On Tools for Coverability

Michael Blondin, Christoph Haase, Grégoire Sutre

Part I: QCover

Michael Blondin

Joint work with Alain Finkel, Christoph Haase and Serge Haddad

Lamport mutual exclusion "1-bit algorithm"

Lamport mutual exclusion "1-bit algorithm"

while True: x = True while y: pass # critical section x = False while True: y = True if x then: y = False while x: pass goto # critical section y = False

while True: y = True if x then: y = False while x: pass goto # critical section y = False

while True:	\odot
x = True	0
whiley:pass	0
# critical section	0
x = False	0

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•<

while True: y = True if x then: y = False while x: pass goto ★ # critical section y = False

•

 \odot

 \bigcirc

Ο

Ο

 \bigcirc

●○○○<

while True: y = True if X then: y = False while X: pass goto # critical section y = False

while True: x = True while y: pass # critical section x = False

) () () () ()

 \odot

 \bigcirc

Ο

Ο

 \bigcirc

 \odot

Ο

Ο

Ο

Ο

Ο

Ο

Ο

while True: x = True while y: pass # critical section x = False

while True: x = True while y: pass # critical section x = False

Input: Petri net N, initial marking m_0 , target marking m

Question: Is some $m' \ge m$ reachable from m_0 in \mathcal{N} ?

Input: Petri net N, initial marking m_0 , target marking mQuestion: Is some $m' \ge m$ reachable from m_0 in N?

How to solve it?

- Forward: build reachability tree from initial marking
- Backward: find predecessors of markings covering target
- EXPSPACE-complete

Input: Petri net N, initial marking m_0 , target marking mQuestion: Is some $m' \ge m$ reachable from m_0 in N?

How to solve it?

Karp & Miller '69

- Forward: build reachability tree from initial marking
- Backward: find predecessors of markings covering target
- EXPSPACE-complete

Input: Petri net N, initial marking m_0 , target marking mQuestion: Is some $m' \ge m$ reachable from m_0 in N?

How to solve it? Arnold & Latteux '78, Abdulla *et al.* '96

- Forward: build reachability tree from initial marking
- Backward: find predecessors of markings covering target
- EXPSPACE-complete

Input: Petri net N, initial marking m_0 , target marking mQuestion: Is some $m' \ge m$ reachable from m_0 in N?

How to solve it?

Lipton '76, Rackoff '78

- Forward: build reachability tree from initial marking
- · Backward: find predecessors of markings covering target
- EXPSPACE-complete

Input: Petri net N, initial marking m_0 , target marking mQuestion: Is some $m' \ge m$ reachable from m_0 in N?

How to solve it?

- Forward: build reachability tree from initial marking
- Backward find predecessors of markings covering target
- EXPSPACE-complete

What initial markings may cover (0, 2)?

Basis size may become doubly exponential (Bozzelli & Ganty '11)

We only care about some initial marking...

We only care about some initial marking... Speedup by pruning basis!

\boldsymbol{m} is coverable from \boldsymbol{m}_0

\boldsymbol{m} is \mathbb{Q} -coverable from \boldsymbol{m}_0

Continuity to over-approximate coverability

m₀ and **m** satisfy conditions of Esparza, Ledesma-Garza, Majumdar, Meyer & Niksic '14

NP / EXPTIME

Continuity to over-approximate coverability

m is not coverable from m_0 Safety

m is not \mathbb{Q} -coverable from \mathbf{m}_0

m is \mathbb{Q} -coverable from m_0 iff...

Fraca & Haddad '13

<i>m</i> is \mathbb{Q} -coverable from m_0 iff		Fraca & Haddad '13
there exist $m' \ge m$ and	$\bm{v} \in \mathbb{Q}_{\geq 0}^{T}$	such that
• $m' = m_0 + (Post - Pre) \cdot v$		

m is Q-coverable from m_0 iff...Fraca & Haddad '13there exist $m' \ge m$ and $v \in \mathbb{Q}_{\ge 0}^T$ such that• $m' = m_0 + (Post - Pre) \cdot v$

• some execution from m_0 fires exactly $\{t \in T : v_t > 0\}$

m is Q-coverable from m_0 iff...Fraca & Haddad '13there exist $m' \ge m$ and $v \in \mathbb{Q}_{\ge 0}^T$ such that• $m' = m_0 + (\text{Post} - \text{Pre}) \cdot v$

- some execution from \boldsymbol{m}_0 fires exactly $\{t \in T : \boldsymbol{v}_t > 0\}$
- some execution to m' fires exactly $\{t \in T : v_t > 0\}$

m is Q-coverable from m_0 iff...Fraca & Haddad '13there exist $m' \ge m$ and $v_a, v_b \in \mathbb{Q}_{\ge 0}$ such that• $m' = m_0 + (\text{Post} - \text{Pre}) \cdot v$

- some execution from m_0 fires exactly $\{t \in \{a, b\} : v_t > 0\}$
- some execution to m' fires exactly $\{t \in \{a, b\} : v_t > 0\}$

m is Q-coverable from m_0 iff...Fraca & Haddad '13there exist $m' \ge m$ and $v_a, v_b \in \mathbb{Q}_{\ge 0}$ such that. $0 \le v_b + v_a \le 2$ $2 \le v_b$. some execution from m_0 fires exactly $\{t \in \{a, b\} : v_t > 0\}$

m is Q-coverable from m_0 iff...Fraca & Haddad '13there exist $m' \ge m$ and $v_a, v_b \in \mathbb{Q}_{\ge 0}$ such that• $0 \le v_b + v_a \le 2$ $2 \le v_b$ • some execution from m_0 fires exactly $\{t \in \{a, b\} : v_t > 0\}$

m is Q-coverable from m_0 iff...Fraca & Haddad '13there exist $m' \ge m$ and $v_a, v_b \in \mathbb{Q}_{\ge 0}$ such that• $0 \le v_b + v_a \le 2$ $2 \le v_b$ • some execution from m_0 fires exactly $\{t \in \{a, b\} : v_t > 0\}$

m is Q-coverable from m_0 iff...Fraca & Haddad '13there exist $m' \ge m$ and $\mathbf{v}_a, \mathbf{v}_b \in \mathbb{Q}_{\ge 0}$ such that• $0 \le \mathbf{v}_b + \mathbf{v}_a \le 2$ $2 \le \mathbf{v}_b$ • some execution from m_0 fires exactly $\{t \in \{a, b\} : \mathbf{v}_t > 0\}$

m is Q-coverable from m_0 iff...Fraca & Haddad '13there exist $m' \ge m$ and $v_a, v_b \in \mathbb{Q}_{\ge 0}$ such that• $0 \le v_b + v_a \le 2$ $2 \le v_b$ • some execution from m_0 fires exactly $\{b\}$

m is Q-coverable from m_0 iff...Fraca & Haddad '13there exist $m' \ge m$ and $v_a, v_b \in \mathbb{Q}_{\ge 0}$ such that $0 \le v_b + v_a \le 2$ $2 \le v_b$ • some execution from m_0 fires exactly $\{b\}$

m is Q-coverable from m_0 iff...Frace & Haddad '13there exist $m' \ge m$ and $v_a, v_b \in \mathbb{Q}_{\ge 0}$ such that• $0 \le v_b + v_a \le 2$ $2 \le v_b$ • some execution from m_0 fires exactly $\{b\}$

m is Q-coverable from m_0 iff...Frace & Haddad '13there exist $m' \ge m$ and $v_a, v_b \in \mathbb{Q}_{\ge 0}$ such that• $0 \le v_b + v_a \le 2$ $2 \le v_b$ • some execution from m_0 fires exactly $\{b\}$

m is Q-coverable from m_0 iff...Frace & Haddad '13there exist $m' \ge m$ and $v_a, v_b \in \mathbb{Q}_{\ge 0}$ such that• $0 \le v_b + v_a \le 2$ $2 \le v_b$ • some execution from m_0 fires exactly $\{b\}$

m is \mathbb{O} -coverable from m_0 iff... Fraca & Haddad '13 there exist $\mathbf{m}' \geq \mathbf{m}$ and $\mathbf{v}_a, \mathbf{v}_b \in \mathbb{Q}_{>0}$ such that . $0 \leq \mathbf{v}_b + \mathbf{v}_a \leq 2 \implies \mathbf{v}_a = 0, \ \mathbf{v}_b = 2, \ \mathbf{m}' = \mathbf{m}$ $2 < v_{h}$ • some execution from m_0 fires exactly $\{b\}$ Х

Polynomial time !-

m is \mathbb{Q} -coverable from m_0 iff...Fraca & Haddad '13there exist $m' \geq m$ and $v \in \mathbb{Q}_{\geq 0}^T$ such that

•
$$m' = m_0 + (Post - Pre) \cdot v$$

- some execution from \boldsymbol{m}_0 fires exactly $\{t \in T : \boldsymbol{v}_t > 0\}$
- some execution to m' fires exactly $\{t \in T : v_t > 0\}$

Logical characterization

TACAS'16

 $\mathbb Q$ -coverability can be encoded in a linear size formula of existential FO($\mathbb Q_{\geq 0},+,<)$

m is \mathbb{Q} -coverable from m_0 iff...Fraca & Haddad '13there exist $m' \geq m$ and $v \in \mathbb{Q}_{\geq 0}^T$ such that

•
$$m' = m_0 + (Post - Pre) \cdot v$$

- some execution from \boldsymbol{m}_0 fires exactly $\{t \in T : \boldsymbol{v}_t > 0\}$
- some execution to m' fires exactly $\{t \in T : v_t > 0\}$

Logical characterization

TACAS'16

 $\mathbb Q\text{-}coverability$ can be encoded in a linear size formula of existential FO($\mathbb Q_{\geq 0},+,<)$

- some execution from \boldsymbol{m}_0 fires exactly $\{t \in T : \boldsymbol{v}_t > 0\}$
- some execution to m' fires exactly $\{t \in T : v_t > 0\}$

Logical characterization

TACAS'16

 $\mathbb Q$ -coverability can be encoded in a linear size formula of existential FO($\mathbb Q_{\geq 0},+,<)$

Testing whether some transitions can be fired from initial marking

Testing whether some transitions can be fired from initial marking

Testing whether some transitions can be fired from initial marking

Simulate a "breadth-first" transitions firing

Simulate a "breadth-first" transitions firing by numbering places/transitions (Verma, Seidl & Schwentick '05)

if target marking \boldsymbol{m} is not \mathbb{Q} -coverable:

return False

Polynomial time

if target marking m is not Q-coverable:
 return False

 $X = \{ target marking m \}$

while (initial marking m_0 not covered by X):

B = markings obtained from X one step backward

 $B = B \setminus \{ \boldsymbol{b} \in B : \neg \varphi(\boldsymbol{b}) \}$

if $B = \emptyset$: return False

 $\varphi(\mathbf{x}) = \varphi(\mathbf{x}) \land \bigwedge_{\text{pruned } \mathbf{b}} \mathbf{x} \succeq \mathbf{b}$

 $X = X \cup B$

if target marking m is not Q-coverable:
 return False

 $X = \{ target marking m \}$

while (initial marking m_0 not covered by X):

B = markings obtained from X one step backward $B = B \setminus \{ \boldsymbol{b} \in B : \neg \varphi(\boldsymbol{b}) \}$ if $B = \emptyset$: return False $\varphi(\boldsymbol{x}) = \varphi(\boldsymbol{x}) \land \bigwedge_{\text{pruned } \boldsymbol{b}} \boldsymbol{x} \succeq \boldsymbol{b}$ $X = X \cup B$

if target marking m is not Q-coverable:
 return False

 $X = \{ target marking m \}$

while (initial marking m_0 not covered by X):

B = markings obtained from X one step backward $B = B \setminus \{ \boldsymbol{b} \in B : \neg \varphi(\boldsymbol{b}) \}$ if $B = \emptyset$: return False $\varphi(\boldsymbol{x}) = \varphi(\boldsymbol{x}) \land \bigwedge_{\text{pruned } \boldsymbol{b}} \boldsymbol{x} \not\geq \boldsymbol{b}$ $X = X \cup B$

if target marking m is not Q-coverable:
 return False

 $X = \{ target marking m \}$

while (initial marking m_0 not covered by X):

B = markings obtained from X one step backward $B = B \setminus \{ \boldsymbol{b} \in B : \neg \varphi(\boldsymbol{b}) \}$ if $B = \emptyset$: return False $\varphi(\boldsymbol{x}) = \varphi(\boldsymbol{x}) \land \bigwedge_{\text{pruned } \boldsymbol{b}} \boldsymbol{x} \not\geq \boldsymbol{b}$ $X = X \cup B$

if target marking m is not Q-coverable:
 return False

 $X = \{ target marking m \}$

while (initial marking m_0 not covered by X):

B = markings obtained from X one step backward

 $B = B \setminus \{ b \in B : \neg \varphi(b) \}$ if $B = \emptyset$: return False $\varphi(\mathbf{x}) = \varphi(\mathbf{x}) \land \bigwedge_{\text{pruned } b} \mathbf{x} \not\geq b$ $B = B \setminus \{ b \in B : \neg \varphi(b) \}$ (better than poly. time) $\varphi(\mathbf{x}) = \varphi(\mathbf{x}) \land \bigwedge_{\text{pruned } b} \mathbf{x} \not\geq b$

 $X = X \cup B$

if target marking m is not Q-coverable:
 return False

 $X = \{ target marking m \}$

while (initial marking m_0 not covered by X):

B = markings obtained from X one step backward

 $B = B \setminus \{ \boldsymbol{b} \in B : \neg \varphi(\boldsymbol{b}) \}$

if $B = \emptyset$: return False

 $\varphi(\mathbf{x}) = \varphi(\mathbf{x}) \land \bigwedge_{\text{pruned } \mathbf{b}} \mathbf{x} \not\geq \mathbf{b}$ $\mathbf{X} = \mathbf{X} \cup \mathbf{B}$

if target marking m is not Q-coverable:
 return False

 $X = \{ target marking m \}$

while (initial marking m_0 not covered by X):

B = markings obtained from X one step backward $B = B \setminus \{ \mathbf{b} \in B : \neg \varphi(\mathbf{b}) \}$ if $B = \emptyset$: return False SMT solver guidance $\varphi(\mathbf{x}) = \varphi(\mathbf{x}) \land \bigwedge_{\text{pruned } \mathbf{b}} \mathbf{x} \succeq \mathbf{b} \longleftarrow$ $X = X \cup B$

if target marking m is not Q-coverable:
 return False

 $X = \{ target marking m \}$

while (initial marking m_0 not covered by X):

B = markings obtained from X one step backward

 $B = B \setminus \{ \boldsymbol{b} \in B : \neg \varphi(\boldsymbol{b}) \}$

if $B = \emptyset$: return False

 $\varphi(\mathbf{x}) = \varphi(\mathbf{x}) \land \bigwedge_{\text{pruned } \mathbf{b}} \mathbf{x} \not\geq \mathbf{b}$ $\mathbf{x} = \mathbf{x} \cup \mathbf{B}$

if target marking m is not Q-coverable:
 return False

 $X = \{ target marking m \}$

while (initial marking m_0 not covered by X):

B = markings obtained from X one step backward

 $B = B \setminus \{ \boldsymbol{b} \in B : \neg \varphi(\boldsymbol{b}) \}$

if $B = \emptyset$: return False

 $\varphi(\mathbf{x}) = \varphi(\mathbf{x}) \land \bigwedge_{\text{pruned } \mathbf{b}} \mathbf{x} \succeq \mathbf{b}$

 $X = X \cup B$

Python[™] + SMT solver Z3 (Microsoft Research)

https://github.com/blondimi/qcover

Tested on...

- 176 Petri nets (avg. 1054 places, 8458 transitions)
- C/Erlang programs with threads
- Mutual exclusion protocols, communication protocols, etc.
- Message analysis of a medical and a bug tracking system

Instances proven safe

Instances proven safe

Instances proven safe

Instances proven safe or unsafe

Markings pruning efficiency across all iterations

• Combine our approach with a forward algorithm to better handle unsafe instances

 Combine our approach with a forward algorithm to better handle unsafe instances

- Combine our approach with a forward algorithm to better handle unsafe instances
- Use more efficient data structures, *e.g.* sharing trees (Delzanno, Raskin & Van Begin '04)

- Combine our approach with a forward algorithm to better handle unsafe instances
- Use more efficient data structures, *e.g.* sharing trees (Delzanno, Raskin & Van Begin '04)
- Support Petri nets extensions

Part II: ICover

Grégoire Sutre

Joint work with Thomas Geffroy and Jérôme Leroux

Verifying Systems with Petri Nets

Verifying Systems with Petri Nets

Verifying Systems with Petri Nets

init $\xrightarrow{*}$ *m* \geq *target*?

Decidability - Complexity

- Decidable (Karp and Miller 1969)
- EXPSPACE-complete (Lipton 1976, Rackoff 1978)

init $\xrightarrow{*}$ *m* \geq *target*?

Assumption:

- I is an invariant (I contains all reachable markings)
- I is a downward closed set

 $U_0 := \uparrow (target \cap I)$

Assumption:

- *I* is an invariant (*I* contains all reachable markings)
- I is a downward closed set

 $U_0 := \emptyset$: Safe !

Assumption:

- *I* is an invariant (*I* contains all reachable markings)
- I is a downward closed set

 $U_0 := \uparrow (target \cap I)$

 $\textit{U}_1:=\textit{U}_0\cup {\uparrow}(\textit{pre}(\textit{U}_0)\cap\textit{I})$

Assumption:

- *I* is an invariant (*I* contains all reachable markings)
- I is a downward closed set

 $U_0 := \uparrow (target \cap I)$

 $U_1 := U_0 \cup \uparrow (pre(U_0) \cap I)$ $U_2 := U_1 \cup \uparrow (pre(U_1) \cap I)$

Assumption:

- *I* is an invariant (*I* contains all reachable markings)
- I is a downward closed set

 $U_0 := \uparrow (target \cap I)$

 $U_1 := U_0 \cup \uparrow (pre(U_0) \cap I)$ $U_2 := U_1 \cup \uparrow (pre(U_1) \cap I)$

 $U_{k+1} := U_k \cup \uparrow (pre(U_k) \cap I)$

Always terminates (Dickson's lemma)


```
if target \in I then
     B \leftarrow \{target\};
else
     return False;
end
while m_{init} \notin \uparrow B do
     N \leftarrow min(pre(\uparrow B)) \setminus \uparrow B
     P \leftarrow N \cap I
     if P = \emptyset then
          return False;
     end
     B \leftarrow \min(B \cup P);
end
```

return True;

- I is an invariant
- *I* is a downward closed set

$$p_1 \xrightarrow{t_1} \xrightarrow{t_2} \xrightarrow{t_3} \dots \xrightarrow{t_2} \xrightarrow{t_3} r$$

$$\Delta(t_1) = p_2 - p_1$$

 $\Delta(t_2) = 2p_3 - p_2$
 $\Delta(t_3) = 2p_2 - p_3$

$$p_1 \xrightarrow{t_1} \xrightarrow{t_2} \xrightarrow{t_3} \dots \xrightarrow{t_2} \xrightarrow{t_3} r$$

$$\Delta(t_1) = p_2 - p_1$$

 $\Delta(t_2) = 2p_3 - p_2$
 $\Delta(t_3) = 2p_2 - p_3$

 x_i : number of occurrences of t_i $r = init + x_1 \Delta(t_1) + x_2 \Delta(t_2) + x_3 \Delta(t_3)$

$$p_1 \xrightarrow{t_1} \xrightarrow{t_2} \xrightarrow{t_3} \dots \xrightarrow{t_2} \xrightarrow{t_3} r \ge m$$

$$\Delta(t_1) = p_2 - p_1$$

 $\Delta(t_2) = 2p_3 - p_2$
 $\Delta(t_3) = 2p_2 - p_3$
number of occurrences of

 x_i : number of occurrences of t_i $m \le r = init + x_1 \Delta(t_1) + x_2 \Delta(t_2) + x_3 \Delta(t_3)$

$$p_1 \xrightarrow{t_1} \xrightarrow{t_2} \xrightarrow{t_3} \dots \xrightarrow{t_2} \xrightarrow{t_3} r \ge m$$

$$\Delta(t_1) = p_2 - p_1$$

$$\Delta(t_2) = 2p_3 - p_2$$

$$\Delta(t_3) = 2p_2 - p_3$$

$$x_i: \text{ number of occurrences of } t_i$$

$$m \le r = init + x_1\Delta(t_1) + x_2\Delta(t_2) + x_3\Delta(t_3)$$

Invariant

$$I := \{m \mid \exists x, init + \sum_{t \in T} x(t) \Delta(t) \ge m\}$$

7/14

$$p_1 \xrightarrow{t_1} \xrightarrow{t_2} \xrightarrow{t_3} \dots \xrightarrow{t_2} \xrightarrow{t_3} r \ge m$$

$$\Delta(t_1) = p_2 - p_1$$

$$\Delta(t_2) = 2p_3 - p_2$$

$$\Delta(t_3) = 2p_2 - p_3$$

$$\left\{egin{array}{l} x_1, x_2, x_3 \geq 0 \ m(p_1) \leq 1-x_1 \ m(p_2) \leq x_1-x_2+2x_3 \ m(p_3) \leq 2x_2-x_3 \end{array}
ight.$$

$$x_i$$
: number of occurrences of t_i
 $m \le r = init + x_1 \Delta(t_1) + x_2 \Delta(t_2) + x_3 \Delta(t_3)$

Invariant

$$I := \{m \mid \exists x, init + \sum_{t \in T} x(t)\Delta(t) \ge m\}$$

$$p_1 \xrightarrow{t_1} \xrightarrow{t_2} \xrightarrow{t_3} \dots \xrightarrow{t_2} \xrightarrow{t_3} r \ge m$$

 $\Delta(t_1) = p_2 - p_1$ $\Delta(t_2) = 2p_3 - p_2$ $\Delta(t_3) = 2p_2 - p_3$ *x_i*: number of occurrences of *t_i*

 $p_1 \leq 1$

 $m \leq r = init + x_1 \Delta(t_1) + x_2 \Delta(t_2) + x_3 \Delta(t_3)$

Invariant

 $I := \{m \mid \exists x, init + \sum_{t \in T} x(t) \Delta(t) \ge m\}$

New Tool: ICover

- Based on *QCover* written in Python (~900 lines of codes)
- Both use the SMT-Solver z3 (Bjorner et al. 2007)
- ICover available as a patch of QCover (~400 lines of codes)
- o dept-info.labri.u-bordeaux.fr/~tgeffroy/icover

Results

- Benchmarks (176 instances) used by QCover and others
- QCover solved 106 / 115 safe instances (2000 seconds per instance)
- QCover solved 37 / 61 unsafe instances (idem)
- *ICover* solved as much safe instances and one more unsafe
- It works ! 10 000 seconds (QCover) to 5 000 seconds (ICover)

% of places left

places in the original Petri net

% of transitions left

transitions in the original Petri net

State Inequation More Precise with Pre-Processing

- Can't cover $p_1 + p_2 + p_3$ from p_1
- State inequation: $p_1 \leq 1$ not precise enough
- State inequation: $p_1 + p_2 + p_3 \le 1$ precise enough

State Inequation More Precise with Pre-Processing

- Can't cover $p_1 + p_2 + p_3$ from p_1
- State inequation: $p_1 \leq 1$ not precise enough
- State inequation: $p_1 + p_2 + p_3 \le 1$ precise enough

- *p*₁ + *p*₂ not coverable from *p*₁
 with --→
- *p*₁ + *p*₂ satisfy the state inequation: *p*₁ ≤ 1

Theorem (Recalde, Teruel and Silva - 1999)

- *p*₁ + *p*₂ not coverable from *p*₁
 with --→
- *p*₁ + *p*₂ satisfy the state inequation: *p*₁ ≤ 1

Theorem (Recalde, Teruel and Silva - 1999)

- *p*₁ + *p*₂ not coverable from *p*₁
 with --→
- *p*₁ + *p*₂ satisfy the state inequation: *p*₁ ≤ 1

Theorem (Recalde, Teruel and Silva - 1999)

- *p*₁ + *p*₂ not coverable from *p*₁
 with --→
- *p*₁ + *p*₂ satisfy the state inequation: *p*₁ ≤ 1

Theorem (Recalde, Teruel and Silva - 1999)

- *p*₁ + *p*₂ not coverable from *p*₁
 with --→
- *p*₁ + *p*₂ satisfy the state inequation: *p*₁ ≤ 1

Theorem (Recalde, Teruel and Silva - 1999)

- *p*₁ + *p*₂ not coverable from *p*₁
 with --→
- *p*₁ + *p*₂ satisfy the state inequation: *p*₁ ≤ 1

Theorem (Recalde, Teruel and Silva - 1999)

New

- Backward coverability algorithm with invariant-based pruning
- Pre-processing is a cheap way to accelerate verification
- In practice, in a pre-processed Petri net, state inequation is almost as good as --+ coverability

Future work

- Find other cheap pre-processings and invariants
- Apply to other classes of well-structured transition systems

Part III: Best practices

Christoph Haase

Tools...

- increase visibility outside your peer group
- help understanding what is relevant to other people
- generate feedback for theoretical work
- can convince reviewers
- attract students

- Choice of language
 - interpreted vs. compiled
 - statically vs. dynamically typed
- Bindings for SMT solver
- Performance of memory operations

Software engineering aspects

- Object oriented programming
- Unit tests
- Documentation
- Use profilers to find bottlenecks

- One of the most important aspects
- Use other people's benchmarks
- Contact authors if necessary
- Pitfalls:
 - Parsing can entail large costs
 - Avoid unfair treatment of competitors
 - Choose evaluation metrics wisely

- Obtain institutional clearance $\in \mathbf{F}_{\omega}$
- Choose license: BSD preferred by industry
- Use public code repositories, e.g. GitHub

- Identify relevant Petri net subclasses and extensions, e.g.
 - business processes
 - process mining
 - population protocols
 - thread transition systems
- Submit to and integrate into existing software competitions

The SMT solver is always faster than you!

Thank you! Diolch!