On Tools for Coverability

Michael Blondin, Christoph Haase, Grégoire Sutre

Part I: QCover

Michael Blondin

Joint work with Alain Finkel, Christoph Haase and Serge Haddad

Verifying safety with Petri nets

Process 1
Process 2

Lamport mutual exclusion "1-bit algorithm"

Verifying safety with Petri nets

Lamport mutual exclusion "1-bit algorithm"

Verifying safety with Petri nets

while True:
$\mathrm{x}=$ True
while y: pass
\# critical section
x = False

while True:
$y=$ True
if x then:
$y=$ False
while x: pass
goto
\# critical section
$\mathrm{y}=$ False

Verifying safety with Petri nets

```
while True:
    x = True
    whiley:pass
    # critical section
    x = False
```


while True:

- $\mathrm{y}=$ True
if x then:
$y=$ False while x: pass goto
\# critical section
$\mathrm{y}=$ False

Verifying safety with Petri nets

while True:
$y=$ True
if x then:
$y=$ False
while x: pass
goto
\# critical section
$y=$ False

Verifying safety with Petri nets

while True:
$\mathrm{x}=$ True
while y: pass
\# critical section
x = False

Verifying safety with Petri nets

while True:	\bigcirc		\bigcirc	while True:
$\mathrm{x}=$ True	\bigcirc	\bigcirc	\bigcirc	- $\mathrm{y}=$ True
while y: pass	\bigcirc	\bigcirc	\bigcirc	if x then:
\# critical section	\bigcirc	\bigcirc	\bigcirc	$y=F a l s e$
$\mathrm{x}=\mathrm{False}$	\bigcirc	-	\bigcirc	while x: pass
			\bigcirc	goto
			\bigcirc	\# critical section
			\bigcirc	$y=$ False

Verifying safety with Petri nets

while True:
x = True
while y: pass
\# critical section
x = False

while True:
$y=$ True
if x then:
$y=$ False
while x: pass
goto
\# critical section
$\mathrm{y}=$ False

Verifying safety with Petri nets

while True:
$y=$ True
if x then:
$y=$ False
while $x:$ pass
goto
\# critical section
$y=$ False

Verifying safety with Petri nets

Processes at both
 critical sections

Verifying safety with Petri nets

Processes at both

critical sections

Verifying safety with Petri nets

Coverability problem

Problem

Input: \quad Petri net \mathcal{N}, initial marking $\boldsymbol{m}_{\mathbf{0}}$, target marking \boldsymbol{m}
Question: Is some $\boldsymbol{m}^{\prime} \geq \boldsymbol{m}$ reachable from \boldsymbol{m}_{0} in \mathcal{N} ?

Coverability problem

Problem

Input: Petri net \mathcal{N}, initial marking m_{0}, target marking m
Question: Is some $\boldsymbol{m}^{\prime} \geq \boldsymbol{m}$ reachable from \boldsymbol{m}_{0} in \mathcal{N} ?

How to solve it?

- Forward: build reachability tree from initial marking
- Backward: find predecessors of markings covering target
- EXPSPACE-complete

Coverability problem

Problem

Input: Petri net \mathcal{N}, initial marking m_{0}, target marking m
Question: Is some $\boldsymbol{m}^{\prime} \geq \boldsymbol{m}$ reachable from \boldsymbol{m}_{0} in \mathcal{N} ?

How to solve it?

Karp \& Miller '69

- Forward: build reachability tree from initial marking
- Backward: find predecessors of markings covering target
- EXPSPACE-complete

Coverability problem

Problem

Input: Petri net \mathcal{N}, initial marking m_{0}, target marking m
Question: Is some $\boldsymbol{m}^{\prime} \geq \boldsymbol{m}$ reachable from \boldsymbol{m}_{0} in \mathcal{N} ?

How to solve it?

- Forward: build reachability tree from initial marking
- Backward: find predecessors of markings covering target
- EXPSPACE-complete

Coverability problem

Problem

Input: Petri net \mathcal{N}, initial marking m_{0}, target marking m
Question: Is some $\boldsymbol{m}^{\prime} \geq \boldsymbol{m}$ reachable from \boldsymbol{m}_{0} in \mathcal{N} ?

How to solve it?

Lipton '76, Rackoff '78

- Forward: build reachability tree from initial marking
- Backward: find predecessors of markings covering target
- EXPSPACE-complete

Coverability problem

Problem

Input: Petri net \mathcal{N}, initial marking m_{0}, target marking m
Question: Is some $\boldsymbol{m}^{\prime} \geq \boldsymbol{m}$ reachable from \boldsymbol{m}_{0} in \mathcal{N} ?

How to solve it?

- Forward: build reachability tree from initial marking
- Backward. find predecessors of markings covering target
- EXPSPACE-complete

Backward algorithm

Backward algorithm

What initial markings may cover $(0,2) ?$

Backward algorithm

Basis size may become doubly exponential
(Bozzelli \& Ganty '11)

Backward algorithm

We only care about some initial marking...

Backward algorithm

We only care about some initial marking...
Speedup by pruning basis!

(Discrete) Petri nets

Continuity to over-approximate coverability

\boldsymbol{m} is coverable from \boldsymbol{m}_{0}

$$
\Downarrow
$$

\boldsymbol{m} is \mathbb{Q}-coverable from \boldsymbol{m}_{0}

Continuity to over-approximate coverability

\boldsymbol{m} is coverable from \boldsymbol{m}_{0}

EXPSPACE \Downarrow \boldsymbol{m} is \mathbb{Q}-coverable from \boldsymbol{m}_{0}

$$
\Downarrow \pi
$$

PTIME

\boldsymbol{m}_{0} and \boldsymbol{m} satisfy conditions of

Esparza, Ledesma-Garza, Majumdar, Meyer \& Niksic '14

Continuity to over-approximate coverability

\boldsymbol{m} is not coverable from \boldsymbol{m}_{0}

 Safety介
\boldsymbol{m} is not \mathbb{Q}-coverable from \boldsymbol{m}_{0}

Coverability in continuous Petri nets

Fix some continuous Petri net (P, T, Pre, Post)

Coverability in continuous Petri nets

Fix some continuous Petri net (P, T, Pre, Post)

- $m^{\prime}=m_{0}+($ Post - Pre $) \cdot v$

Coverability in continuous Petri nets

Fix some continuous Petri net (P, T, Pre, Post)

- $\boldsymbol{m}^{\prime}=\boldsymbol{m}_{\mathbf{0}}+($ Post - Pre $) \cdot \mathbf{v}$
- some execution from m_{0} fires exactly $\left\{t \in T: \boldsymbol{v}_{t}>0\right\}$

Coverability in continuous Petri nets

Fix some continuous Petri net (P, T, Pre, Post)

- $\boldsymbol{m}^{\prime}=\boldsymbol{m}_{\mathbf{0}}+($ Post - Pre $) \cdot \boldsymbol{v}$
- some execution from \boldsymbol{m}_{0} fires exactly $\left\{t \in T: \boldsymbol{v}_{t}>0\right\}$
- some execution to m^{\prime} fires exactly $\left\{t \in T: \boldsymbol{v}_{t}>0\right\}$

Coverability in continuous Petri nets

$$
\begin{aligned}
& \boldsymbol{m}_{0}=(2,0) \\
& \boldsymbol{m}=(0,2)
\end{aligned}
$$

\boldsymbol{m} is \mathbb{Q}-coverable from m_{0} iff...
Fraca \& Haddad ' 13 there exist $\boldsymbol{m}^{\prime} \geq \boldsymbol{m}$ and $\boldsymbol{v}_{a}, \boldsymbol{v}_{b} \in \mathbb{Q} \geq 0$ such that

- $\boldsymbol{m}^{\prime}=\boldsymbol{m}_{\mathbf{0}}+($ Post - Pre $) \cdot v$
- some execution from \boldsymbol{m}_{0} fires exactly $\left\{t \in\{a, b\}: \boldsymbol{v}_{t}>0\right\}$
- some execution to \boldsymbol{m}^{\prime} fires exactly $\left\{t \in\{a, b\}: \boldsymbol{v}_{t}>0\right\}$

Coverability in continuous Petri nets

$$
\begin{aligned}
& \boldsymbol{m}_{0}=(2,0) \\
& \boldsymbol{m}=(0,2)
\end{aligned}
$$

\boldsymbol{m} is \mathbb{Q}-coverable from m_{0} iff...
Fraca \& Haddad ' 13
there exist $\boldsymbol{m}^{\prime} \geq \boldsymbol{m}$ and $\boldsymbol{v}_{a}, \boldsymbol{v}_{b} \in \mathbb{Q} \geq 0$ such that

- $0 \leq \boldsymbol{v}_{b}+\boldsymbol{v}_{a} \leq 2$
$2 \leq \boldsymbol{v}_{b}$
- some execution from \boldsymbol{m}_{0} fires exactly $\left\{t \in\{a, b\}: \boldsymbol{v}_{t}>0\right\}$
- some execution to \boldsymbol{m}^{\prime} fires exactly $\left\{t \in\{a, b\}: \mathbf{v}_{t}>0\right\}$

Coverability in continuous Petri nets

$$
\begin{aligned}
& \boldsymbol{m}_{0}=(2,0) \\
& \boldsymbol{m}=(0,2)
\end{aligned}
$$

\boldsymbol{m} is \mathbb{Q}-coverable from m_{0} iff...
Fraca \& Haddad ' 13
there exist $\boldsymbol{m}^{\prime} \geq \boldsymbol{m}$ and $\mathbf{v}_{a}, \boldsymbol{v}_{b} \in \mathbb{Q} \geq 0$ such that

- $0 \leq \boldsymbol{v}_{b}+\boldsymbol{v}_{a} \leq 2 \Longrightarrow \boldsymbol{v}_{a}=0, \boldsymbol{v}_{b}=2, m^{\prime}=\boldsymbol{m}$
$2 \leq \boldsymbol{v}_{b}$
- some execution from \boldsymbol{m}_{0} fires exactly $\left\{t \in\{a, b\}: \boldsymbol{v}_{t}>0\right\}$
- some execution to \boldsymbol{m}^{\prime} fires exactly $\left\{t \in\{a, b\}: \mathbf{v}_{t}>0\right\}$

Coverability in continuous Petri nets

$$
\begin{aligned}
& \boldsymbol{m}_{0}=(2,0) \\
& \boldsymbol{m}=(0,2)
\end{aligned}
$$

m is \mathbb{Q}-coverable from m_{0} iff...
Fraca \& Haddad ' 13
there exist $\boldsymbol{m}^{\prime} \geq \boldsymbol{m}$ and $\mathbf{v}_{a}, \boldsymbol{v}_{b} \in \mathbb{Q} \geq 0$ such that

- $0 \leq \boldsymbol{v}_{b}+\boldsymbol{v}_{a} \leq 2 \Longrightarrow \boldsymbol{v}_{a}=0, \boldsymbol{v}_{b}=2, \boldsymbol{m}^{\prime}=\boldsymbol{m}$

$$
2 \leq \boldsymbol{v}_{b}
$$

- some execution from \boldsymbol{m}_{0} fires exactly $\left\{t \in\{a, b\}: \boldsymbol{v}_{t}>0\right\}$
- some execution to \boldsymbol{m}^{\prime} fires exactly $\left\{t \in\{a, b\}: \mathbf{v}_{t}>0\right\}$

Coverability in continuous Petri nets

$$
\begin{aligned}
& \boldsymbol{m}_{0}=(2,0) \\
& \boldsymbol{m}=(0,2)
\end{aligned}
$$

- $0 \leq \boldsymbol{v}_{b}+\boldsymbol{v}_{a} \leq 2 \Longrightarrow \boldsymbol{v}_{a}=0, \boldsymbol{v}_{b}=2, \boldsymbol{m}^{\prime}=\boldsymbol{m}$

$$
2 \leq \boldsymbol{v}_{b}
$$

- some execution from \boldsymbol{m}_{0} fires exactly $\left\{t \in\{a, b\}: \boldsymbol{v}_{t}>0\right\}$
- some execution to \boldsymbol{m}^{\prime} fires exactly $\left\{t \in\{a, b\}: \boldsymbol{v}_{t}>0\right\}$

Coverability in continuous Petri nets

$$
\begin{aligned}
& \boldsymbol{m}_{0}=(2,0) \\
& \boldsymbol{m}=(0,2)
\end{aligned}
$$

. $0 \leq \boldsymbol{v}_{b}+\boldsymbol{v}_{a} \leq 2 \Longrightarrow \boldsymbol{v}_{a}=0, \boldsymbol{v}_{b}=2, \boldsymbol{m}^{\prime}=\boldsymbol{m}$

$$
2 \leq \boldsymbol{v}_{b}
$$

- some execution from \boldsymbol{m}_{0} fires exactly $\{b\}$
- some execution to \boldsymbol{m}^{\prime} fires exactly $\{b\}$

Coverability in continuous Petri nets

$$
\begin{aligned}
& \boldsymbol{m}_{0}=(2,0) \\
& \boldsymbol{m}=(0,2)
\end{aligned}
$$

- $0 \leq \boldsymbol{v}_{b}+\boldsymbol{v}_{a} \leq 2 \Longrightarrow \boldsymbol{v}_{a}=0, \boldsymbol{v}_{b}=2, \boldsymbol{m}^{\prime}=\boldsymbol{m}$

$$
2 \leq \boldsymbol{v}_{b}
$$

- some execution from \boldsymbol{m}_{0} fires exactly $\{b\}$
- some execution to \boldsymbol{m}^{\prime} fires exactly $\{b\}$

Coverability in continuous Petri nets

$$
\begin{aligned}
& \boldsymbol{m}_{0}=(2,0) \\
& \boldsymbol{m}=(0,2)
\end{aligned}
$$

- $0 \leq \boldsymbol{v}_{b}+\boldsymbol{v}_{a} \leq 2 \Longrightarrow \boldsymbol{v}_{a}=0, \boldsymbol{v}_{b}=2, \boldsymbol{m}^{\prime}=\boldsymbol{m}$

$$
2 \leq \boldsymbol{v}_{b}
$$

- some execution from \boldsymbol{m}_{0} fires exactly $\{b\}$
- some execution to \boldsymbol{m}^{\prime} fires exactly $\{b\}$

Coverability in continuous Petri nets

$$
\begin{aligned}
& \boldsymbol{m}_{0}=(2,0) \\
& \boldsymbol{m}=(0,2)
\end{aligned}
$$

- $0 \leq \boldsymbol{v}_{b}+\boldsymbol{v}_{a} \leq 2 \Longrightarrow \boldsymbol{v}_{a}=0, \boldsymbol{v}_{b}=2, \boldsymbol{m}^{\prime}=\boldsymbol{m}$

$$
2 \leq \boldsymbol{v}_{b}
$$

- some execution from \boldsymbol{m}_{0} fires exactly $\{b\}$
- some execution to m^{\prime} fires exactly $\{b\}$

Coverability in continuous Petri nets

$$
\begin{aligned}
& \boldsymbol{m}_{0}=(2,0) \\
& \boldsymbol{m}=(0,2)
\end{aligned}
$$

m is \mathbb{Q}-coverable from m_{0} iff...
Fraca \& Haddad ' 13
there exist $\boldsymbol{m}^{\prime} \geq \boldsymbol{m}$ and $\boldsymbol{v}_{a}, \boldsymbol{v}_{b} \in \mathbb{Q} \geq 0$ such that

- $0 \leq \boldsymbol{v}_{b}+\boldsymbol{v}_{a} \leq 2 \Longrightarrow \boldsymbol{v}_{a}=0, \boldsymbol{v}_{b}=2, \boldsymbol{m}^{\prime}=\boldsymbol{m}$ $2 \leq \boldsymbol{v}_{b}$
- some execution from \boldsymbol{m}_{0} fires exactly $\{b\}$
- some execution to m^{\prime} fires exactly $\{b\}$

Coverability in continuous Petri nets

$$
\begin{aligned}
& \boldsymbol{m}_{0}=(2,0) \\
& \boldsymbol{m}=(0,2)
\end{aligned}
$$

. $0 \leq \boldsymbol{v}_{b}+\boldsymbol{v}_{a} \leq 2 \Longrightarrow \boldsymbol{v}_{a}=0, \boldsymbol{v}_{b}=2, \boldsymbol{m}^{\prime}=\boldsymbol{m}$

$$
2 \leq \boldsymbol{v}_{b}
$$

- some execution from \boldsymbol{m}_{0} fires exactly $\{b\}$
- some execution to \boldsymbol{m}^{\prime} fires exactly $\{b\}$

Coverability in continuous Peri nets

Not Q-coverable from

m is \mathbb{Q}-coverable from m_{0} of...

there exist $\boldsymbol{m}^{\prime} \geq \boldsymbol{m}$ and $\mathbf{v}_{a}, \boldsymbol{v}_{b} \in \mathbb{Q} \geq 0$ such that
. $0 \leq \boldsymbol{v}_{b}+\boldsymbol{v}_{a} \leq 2 \Longrightarrow \boldsymbol{v}_{a}=0, \boldsymbol{v}_{b}=2, \boldsymbol{m}^{\prime}=\boldsymbol{m}$ $2 \leq \boldsymbol{v}_{b}$

- some execution from \boldsymbol{m}_{0} fires exactly $\{b\}$
- some execution to \boldsymbol{m}^{\prime} fires exactly $\{b\}$

Coverability in continuous Petri nets

Polynomial time!

m is \mathbb{Q}-coverable from m_{0} iff...

- $\boldsymbol{m}^{\prime}=\boldsymbol{m}_{\mathbf{0}}+($ Post - Pre $) \cdot \mathbf{v}$
- some execution from \boldsymbol{m}_{0} fires exactly $\left\{t \in T: \boldsymbol{v}_{t}>0\right\}$
- some execution to \boldsymbol{m}^{\prime} fires exactly $\left\{t \in T: \boldsymbol{v}_{\boldsymbol{t}}>0\right\}$

Coverability in continuous Petri nets

Logical characterization

\mathbb{Q}-coverability can be encoded in a linear size formula of

$$
\text { existential } \mathrm{FO}\left(\mathbb{Q}_{\geq 0},+,<\right)
$$

m is \mathbb{Q}-coverable from m_{0} iff...

Fraca \& Haddad ' 13 there exist $\boldsymbol{m}^{\prime} \geq \boldsymbol{m}$ and $\boldsymbol{v} \in \mathbb{Q}_{\geq 0}^{\top}$ such that

- $\boldsymbol{m}^{\prime}=\boldsymbol{m}_{\mathbf{0}}+($ Post - Pre $) \cdot \mathbf{v}$
- some execution from \boldsymbol{m}_{0} fires exactly $\left\{t \in T: \boldsymbol{v}_{t}>0\right\}$
- some execution to \boldsymbol{m}^{\prime} fires exactly $\left\{t \in T: \boldsymbol{v}_{\boldsymbol{t}}>0\right\}$

Coverability in continuous Petri nets

Logical characterization

\mathbb{Q}-coverability can be encoded in a linear size formula of existential $\operatorname{FO}(\mathbb{N}, \quad+,<)$

m is \mathbb{Q}-coverable from m_{0} iff...

- $\boldsymbol{m}^{\prime}=\boldsymbol{m}_{\mathbf{0}}+($ Post - Pre $) \cdot \mathbf{v}$
- some execution from \boldsymbol{m}_{0} fires exactly $\left\{t \in T: \boldsymbol{v}_{t}>0\right\}$
- some execution to \boldsymbol{m}^{\prime} fires exactly $\left\{t \in T: \boldsymbol{v}_{t}>0\right\}$

Coverability in continuous Petri nets

Logical characterization

\mathbb{Q}-coverability can be encoded in a linear size formula of existential $\mathrm{FO}\left(\mathbb{Q}_{\geq 0},+,<\right)$

m is \mathbb{Q}-coverable from m_{0} iff...

- $m^{\prime}=m_{0}+($ Post - Pre) $\cdot v \quad$ Straightforward
- some execution from \boldsymbol{m}_{0} fires exactly $\left\{t \in T: \boldsymbol{v}_{t}>0\right\}$
- some execution to \boldsymbol{m}^{\prime} fires exactly $\left\{t \in T: \boldsymbol{v}_{t}>0\right\}$

Coverability in continuous Petri nets

Logical characterization

\mathbb{Q}-coverability can be encoded in a linear size formula of existential $\mathrm{FO}\left(\mathbb{Q}_{\geq 0},+,<\right)$

m is \mathbb{Q}-coverable from m_{0} iff...

Fraca \& Haddad ' 13 there exist $\boldsymbol{m}^{\prime} \geq \boldsymbol{m}$ and $\boldsymbol{v} \in \mathbb{Q}_{\geq 0}^{T}$ such that

- $\boldsymbol{m}^{\prime}=\boldsymbol{m}_{\mathbf{0}}+($ Post - Pre $) \cdot \boldsymbol{v}$ More subtle
- some execution from m_{0} fires exactly $\left\{t \in T: \boldsymbol{v}_{t}>0\right\}$
- some execution to m^{\prime} fires exactly $\left\{t \in T: \boldsymbol{v}_{t}>0\right\}$

Encoding the firing set conditions

Testing whether some transitions can be fired from initial marking

Encoding the firing set conditions

Testing whether some transitions can be fired from initial marking

Encoding the firing set conditions

Testing whether some transitions can be fired from initial marking

Encoding the firing set conditions

Simulate a "breadth-first" transitions firing

Encoding the firing set conditions

Simulate a "breadth-first" transitions firing by numbering places/transitions

Encoding the firing set conditions

Simulate a "breadth-first" transitions firing by numbering places/transitions (Verma, Seidl \& Schwentick '05)

Encoding the firing set conditions

Simulate a "breadth-first" transitions firing by numbering places/transitions (Verma, Seidl \& Schwentick '05)

Encoding the firing set conditions

Simulate a "breadth-first" transitions firing by numbering places/transitions (Verma, Seidl \& Schwentick '05)

Encoding the firing set conditions

Simulate a "breadth-first" transitions firing by numbering places/transitions (Verma, Seidl \& Schwentick '05)

Encoding the firing set conditions

Simulate a "breadth-first" transitions firing by numbering places/transitions (Verma, Seidl \& Schwentick '05)

Encoding the firing set conditions

Simulate a "breadth-first" transitions firing by numbering places/transitions (Verma, Seidl \& Schwentick '05)

Encoding the firing set conditions

Simulate a "breadth-first" transitions firing by numbering places/transitions (Verma, Seidl \& Schwentick '05)

Encoding the firing set conditions

Simulate a "breadth-first" transitions firing by numbering places/transitions (Verma, Seidl \& Schwentick '05)

Encoding the firing set conditions

Simulate a "breadth-first" transitions firing by numbering places/transitions (Verma, Seidl \& Schwentick '05)

Encoding the firing set conditions

Simulate a "breadth-first" transitions firing by numbering places/transitions (Verma, Seidl \& Schwentick '05)

Encoding the firing set conditions

Backward coverability modulo \mathbb{Q}-coverability

if target marking \boldsymbol{m} is not \mathbb{Q}-coverable : return False

Backward coverability modulo \mathbb{Q}-coverability

if target marking \boldsymbol{m} is not \mathbb{Q}-coverable:

return False

$X=\{$ target marking $\boldsymbol{m}\}$
while (initial marking \boldsymbol{m}_{0} not covered by X):
$B=$ markings obtained from X one step backward
$B=B \backslash\{\boldsymbol{b} \in B: \neg \varphi(\boldsymbol{b})\}$
if $B=\emptyset$: return False
$\varphi(\boldsymbol{x})=\varphi(\boldsymbol{x}) \wedge \bigwedge_{\text {pruned } \boldsymbol{b}} \mathbf{x} \nsupseteq \boldsymbol{b}$
$X=X \cup B$
return True

Backward coverability modulo \mathbb{Q}-coverability

if target marking \boldsymbol{m} is not \mathbb{Q}-coverable: return False
$X=\{$ target marking $\boldsymbol{m}\}$
while (initial marking \boldsymbol{m}_{0} not covered by X):
$B=$ markings obtained from X one step backward
$B=B \backslash\{\boldsymbol{b} \in B: \neg \varphi(\boldsymbol{b})\}$
if $B=\emptyset$: return False
$\varphi(\boldsymbol{x})=\varphi(\boldsymbol{x}) \wedge \bigwedge_{\text {pruned } \boldsymbol{b}} \mathbf{x} \nsupseteq \boldsymbol{b}$
$X=X \cup B$
return True

Backward coverability modulo \mathbb{Q}-coverability

if target marking \boldsymbol{m} is not \mathbb{Q}-coverable:

return False

$X=\{$ target marking $\boldsymbol{m}\}$
while (initial marking m_{0} not covered by X):
$B=$ markings obtained from X one step backward
$B=B \backslash\{\boldsymbol{b} \in B: \neg \varphi(\boldsymbol{b})\}$
if $B=\emptyset$: return False
$\varphi(\boldsymbol{x})=\varphi(\boldsymbol{x}) \wedge \bigwedge_{\text {pruned } \boldsymbol{b}} \mathbf{x} \nsupseteq \boldsymbol{b}$
$X=X \cup B$
return True

Backward coverability modulo \mathbb{Q}-coverability

if target marking \boldsymbol{m} is not \mathbb{Q}-coverable:

return False

$X=\{$ target marking $\boldsymbol{m}\}$
while (initial marking \boldsymbol{m}_{0} not covered by X):
$B=$ markings obtained from X one step backward
$B=B \backslash\{\boldsymbol{b} \in B: \neg \varphi(\boldsymbol{b})\}$
if $B=\emptyset$: return False
$\varphi(\boldsymbol{x})=\varphi(\boldsymbol{x}) \wedge \bigwedge_{\text {pruned } \boldsymbol{b}} \mathbf{x} \nsupseteq \boldsymbol{b}$
$X=X \cup B$
return True

Backward coverability modulo \mathbb{Q}-coverability

if target marking \boldsymbol{m} is not \mathbb{Q}-coverable:

return False

$X=\{$ target marking $\boldsymbol{m}\}$
while (initial marking \boldsymbol{m}_{0} not covered by X):
$B=$ markings obtained from X one step backward
$B=B \backslash\{\boldsymbol{b} \in B: \neg \varphi(\boldsymbol{b})\}$ Q-coverability pruning
if $B=\emptyset:$ return False
$\varphi(\boldsymbol{x})=\varphi(\boldsymbol{x}) \wedge \bigwedge_{\text {pruned } \boldsymbol{b}} \boldsymbol{x} \nsupseteq \boldsymbol{b}$
$X=X \cup B$
return True

Backward coverability modulo \mathbb{Q}-coverability

if target marking \boldsymbol{m} is not \mathbb{Q}-coverable:

return False

$X=\{$ target marking $\boldsymbol{m}\}$
while (initial marking \boldsymbol{m}_{0} not covered by X):
$B=$ markings obtained from X one step backward
$B=B \backslash\{\boldsymbol{b} \in B: \neg \varphi(\boldsymbol{b})\}$
if $B=\emptyset$: return False
$\varphi(\boldsymbol{x})=\varphi(\boldsymbol{x}) \wedge \bigwedge_{\text {pruned } \boldsymbol{b}} \mathbf{x} \nsupseteq \boldsymbol{b}$
$X=X \cup B$
return True

Backward coverability modulo \mathbb{Q}-coverability

if target marking \boldsymbol{m} is not \mathbb{Q}-coverable:

return False

$X=\{$ target marking $\boldsymbol{m}\}$
while (initial marking \boldsymbol{m}_{0} not covered by X):
$B=$ markings obtained from X one step backward
$B=B \backslash\{\boldsymbol{b} \in B: \neg \varphi(\boldsymbol{b})\}$
if $B=\emptyset$: return False SMT solver guidance
$\varphi(\boldsymbol{x})=\varphi(\boldsymbol{x}) \wedge \bigwedge_{\text {pruned } \boldsymbol{b}} \mathbf{x} \nsupseteq \boldsymbol{b}$
$X=X \cup B$
return True

Backward coverability modulo \mathbb{Q}-coverability

if target marking \boldsymbol{m} is not \mathbb{Q}-coverable:

return False

$X=\{$ target marking $\boldsymbol{m}\}$
while (initial marking \boldsymbol{m}_{0} not covered by X):
$B=$ markings obtained from X one step backward
$B=B \backslash\{\boldsymbol{b} \in B: \neg \varphi(\boldsymbol{b})\}$
if $B=\emptyset$: return False
$\varphi(\boldsymbol{x})=\varphi(\boldsymbol{x}) \wedge \bigwedge_{\text {pruned } \boldsymbol{b}} \mathbf{x} \nsupseteq \boldsymbol{b}$
$X=X \cup B$
return True

Backward coverability modulo \mathbb{Q}-coverability

if target marking \boldsymbol{m} is not \mathbb{Q}-coverable:

return False

$X=\{$ target marking $\boldsymbol{m}\}$
while (initial marking \boldsymbol{m}_{0} not covered by X):
$B=$ markings obtained from X one step backward
$B=B \backslash\{\boldsymbol{b} \in B: \neg \varphi(\boldsymbol{b})\}$
if $B=\emptyset$: return False
$\varphi(\boldsymbol{x})=\varphi(\boldsymbol{x}) \wedge \bigwedge_{\text {pruned } \boldsymbol{b}} \mathbf{x} \nsupseteq \boldsymbol{b}$
$X=X \cup B$
return True

An implementation: QCover

- python ${ }^{\text {" }}$ + SMT solver Z3 (Microsoft Research)
https://github.com/blondimi/qcover

Tested on...

- 176 Petri nets (avg. 1054 places, 8458 transitions)
- C/Erlang programs with threads
- Mutual exclusion protocols, communication protocols, etc.
- Message analysis of a medical and a bug tracking system

An implementation: QCover

Instances proven safe

Q QCover \triangle Petrinizer bfc \quad mist

An implementation: QCover

Instances proven safe

An implementation: QCover

Instances proven safe

Instances proven safe or unsafe

An implementation: QCover

Markings pruning efficiency across all iterations

inv. cumulative \% pruned markings

Possible extensions

- Combine our approach with a forward algorithm to better handle unsafe instances

Possible extensions

- Combine our approach with a forward algorithm to better handle unsafe instances

running time in seconds

Possible extensions

- Combine our approach with a forward algorithm to better handle unsafe instances
- Use more efficient data structures, e.g. sharing trees
(Delzanno, Raskin \& Van Begin '04)

Possible extensions

- Combine our approach with a forward algorithm to better handle unsafe instances
- Use more efficient data structures, e.g. sharing trees
(Delzanno, Raskin \& Van Begin '04)
- Support Petri nets extensions

Part II: ICover

Grégoire Sutre

Joint work with Thomas Geffroy and Jérôme Leroux

Verifying Systems with Petri Nets

Verifying Systems with Petri Nets

Verifying Systems with Petri Nets

Coverability in Petri nets

$$
\text { init } \xrightarrow{*} m \geq \text { target? }
$$

Decidability - Complexity

- Decidable (Karp and Miller - 1969)
- ExpSpace-complete (Lipton - 1976, Rackoff - 1978)

Coverability in Petri nets

$$
\text { init } \xrightarrow{*} m \geq \text { target? }
$$

Tools

Mist (Ganty, Geeraerts, Raskin, Van Begin, ...)

- interval sharing trees
- backward search + place invariants
- abstraction refinement

BFC (Kaiser, Kroening, Wahl)
Target set widening + forward Karp-Miller
Petrinizer (Esparza, Ledesma-Garza, Majumdar, Meyer, Niksic)
SMT, state equation + traps
QCover (Blondin, Finkel, Haase, Haddad)
SMT, continuous reachability + backward search

ICover: Generalisation of QCover with Invariants

Assumption:
(1) I is an invariant (I contains all reachable markings)
(2) I is a downward closed set
$U_{0}:=\uparrow($ target $\cap I)$

ICover: Generalisation of QCover with Invariants

Assumption:
(1) I is an invariant (I contains all reachable markings)
(2) I is a downward closed set
$U_{0}:=\emptyset:$ Safe!

ICover: Generalisation of QCover with Invariants

Assumption:
(1) I is an invariant ($/$ contains all reachable markings)
(2) I is a downward closed set
$U_{0}:=\uparrow($ target $\cap I)$
$U_{1}:=U_{0} \cup \uparrow\left(\operatorname{pre}\left(U_{0}\right) \cap I\right)$

ICover: Generalisation of QCover with Invariants

Assumption:
(1) I is an invariant ($/$ contains all reachable markings)
(2) I is a downward closed set

$$
\begin{aligned}
& U_{0}:=\uparrow(\text { target } \cap I) \\
& U_{1}:=U_{0} \cup \uparrow\left(\operatorname{pre}\left(U_{0}\right) \cap I\right) \\
& U_{2}:=U_{1} \cup \uparrow\left(\operatorname{pre}\left(U_{1}\right) \cap I\right)
\end{aligned}
$$

ICover: Generalisation of QCover with Invariants

Assumption:
(1) I is an invariant ($/$ contains all reachable markings)
(2) I is a downward closed set
$U_{0}:=\uparrow($ target $\cap I)$
$U_{1}:=U_{0} \cup \uparrow\left(\operatorname{pre}\left(U_{0}\right) \cap I\right)$
$U_{2}:=U_{1} \cup \uparrow\left(\operatorname{pre}\left(U_{1}\right) \cap I\right)$
$U_{k+1}:=U_{k} \cup \uparrow\left(\operatorname{pre}\left(U_{k}\right) \cap I\right)$

$U_{n+1}=U_{n}$

Always terminates
(Dickson's lemma)

Backward Algorithm with Invariant-Based Pruning

```
if target \inI then
    B\leftarrow{target };
else
    return False;
end
while minit }\not\in\uparrowB\mathrm{ do
    N\leftarrow\operatorname{min}(\operatorname{pre}(\uparrowB))\\uparrowB
    P\leftarrowN\capI
    if P}=\emptyset\mathrm{ then
        return False;
    end
    B\leftarrow\operatorname{min}(B\cupP);
end
return True;
```

- l is an invariant
- I is a downward closed set

Invariant: Sign Analysis

Invariant: $p_{q}=0 \wedge p_{r}=0 \wedge p_{s}=0$

Invariant: State Inequation

$$
p_{1} \xrightarrow{t_{1}} \xrightarrow{t_{2}} \xrightarrow{t_{3}} \ldots \xrightarrow{t_{2}} \xrightarrow{t_{3}} r
$$

$$
\begin{gathered}
\Delta\left(t_{1}\right)=p_{2}-p_{1} \\
\Delta\left(t_{2}\right)=2 p_{3}-p_{2} \\
\Delta\left(t_{3}\right)=2 p_{2}-p_{3}
\end{gathered}
$$

Invariant: State Inequation

$$
p_{1} \xrightarrow{t_{1}} \xrightarrow{t_{2}} \xrightarrow{t_{3}} \ldots \xrightarrow{t_{2}} \xrightarrow{t_{3}} r
$$

$$
\begin{gathered}
\Delta\left(t_{1}\right)=p_{2}-p_{1} \\
\Delta\left(t_{2}\right)=2 p_{3}-p_{2} \\
\Delta\left(t_{3}\right)=2 p_{2}-p_{3}
\end{gathered}
$$

x_{i} : number of occurrences of t_{i}

$$
r=\text { init }+x_{1} \Delta\left(t_{1}\right)+x_{2} \Delta\left(t_{2}\right)+x_{3} \Delta\left(t_{3}\right)
$$

Invariant: State Inequation

$$
p_{1} \xrightarrow{t_{1}} \xrightarrow{t_{2}} \xrightarrow{t_{3}} \ldots \xrightarrow{t_{2}} \xrightarrow{t_{3}} r \geq m
$$

$$
\begin{gathered}
\Delta\left(t_{1}\right)=p_{2}-p_{1} \\
\Delta\left(t_{2}\right)=2 p_{3}-p_{2} \\
\Delta\left(t_{3}\right)=2 p_{2}-p_{3}
\end{gathered}
$$

x_{i} : number of occurrences of t_{i}

$$
m \leq r=\text { init }+x_{1} \Delta\left(t_{1}\right)+x_{2} \Delta\left(t_{2}\right)+x_{3} \Delta\left(t_{3}\right)
$$

Invariant: State Inequation

$$
p_{1} \xrightarrow{t_{1}} \xrightarrow{t_{2}} \xrightarrow{t_{3}} \ldots \xrightarrow{t_{2}} \xrightarrow{t_{3}} r \geq m
$$

$$
\begin{gathered}
\Delta\left(t_{1}\right)=p_{2}-p_{1} \\
\Delta\left(t_{2}\right)=2 p_{3}-p_{2} \\
\Delta\left(t_{3}\right)=2 p_{2}-p_{3}
\end{gathered}
$$

x_{i} : number of occurrences of t_{i}

$$
m \leq r=\text { init }+x_{1} \Delta\left(t_{1}\right)+x_{2} \Delta\left(t_{2}\right)+x_{3} \Delta\left(t_{3}\right)
$$

Invariant

$I:=\left\{m \mid \exists x\right.$, init $\left.+\sum_{t \in T} x(t) \Delta(t) \geq m\right\}$

Invariant: State Inequation

Invariant

$I:=\left\{m \mid \exists x\right.$, init $\left.+\sum_{t \in T} x(t) \Delta(t) \geq m\right\}$

Invariant: State Inequation

Invariant

$I:=\left\{m \mid \exists x\right.$, init $\left.+\sum_{t \in T} x(t) \Delta(t) \geq m\right\}$

Experimentations

New Tool: ICover

- Based on QCover written in Python (~ 900 lines of codes)
- Both use the SMT-Solver z3 (Bjorner et al. - 2007)
- ICover available as a patch of Q Cover (~ 400 lines of codes)
- dept-info.labri.u-bordeaux.fr/~tgeffroy/icover

Results

- Benchmarks (176 instances) used by QCover and others
- QCover solved 106 / 115 safe instances (2000 seconds per instance)
- QCover solved 37 / 61 unsafe instances (idem)
- ICover solved as much safe instances and one more unsafe
- It works! 10000 seconds (QCover) to 5000 seconds (ICover)

Experimentations: Sign Analysis As A Pre-processing

Results of Pre-processing

places in the original Petri net
\% of transitions left

transitions in the original Petri net

Experimental results: Pruning with State Inequation vs

Time

time for Pre $+Q$ Cover (s)

Efficiency

\# markings pruned in QCover

State Inequation More Precise with Pre-Processing

- Can't cover $p_{1}+p_{2}+p_{3}$ from p_{1}
- State inequation: $p_{1} \leq 1$ not precise enough
- State inequation: $p_{1}+p_{2}+p_{3} \leq 1$ precise enough

State Inequation More Precise with Pre-Processing

- Can't cover $p_{1}+p_{2}+p_{3}$ from p_{1}
- State inequation: $p_{1} \leq 1$ not precise enough
- State inequation: $p_{1}+p_{2}+p_{3} \leq 1$ precise enough

State Inequation vs $--\rightarrow$

- $p_{1}+p_{2}$ not coverable from p_{1} with \rightarrow
- $p_{1}+p_{2}$ satisfy the state inequation: $p_{1} \leq 1$

Theorem (Recalde, Teruel and Silva - 1999)
 In a pre-processed Petri net m satisfies the state inequation iff there exists $m^{\prime} \geq m$ and a sequence m_{0}, m_{1}, \ldots such that init $\cdots \cdots m_{k}$ for every k and such that m_{0}, m_{1}, \ldots converges toward m^{\prime}.

State Inequation vs $--\rightarrow$

- $p_{1}+p_{2}$ not coverable from p_{1} with \rightarrow
- $p_{1}+p_{2}$ satisfy the state inequation: $p_{1} \leq 1$

Theorem (Recalde, Teruel and Silva - 1999)
 In a pre-processed Petri net m satisfies the state inequation iff there exists $m^{\prime} \geq m$ and a sequence m_{0}, m_{1}, \ldots such that init $\cdots \cdots m_{k}$ for every k and such that m_{0}, m_{1}, \ldots converges toward m^{\prime}.

State Inequation vs $--\rightarrow$

- $p_{1}+p_{2}$ not coverable from p_{1} with \rightarrow
- $p_{1}+p_{2}$ satisfy the state inequation: $p_{1} \leq 1$

Theorem (Recalde, Teruel and Silva - 1999)
 In a pre-processed Petri net m satisfies the state inequation iff there exists $m^{\prime} \geq m$ and a sequence m_{0}, m_{1}, \ldots such that init $\cdots \cdots m_{k}$ for every k and such that m_{0}, m_{1}, \ldots converges toward m^{\prime}.

State Inequation vs $--\rightarrow$

- $p_{1}+p_{2}$ not coverable from p_{1} with \rightarrow
- $p_{1}+p_{2}$ satisfy the state inequation: $p_{1} \leq 1$

Theorem (Recalde, Teruel and Silva - 1999)

In a pre-processed Petri net m satisfies the state inequation iff there exists $m^{\prime} \geq m$ and a sequence m_{0}, m_{1}, \ldots such that init $\cdots m_{k}$ for every k and such that m_{0}, m_{1}, \ldots converges toward m^{\prime}.

State Inequation vs $--\rightarrow$

- $p_{1}+p_{2}$ not coverable from p_{1} with \rightarrow
- $p_{1}+p_{2}$ satisfy the state inequation: $p_{1} \leq 1$

Theorem (Recalde, Teruel and Silva - 1999)
 In a pre-processed Petri net m satisfies the state inequation iff there exists $m^{\prime} \geq m$ and a sequence m_{0}, m_{1}, \ldots such that init $\cdots \cdots m_{k}$ for every k and such that m_{0}, m_{1}, \ldots converges toward m^{\prime}.

State Inequation vs $-\rightarrow$

- $p_{1}+p_{2}$ not coverable from p_{1} with \rightarrow
- $p_{1}+p_{2}$ satisfy the state inequation: $p_{1} \leq 1$

Theorem (Recalde, Teruel and Silva - 1999)

In a pre-processed Petri net, m satisfies the state inequation iff there exists $m^{\prime} \geq m$ and a sequence m_{0}, m_{1}, \ldots such that init ${ }^{--->} m_{k}$ for every k and such that m_{0}, m_{1}, \ldots converges toward m^{\prime}.

Conclusion

New

- Backward coverability algorithm with invariant-based pruning
- Pre-processing is a cheap way to accelerate verification
- In practice, in a pre-processed Petri net, state inequation is almost as good as \rightarrow coverability

Future work

- Find other cheap pre-processings and invariants
- Apply to other classes of well-structured transition systems

Part III: Best practices

Christoph Haase

General remarks

Tools...

- increase visibility outside your peer group
- help understanding what is relevant to other people
- generate feedback for theoretical work
- can convince reviewers
- attract students

Before you start

- Choice of language
- interpreted vs. compiled
- statically vs. dynamically typed
- Bindings for SMT solver
- Performance of memory operations

Software engineering aspects

- Object oriented programming
- Unit tests
- Documentation
- Use profilers to find bottlenecks
- One of the most important aspects
- Use other people's benchmarks
- Contact authors if necessary
- Pitfalls:
- Parsing can entail large costs
- Avoid unfair treatment of competitors
- Choose evaluation metrics wisely

Availability

- Obtain institutional clearance $\in \mathbf{F}_{\omega}$
- Choose license: BSD preferred by industry
- Use public code repositories, e.g. GitHub
- Identify relevant Petri net subclasses and extensions, e.g.
- business processes
- process mining
- population protocols
- thread transition systems
- Submit to and integrate into existing software competitions

The SMT solver is always faster than you!

Thank you! Diolch!

