$$S = (X, \rightarrow_{\mathcal{S}}, \leq)$$
 be a WSTS, then

• if
$$x \xrightarrow{k} g y$$
, then for every ideal $I \supseteq \downarrow x$ there exists an ideal $J \supseteq \downarrow y$ such that $I \xrightarrow{k} g J$,

Termination Coverability

Let
$$S = (X, \rightarrow_{\mathcal{S}}, \leq)$$
 be a WSTS, then

• if
$$x \xrightarrow{k} g y$$
, then for every ideal $I \supseteq \downarrow x$ there exists an ideal $J \supseteq \downarrow y$ such that $I \xrightarrow{k} g J$,

• if
$$I \xrightarrow{k}{3} J$$
,

Termination Coverability

Let
$$S = (X, \rightarrow_{\mathcal{S}}, \leq)$$
 be a WSTS, then

• if
$$x \xrightarrow{k} g$$
, then for every ideal $I \supseteq \downarrow x$ there exists an ideal $J \supseteq \downarrow y$ such that $I \xrightarrow{k} g$,

• if
$$I \xrightarrow{k}{S} J$$
, then for every $y \in J$

Termination Coverability

Let
$$S = (X, \rightarrow_{\mathcal{S}}, \leq)$$
 be a WSTS, then

• if
$$x \xrightarrow{k} g$$
, then for every ideal $I \supseteq \downarrow x$ there exists an ideal $J \supseteq \downarrow y$ such that $I \xrightarrow{k} g$,

• if
$$I \xrightarrow{k}{\widehat{S}} J$$
, then for every $y \in J$ there exists $x \in I$

Termination Coverability

Let
$$S = (X, \rightarrow_{\mathcal{S}}, \leq)$$
 be a WSTS, then

- if $x \xrightarrow{k} S y$, then for every ideal $I \supseteq \downarrow x$ there exists an ideal $J \supseteq \downarrow y$ such that $I \xrightarrow{k} \hat{S} J$,
- if $I \xrightarrow{k} \widehat{S} J$, then for every $y \in J$ there exists $x \in I$ such that $x \xrightarrow{*} S y' \ge y$.

Termination Coverability

Relating executions of S and \widehat{S}

Let $S = (X, \rightarrow_S, \leq)$ be a WSTS with transitive monotony, then

- if $x \xrightarrow{k} g$, then for every ideal $I \supseteq \downarrow x$ there exists an ideal $J \supseteq \downarrow y$ such that $I \xrightarrow{k} g$,
- if $I \xrightarrow{k} \hat{S} J$, then for every $y \in J$ there exists $x \in I$ such that $x \xrightarrow{\geq k} S y' \geq y$.

Termination Coverability

Termination

Input: (X, \rightarrow, \leq) a WSTS, $x_0 \in X$.

Question: $\nexists x_0 \rightarrow x_1 \rightarrow x_2 \rightarrow \ldots$?

Termination Coverability

Termination	
Input:	$(X, ightarrow,\leq)$ a WSTS, $x_0\in X.$
Question:	$\nexists x_0 \to x_1 \to x_2 \to \ldots ?$

Proposition (Dufourd, Jančar & Schnoebelen 1999)

Termination is undecidable for infinitely branching WSTS.

Termination Coverability

C		1.1.1.1.1.1.1.1
Strong	Termina	TION
0110116		

Input:	(X, \rightarrow, \leq) a WSTS, $x_0 \in X$.
--------	--

Question: $\exists k$ bounding length of executions from x_0 ?

Introduction	
WSTS completion	
Applications	
Conclusion	

Termination Coverability

Strong termination			
Input:	$(X, ightarrow,\leq)$ a WSTS, $x_0\in X.$		
Question:	$\exists k$ bounding length of executions from x_0 ?		

Remark

Strong termination and termination are the same in finitely branching WSTS.

Termination Coverability

Theorem (Blondin, Finkel & McKenzie 2014)

Strong termination is decidable for WSTS with transitive monotony and such that \widehat{S} is a post-effective WSTS.

Termination Coverability

Theorem (Blondin, Finkel & McKenzie 2014)

Strong termination is decidable for WSTS with transitive monotony and such that \hat{S} is a post-effective WSTS.

Termination Coverability

Theorem (Blondin, Finkel & McKenzie 2014)

Strong termination is decidable for WSTS with transitive monotony and such that \widehat{S} is a post-effective WSTS.

Proof

Executions bounded in S iff bounded in \widehat{S} .

Termination Coverability

Theorem (Blondin, Finkel & McKenzie 2014)

Strong termination is decidable for WSTS with transitive monotony and such that \hat{S} is a post-effective WSTS.

Proof

Executions bounded in S iff bounded in \hat{S} . Since \hat{S} finitely branching, we can decide termination in \hat{S} by Finkel & Schnoebelen 2001.

Termination Coverability

Coverability

Input: (X, \rightarrow, \leq) a WSTS, $x_0, x \in X$. Question: $x_0 \stackrel{*}{\rightarrow} x' \geq x$?

Termination Coverability

Coverability

Input: (X, \rightarrow, \leq) a WSTS, $x_0, x \in X$. Question: $x_0 \in \uparrow \operatorname{Pre}^*(\uparrow x)$?

Termination Coverability

Coverability

Input: (X, \rightarrow, \leq) a WSTS, $x_0, x \in X$. Question: $x_0 \in \uparrow \operatorname{Pre}^*(\uparrow x)$?

Backward method (Abdulla, Cerans, Jonsson & Tsay 2000)

Compute Y_0, \ldots, Y_n converging to $\uparrow \operatorname{Pre}^*(\uparrow x)$ and verify if $x_0 \in Y_n$.

Termination Coverability

Coverability

Input: (X, \rightarrow, \leq) a WSTS, $x_0, x \in X$. Question: $x_0 \in \uparrow \operatorname{Pre}^*(\uparrow x)$?

Backward method (Abdulla, Cerans, Jonsson & Tsay 2000)

Compute Y_0, \ldots, Y_n converging to $\uparrow \operatorname{Pre}^*(\uparrow x)$ and verify if $x_0 \in Y_n$.

Termination Coverability

Coverability

Input: (X, \rightarrow, \leq) a WSTS, $x_0, x \in X$. Question: $x \in \downarrow \text{Post}^*(x_0)$?

Termination Coverability

Coverability

Input:
$$(X, \rightarrow, \leq)$$
 a WSTS, $x_0, x \in X$.
Question: $x \in \downarrow \text{Post}^*(x_0)$?

Forward method

Coverability:

- Enumerate executions $\downarrow x_0 \xrightarrow{*}_{\widehat{S}} I$,
- Accept if $x \in I$.

Termination Coverability

Coverability

Input:
$$(X, \rightarrow, \leq)$$
 a WSTS, $x_0, x \in X$.
Question: $x \in \downarrow \text{Post}^*(x_0)$?

Forward method

Coverability:

- Enumerate executions $\downarrow x_0 \xrightarrow{*}_{\widehat{S}} I$,
- Accept if $x \in I$.

- Enumerate $D \subseteq X$ downward closed, $x_0 \in D$ and $\downarrow \text{Post}_S(D) \subseteq D$,
- Reject if $x \notin D$.

Termination Coverability

Coverability

Input:
$$(X, \rightarrow, \leq)$$
 a WSTS, $x_0, x \in X$.

Question: $x \in \downarrow \mathsf{Post}^*(x_0)$?

Forward method

Coverability:

- Enumerate executions $\downarrow x_0 \xrightarrow{*}_{\widehat{S}} I$,
- Accept if $x \in I$.

- Enumerate $D \subseteq X$ downward closed, $x_0 \in D$ and $\downarrow \text{Post}_S(D) \subseteq D$,
- Reject if $x \notin D$. Witness: $D = \downarrow \text{Post}^*_S(x_0)$

Termination Coverability

Coverability

Input:
$$(X, \rightarrow, \leq)$$
 a WSTS, $x_0, x \in X$.
Question: $x \in \downarrow \text{Post}^*(x_0)$?

Forward method

Coverability:

- Enumerate executions $\downarrow x_0 \xrightarrow{*}_{\widehat{S}} I$,
- Accept if $x \in I$.

- Enumerate $D = I_1 \cup \ldots \cup I_k$
- Reject if $x \notin D$.

Termination Coverability

Coverability

Input:
$$(X, \rightarrow, \leq)$$
 a WSTS, $x_0, x \in X$.
Question: $x \in \downarrow \text{Post}^*(x_0)$?

Forward method

Coverability:

- Enumerate executions $\downarrow x_0 \xrightarrow{*}_{\widehat{S}} I$,
- Accept if $x \in I$.

Non coverability:

• Enumerate $D \subseteq X$ downward closed

Termination Coverability

Coverability

Input:
$$(X, \rightarrow, \leq)$$
 a WSTS, $x_0, x \in X$.
Question: $x \in \downarrow \text{Post}^*(x_0)$?

Forward method

Coverability:

- Enumerate executions $\downarrow x_0 \xrightarrow{*}_{\widehat{S}} I$,
- Accept if $x \in I$.

Non coverability:

• Enumerate $D \subseteq X$ downward closed, $x_0 \in D$

Termination Coverability

Coverability

Input:
$$(X, \rightarrow, \leq)$$
 a WSTS, $x_0, x \in X$.
Question: $x \in \downarrow \text{Post}^*(x_0)$?

Forward method

Coverability:

- Enumerate executions $\downarrow x_0 \xrightarrow{*}_{\widehat{S}} I$,
- Accept if $x \in I$.

Non coverability:

• Enumerate $D \subseteq X$ downward closed, $\downarrow x_0 \subseteq I_1 \cup \ldots \cup I_k$

Termination Coverability

Coverability

Input:
$$(X, \rightarrow, \leq)$$
 a WSTS, $x_0, x \in X$.
Question: $x \in \downarrow \text{Post}^*(x_0)$?

Forward method

Coverability:

- Enumerate executions $\downarrow x_0 \xrightarrow{*}_{\widehat{S}} I$,
- Accept if $x \in I$.

Non coverability:

• Enumerate $D \subseteq X$ downward closed, $\exists j \text{ s.t. } \downarrow x_0 \subseteq I_j$

Termination Coverability

Coverability

Input:
$$(X, \rightarrow, \leq)$$
 a WSTS, $x_0, x \in X$.
Question: $x \in \downarrow \text{Post}^*(x_0)$?

Forward method

Coverability:

- Enumerate executions $\downarrow x_0 \xrightarrow{*}_{\widehat{S}} I$,
- Accept if $x \in I$.

Non coverability:

• Enumerate $D \subseteq X$ downward closed, $x_0 \in D$

Termination Coverability

Coverability

Input:
$$(X, \rightarrow, \leq)$$
 a WSTS, $x_0, x \in X$.
Question: $x \in \downarrow \text{Post}^*(x_0)$?

Forward method

Coverability:

- Enumerate executions $\downarrow x_0 \xrightarrow{*}_{\widehat{S}} I$,
- Accept if $x \in I$.

- Enumerate $D \subseteq X$ downward closed, $x_0 \in D$ and $\downarrow \text{Post}_S(D) \subseteq D$,
- Reject if $x \notin D$.

Open questions

• What other applications has the completion?

Open questions

What other applications has the completion?

Boundness and strong control-state maintainability also decidable for infinitely branching WSTS. Other problems decidable?

Open questions

- What other applications has the completion?
- Boundness and strong control-state maintainability also decidable for infinitely branching WSTS. Other problems decidable?
- Algorithms working on the completion more efficient for what WSTS/problems?

Thank you!