Handling Infinitely Branching WSTS

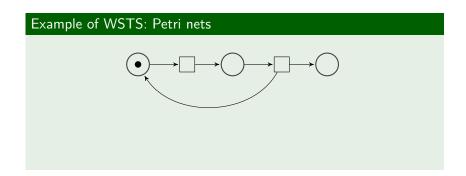
Michael Blondin¹ ², Alain Finkel¹ & Pierre McKenzie ¹ ²

¹LSV, ENS Cachan

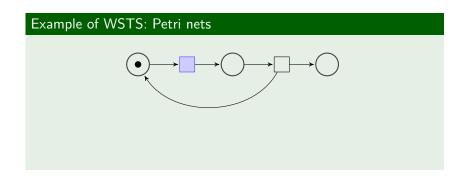
²DIRO, Université de Montréal

July 2, 2014

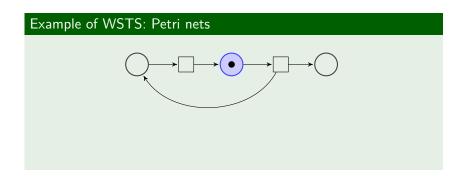
Well-structured transition systems (WSTS) encompass a large number of infinite state systems.



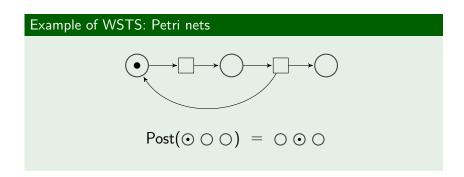
Well-structured transition systems (WSTS) encompass a large number of infinite state systems.

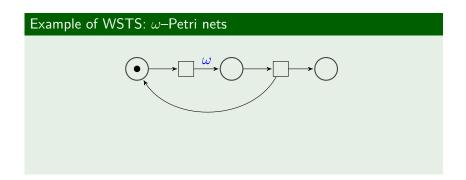


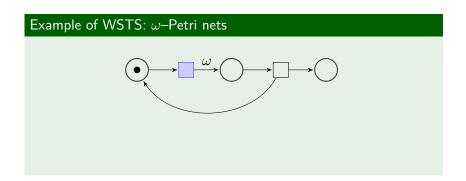
Well-structured transition systems (WSTS) encompass a large number of infinite state systems.

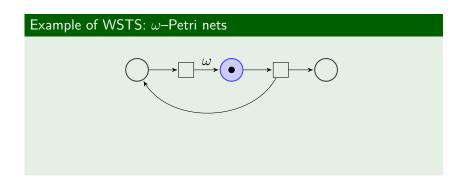


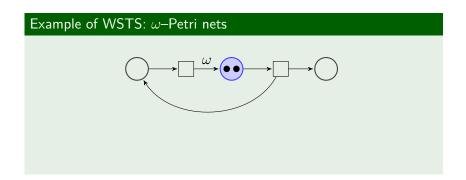
Multiple decidability results are known for finitely branching WSTS.

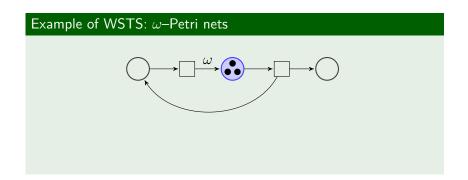


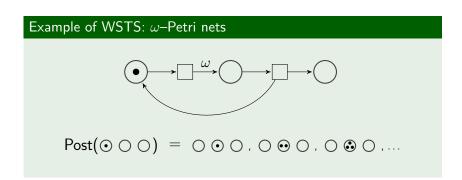












$$S = (X, \rightarrow, \leq)$$
 where

- *X* set,
- $\rightarrow \subseteq X \times X$,
- monotony,
- well-quasi-ordered.

$$S = (X, \rightarrow, \leq)$$
 where

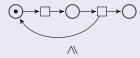
- \blacksquare \mathbb{N}^3 ,
- $\rightarrow \subseteq X \times X$,
- monotony,
- well-quasi-ordered.

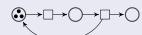
$$S = (X, \rightarrow, \leq)$$
 where

- X set,
- $\longrightarrow \subseteq \mathbb{N}^3 \times \mathbb{N}^3$,
- monotony,
- well-quasi-ordered.

$$S = (X, \rightarrow, \leq)$$
 where

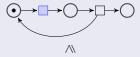
- X set,
- $\rightarrow \subseteq X \times X$,
- monotony,
- well-quasi-ordered.

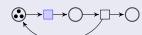




$$S = (X, \rightarrow, \leq)$$
 where

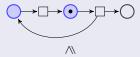
- X set,
- $\rightarrow \subseteq X \times X$,
- monotony,
- well-quasi-ordered.





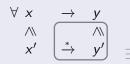
$$S = (X, \rightarrow, \leq)$$
 where

- X set,
- $\rightarrow \subseteq X \times X$,
- monotony,
- well-quasi-ordered.



$$S = (X, \rightarrow, \leq)$$
 where

- X set,
- $\rightarrow \subseteq X \times X$,
- monotony,
- well-quasi-ordered.



$$S = (X, \rightarrow, \leq)$$
 where

- X set,
- $\rightarrow \subseteq X \times X$,
- transitive monotony,
- well-quasi-ordered.

$$S = (X, \rightarrow, \leq)$$
 where

- X set,
- $\rightarrow \subseteq X \times X$,
- strong monotony,
- well-quasi-ordered.

$$S = (X, \rightarrow, \leq)$$
 where

- X set,
- $\rightarrow \subseteq X \times X$,
- monotony,
- well-quasi-ordered:

$$\forall x_0, x_1, \dots \exists i < j \text{ s.t. } x_i \leq x_i.$$

A WSTS (X, \rightarrow, \leq) is finitely branching if Post(x) is finite for every $x \in X$.

A WSTS (X, \rightarrow, \leq) is *finitely branching* if Post(x) is finite for every $x \in X$.

Some finitely branching WSTS

■ Petri nets, vector addition systems,

A WSTS (X, \rightarrow, \leq) is *finitely branching* if Post(x) is finite for every $x \in X$.

Some finitely branching WSTS

- Petri nets, vector addition systems,
- Counter machines with affine updates,

A WSTS (X, \rightarrow, \leq) is *finitely branching* if Post(x) is finite for every $x \in X$.

Some finitely branching WSTS

- Petri nets, vector addition systems,
- Counter machines with affine updates,
- Lossy channel systems (Abdulla, Cerans, Jonsson & Tsay LICS'96),

A WSTS (X, \rightarrow, \leq) is *finitely branching* if Post(x) is finite for every $x \in X$.

Some finitely branching WSTS

- Petri nets, vector addition systems,
- Counter machines with affine updates,
- Lossy channel systems (Abdulla, Cerans, Jonsson & Tsay LICS'96),
- Much more.

A WSTS (X, \rightarrow, \leq) is *finitely branching* if Post(x) is finite for every $x \in X$.

Some infinitely branching WSTS

■ Inserting FIFO automata (Cécé, Finkel, Iyer IC'96),

A WSTS (X, \rightarrow, \leq) is *finitely branching* if Post(x) is finite for every $x \in X$.

Some infinitely branching WSTS

- Inserting FIFO automata (Cécé, Finkel, Iyer IC'96),
- Inserting automata (Bouyer, Markey, Ouaknine, Schnoebelen, Worrell FAC'12),

A WSTS (X, \rightarrow, \leq) is *finitely branching* if Post(x) is finite for every $x \in X$.

Some infinitely branching WSTS

- Inserting FIFO automata (Cécé, Finkel, Iyer IC'96),
- Inserting automata (Bouyer, Markey, Ouaknine, Schnoebelen, Worrell FAC'12),
- \blacksquare ω -Petri nets (Geeraerts, Heussner, Praveen & Raskin PN'13),

A WSTS (X, \rightarrow, \leq) is *finitely branching* if Post(x) is finite for every $x \in X$.

Some infinitely branching WSTS

- Inserting FIFO automata (Cécé, Finkel, Iyer IC'96),
- Inserting automata (Bouyer, Markey, Ouaknine, Schnoebelen, Worrell FAC'12),
- ω -Petri nets (Geeraerts, Heussner, Praveen & Raskin PN'13),
- Parametric WSTS.

We want to study the usual reachability problems for these infinitely branching systems, e.g.,

We want to study the usual reachability problems for these infinitely branching systems, e.g.,

■ Termination,

We want to study the usual reachability problems for these infinitely branching systems, e.g.,

- Termination,
- Coverability,

We want to study the usual reachability problems for these infinitely branching systems, e.g.,

- Termination,
- Coverability,
- Boundedness.

Termination

Input: (X, \rightarrow, \leq) a WSTS, $x_0 \in X$.

Question: $\nexists x_0 \rightarrow x_1 \rightarrow x_2 \rightarrow \dots$?

Termination

Input: (X, \rightarrow, \leq) a WSTS, $x_0 \in X$.

Question: $\sharp x_0 \rightarrow x_1 \rightarrow x_2 \rightarrow \dots$?

Theorem (Finkel & Schnoebelen TCS'01)

Termination is decidable for finitely branching WSTS with transitive monotony.

Termination

Input: (X, \rightarrow, \leq) a WSTS, $x_0 \in X$.

Question: $\nexists x_0 \rightarrow x_1 \rightarrow x_2 \rightarrow \dots$?

Theorem (deduced from Dufourd, Jančar & Schnoebelen ICALP'99)

Termination is <u>undecidable</u> for infinitely branching WSTS.

Strong termination

Input: (X, \rightarrow, \leq) a WSTS, $x_0 \in X$.

Question: $\exists k$ bounding length of executions from x_0 ?

Strong termination

Input: (X, \rightarrow, \leq) a WSTS, $x_0 \in X$.

Question: $\exists k$ bounding length of executions from x_0 ?

Remark

Strong termination and termination are the same in finitely branching WSTS.

Strong termination

Input: (X, \rightarrow, \leq) a WSTS, $x_0 \in X$.

Question: $\exists k$ bounding length of executions from x_0 ?

Theorem (B., Finkel & McKenzie ICALP'14)

Strong termination is decidable for infinitely branching WSTS under some assumptions.

Issues with finite branching techniques

Some techniques for WSTS based on finite reachability trees; impossible for infinite branching.

Some rely on upward closed sets; what about downward closed, in particular with infinite branching?

Issues with finite branching techniques

Some techniques for WSTS based on finite reachability trees; impossible for infinite branching.

Some rely on upward closed sets; what about downward closed, in particular with infinite branching?

A tool

Develop from the WSTS *completion* introduced by Finkel & Goubault-Larrecq 2009.

 $I \subseteq X$ is an *ideal* if

• downward closed: $I = \downarrow I$,



 $I \subseteq X$ is an *ideal* if

- downward closed: $I = \downarrow I$,
- directed: $a, b \in I \implies \exists c \in I \text{ s.t. } a \leq c \text{ and } b \leq c.$



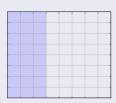
 $I \subseteq X$ is an *ideal* if

- downward closed: $I = \downarrow I$,
- directed: $a, b \in I \implies \exists c \in I \text{ s.t. } a \leq c \text{ and } b \leq c.$



 $I \subseteq X$ is an *ideal* if

- downward closed: $I = \downarrow I$,
- directed: $a, b \in I \implies \exists c \in I \text{ s.t. } a \leq c \text{ and } b \leq c.$



Theorem (Finkel & Goubault-Larrecq ICALP'09; Goubault-Larrecq '14),

$$D$$
 downward closed $\implies D = \bigcup_{\mathsf{finite}} \mathsf{Ideals}$

Theorem (Finkel & Goubault-Larrecq ICALP'09; Goubault-Larrecq '14)

$$D$$
 downward closed $\implies D = \bigcup_{\text{finite}} \text{Ideals}$

Corollary (B., Finkel & McKenzie ICALP'14)

Every downward closed set decomposes <u>canonically</u> as the union of its maximal ideals.

Completion (B., Finkel & McKenzie ICALP'14)

The *completion* of $S=(X,\to_S,\leq)$ is $\widehat{S}=(\widehat{X},\to_{\widehat{S}},\subseteq)$ such that

Completion (B., Finkel & McKenzie ICALP'14)

The completion of $S=(X,\to_S,\leq)$ is $\widehat{S}=(\widehat{X},\to_{\widehat{S}},\subseteq)$ such that

$$\hat{X} = Ideals(X),$$

Completion (B., Finkel & McKenzie ICALP'14)

The completion of $S=(X, \to_S, \leq)$ is $\widehat{S}=(\widehat{X}, \to_{\widehat{S}}, \subseteq)$ such that

- $\widehat{X} = Ideals(X),$
- $I \rightarrow_{\widehat{S}} J$ if $\downarrow Post(I) = \underbrace{\ldots \cup J \cup \ldots}_{\text{canonical decomposition}}$

Let
$$S=(X, \to_S, \leq)$$
 be a WSTS, then $\widehat{S}=(\widehat{X}, \to_{\widehat{S}}, \subseteq)$ such that

 \hat{S} is finitely branching,

Let $S=(X, \to_S, \leq)$ be a WSTS, then $\widehat{S}=(\widehat{X}, \to_{\widehat{S}}, \subseteq)$ such that

- \hat{S} is finitely branching,
- \widehat{S} has (strong) monotony,

Let $S=(X, \to_S, \leq)$ be a WSTS, then $\widehat{S}=(\widehat{X}, \to_{\widehat{S}}, \subseteq)$ such that

- \hat{S} is finitely branching,
- \widehat{S} has (strong) monotony,
- \hat{S} is not always a WSTS (Jančar IPL'99).

Let $S = (X, \rightarrow_S, \leq)$ be a WSTS, then

 \blacksquare if $x \xrightarrow{k}_S y$, then for every ideal $I \supseteq \downarrow x$

Let $S = (X, \rightarrow_S, \leq)$ be a WSTS, then

■ if $x \xrightarrow{k}_{S} y$, then for every ideal $I \supseteq \downarrow x$ there exists an ideal $J \supseteq \downarrow y$

Let $S = (X, \rightarrow_S, \leq)$ be a WSTS, then

• if $x \xrightarrow{k}_S y$, then for every ideal $I \supseteq \downarrow x$ there exists an ideal $J \supseteq \downarrow y$ such that $I \xrightarrow{k}_{\widehat{S}} J$,

- if $x \xrightarrow{k}_{S} y$, then for every ideal $I \supseteq \downarrow x$ there exists an ideal $J \supseteq \downarrow y$ such that $I \xrightarrow{k}_{\widehat{S}} J$,
- if $I \xrightarrow{k}_{\widehat{S}} J$,

- if $x \xrightarrow{k}_{S} y$, then for every ideal $I \supseteq \downarrow x$ there exists an ideal $J \supseteq \downarrow y$ such that $I \xrightarrow{k}_{\widehat{S}} J$,
- if $I \xrightarrow{k}_{\widehat{S}} J$, then for every $y \in J$

- if $x \xrightarrow{k}_{S} y$, then for every ideal $I \supseteq \downarrow x$ there exists an ideal $J \supseteq \downarrow y$ such that $I \xrightarrow{k}_{\widehat{S}} J$,
- if $I \xrightarrow{k}_{\widehat{S}} J$, then for every $y \in J$ there exists $x \in I$

- if $x \xrightarrow{k}_{S} y$, then for every ideal $I \supseteq \downarrow x$ there exists an ideal $J \supseteq \downarrow y$ such that $I \xrightarrow{k}_{\widehat{S}} J$,
- if $I \xrightarrow{k}_{\widehat{S}} J$, then for every $y \in J$ there exists $x \in I$ such that $x \xrightarrow{*}_{S} y' \geq y$.

Let $S = (X, \rightarrow_S, \leq)$ be a WSTS with transitive monotony, then

- if $x \xrightarrow{k}_{S} y$, then for every ideal $I \supseteq \downarrow x$ there exists an ideal $J \supseteq \downarrow y$ such that $I \xrightarrow{k}_{\widehat{S}} J$,
- if $I \xrightarrow{k}_{\widehat{S}} J$, then for every $y \in J$ there exists $x \in I$ such that $x \xrightarrow{\geq k}_{S} y' \geq y$.

Let $S = (X, \rightarrow_S, \leq)$ be a WSTS with strong monotony, then

- if $x \xrightarrow{k}_{S} y$, then for every ideal $I \supseteq \downarrow x$ there exists an ideal $J \supseteq \downarrow y$ such that $I \xrightarrow{k}_{\widehat{S}} J$,
- if $I \xrightarrow{k}_{\widehat{S}} J$, then for every $y \in J$ there exists $x \in I$ such that $x \xrightarrow{k}_{S} y' \geq y$.

Strong termination is decidable for infinitely branching WSTS with transitive monotony and such that \widehat{S} is a post-effective WSTS.

Strong termination is decidable for infinitely branching WSTS with transitive monotony and such that \hat{S} is a post-effective WSTS.

Post-effectiveness

Possible to compute cardinality of

$$\mathsf{Post}(\odot \bigcirc) = \bigcirc \odot \bigcirc, \bigcirc \odot \bigcirc, \bigcirc \odot \bigcirc, \ldots$$

Strong termination is decidable for infinitely branching WSTS with transitive monotony and such that \widehat{S} is a post-effective WSTS.

Proof

Executions bounded in S iff bounded in \hat{S} .

Strong termination is decidable for infinitely branching WSTS with transitive monotony and such that \widehat{S} is a post-effective WSTS.

Proof

- **Executions** bounded in S iff bounded in \hat{S} .
- \widehat{S} finitely branching, can decide termination in \widehat{S} by Finkel & Schnoebelen 2001.

Further results for infinitely branching WSTS

Coverability is decidable for post-effective WSTS,

Further results for infinitely branching WSTS

- Coverability is decidable for post-effective WSTS,
- Boundedness is decidable for post-effective WSTS with strict monotony,

Further results for infinitely branching WSTS

- Coverability is decidable for post-effective WSTS,
- Boundedness is decidable for post-effective WSTS with strict monotony,
- Strong maintainability is decidable for WSTS with strong monotony and such that \hat{S} is a post-effective WSTS.

Further work

■ ∃ general class of infinitely branching WSTS with a Karp-Miller procedure?

Further work

- ∃ general class of infinitely branching WSTS with a Karp-Miller procedure?
- Toward the algorithmics of complete WSTS.

Further work

- ∃ general class of infinitely branching WSTS with a Karp-Miller procedure?
- Toward the algorithmics of complete WSTS.
- What else can we do with the WSTS completion?

Introduction WSTS completion Applications Conclusion

Thank you! Merci!