
On Tools for Coverability
.

Michael Blondin, Christoph Haase, Grégoire Sutre

.

Part I: QCover
Michael Blondin

Joint work with Alain Finkel, Christoph Haase and Serge Haddad

0/10

Verifying safety with Petri nets

...

Process 1

.

..while True:

..

.

x = True
..while

.

y: pass
..# ..critical section

..

.

x = False

.

..

......

.

....

..

...........

..

.......

..

.

..

..

...

Process 2

.

..while True:
.... ..

.

y = True
..if

.

x then:
..

.

y = False
..while

.

x: pass
..goto ..

..# ..critical section
..

.

y = False

..

Coverability problem

.
..Processes at both ..⇐⇒

..each≥ 1
..critical sections≥ 0

..

Lamport mutual exclusion "1-bit algorithm"

1/10

Verifying safety with Petri nets

...

Process 1

.

..while True:

..

.

x = True
..while

.

y: pass
..# ..critical section

..

.

x = False

.

..

......

.

....

..

...........

..

.......

..

.

..

..

...

Process 2

.

..while True:
.... ..

.

y = True
..if

.

x then:
..

.

y = False
..while

.

x: pass
..goto ..

..# ..critical section
..

.

y = False

..

Coverability problem

.
..Processes at both ..⇐⇒

..each≥ 1
..critical sections≥ 0

..

Lamport mutual exclusion "1-bit algorithm"

1/10

Verifying safety with Petri nets

...

Process 1

.

..while True:

..

.

x = True
..while

.

y: pass
..# ..critical section

..

.

x = False

.

..

......

.

....

..

...........

..

.......

..

.

..

..

...

Process 2

.

..while True:
.... ..

.

y = True
..if

.

x then:
..

.

y = False
..while

.

x: pass
..goto ..

..# ..critical section
..

.

y = False

..

Coverability problem

.
..Processes at both ..⇐⇒

..each≥ 1
..critical sections≥ 0

..

Lamport mutual exclusion "1-bit algorithm"

1/10

Verifying safety with Petri nets

...

Process 1

.

..while True:

..

.

x = True
..while

.

y: pass
..# ..critical section

..

.

x = False

.........

.

....

..

...........

..

.......

..

.

..

..

...

Process 2

.

..while True:
.... ..

.

y = True
..if

.

x then:
..

.

y = False
..while

.

x: pass
..goto ..

..# ..critical section
..

.

y = False

..

Coverability problem

.
..Processes at both ..⇐⇒

..each≥ 1
..critical sections≥ 0

..

Lamport mutual exclusion "1-bit algorithm"

1/10

Verifying safety with Petri nets

...

Process 1

.

..while True:

..

.

x = True
..while

.

y: pass
..# ..critical section

..

.

x = False

.........

.

..................

.

.......

..

.

..

..

...

Process 2

.

..while True:
.... ..

.

y = True
..if

.

x then:
..

.

y = False
..while

.

x: pass
..goto ..

..# ..critical section
..

.

y = False

..

Coverability problem

.
..Processes at both ..⇐⇒

..each≥ 1
..critical sections≥ 0

..

Lamport mutual exclusion "1-bit algorithm"

1/10

Verifying safety with Petri nets

...

Process 1

.

..while True:

...x = True
..while

.

y: pass
..# ..critical section

...x = False

.........

.

..................

.

..........

..

..

...

Process 2

.

..while True:
.... ..

.

y = True
..if .x then:
..

.

y = False
..while .x: pass

..goto ..
..# ..critical section

..

.

y = False

..

Coverability problem

.
..Processes at both ..⇐⇒

..each≥ 1
..critical sections≥ 0

..

Lamport mutual exclusion "1-bit algorithm"

1/10

Verifying safety with Petri nets

...

Process 1

.

..while True:

..

.

x = True
..while .y: pass

..# ..critical section
..

.

x = False

.........

.

..................

.

..

...

Process 2

.

..while True:
.... ...y = True

..if

.

x then:
...y = False
..while

.

x: pass
..goto ..

..# ..critical section
...y = False

..

Coverability problem

.
..Processes at both ..⇐⇒

..each≥ 1
..critical sections≥ 0

..

Lamport mutual exclusion "1-bit algorithm"

1/10

Verifying safety with Petri nets

...

Process 1

.

..while True:

..

.

x = True
..while

.

y: pass
..# ..critical section

..

.

x = False

.........

.

..................

.

..

...

Process 2

.

..while True:
.... ..

.

y = True
..if

.

x then:
..

.

y = False
..while

.

x: pass
..goto ..

..# ..critical section
..

.

y = False

..

Coverability problem

.
..Processes at both ..⇐⇒

..each≥ 1
..critical sections≥ 0

..

Lamport mutual exclusion "1-bit algorithm"

1/10

Verifying safety with Petri nets

...

Process 1

.

..while True:

..

.

x = True
..while

.

y: pass
..# ..critical section

..

.

x = False

........

.

..................

.

...

...

Process 2

.

..while True:
.... ..

.

y = True
..if

.

x then:
..

.

y = False
..while

.

x: pass
..goto ..

..# ..critical section
..

.

y = False

..

Coverability problem

.
..Processes at both ..⇐⇒

..each≥ 1
..critical sections≥ 0

..

Lamport mutual exclusion "1-bit algorithm"

1/10

Verifying safety with Petri nets

...

Process 1

.

..while True:

..

.

x = True
..while

.

y: pass
..# ..critical section

..

.

x = False

........

.

..................

.

...

...

Process 2

.

..while True:
.... ..

.

y = True
..if

.

x then:
..

.

y = False
..while

.

x: pass
..goto ..

..# ..critical section
..

.

y = False

..

Coverability problem

.
..Processes at both ..⇐⇒

..each≥ 1
..critical sections≥ 0

..

Lamport mutual exclusion "1-bit algorithm"

1/10

Verifying safety with Petri nets

...

Process 1

.

..while True:

..

.

x = True
..while

.

y: pass
..# ..critical section

..

.

x = False

........

.

..................

.

...

...

Process 2

.

..while True:
.... ..

.

y = True
..if

.

x then:
..

.

y = False
..while

.

x: pass
..goto ..

..# ..critical section
..

.

y = False

..

Coverability problem

.
..Processes at both ..⇐⇒

..each≥ 1
..critical sections≥ 0

..

Lamport mutual exclusion "1-bit algorithm"

1/10

Verifying safety with Petri nets

...

Process 1

.

..while True:

..

.

x = True
..while

.

y: pass
..# ..critical section

..

.

x = False

........

.

..................

.

...

...

Process 2

.

..while True:
.... ..

.

y = True
..if

.

x then:
..

.

y = False
..while

.

x: pass
..goto ..

..# ..critical section
..

.

y = False

..

Coverability problem

.
..Processes at both ..⇐⇒

..each≥ 1
..critical sections≥ 0

..

Lamport mutual exclusion "1-bit algorithm"

1/10

Coverability problem

Problem
Input: Petri net N , initial marking m0, target marking m

Question: Is some m′ ≥ m reachable from m0 in N ?

How to solve it?

• Forward: build reachability tree from initial marking
• Backward: find predecessors of markings covering target
• EXPSPACE-complete

.

2/10

Coverability problem

Problem
Input: Petri net N , initial marking m0, target marking m

Question: Is some m′ ≥ m reachable from m0 in N ?

How to solve it?

• Forward: build reachability tree from initial marking
• Backward: find predecessors of markings covering target
• EXPSPACE-complete

.

2/10

Coverability problem

Problem
Input: Petri net N , initial marking m0, target marking m

Question: Is some m′ ≥ m reachable from m0 in N ?

How to solve it? Karp & Miller '69

• Forward: build reachability tree from initial marking
• Backward: find predecessors of markings covering target
• EXPSPACE-complete

.

2/10

Coverability problem

Problem
Input: Petri net N , initial marking m0, target marking m

Question: Is some m′ ≥ m reachable from m0 in N ?

How to solve it? Arnold & Latteux '78, Abdulla et al. '96

• Forward: build reachability tree from initial marking
• Backward: find predecessors of markings covering target
• EXPSPACE-complete

.

2/10

Coverability problem

Problem
Input: Petri net N , initial marking m0, target marking m

Question: Is some m′ ≥ m reachable from m0 in N ?

How to solve it? Lipton '76, Rackoff '78

• Forward: build reachability tree from initial marking
• Backward: find predecessors of markings covering target
• EXPSPACE-complete

.

2/10

Coverability problem

Problem
Input: Petri net N , initial marking m0, target marking m

Question: Is some m′ ≥ m reachable from m0 in N ?

How to solve it?

• Forward: build reachability tree from initial marking
• Backward: find predecessors of markings covering target
• EXPSPACE-complete

.
2/10

Backward algorithm

..

Cannot cover

.

target marking

...... 2.

....

3/10

Backward algorithm

..

Cannot cover

.

target marking

...... 2...

....

What initial markings may cover (0, 2)?

3/10

Backward algorithm

..

Cannot cover

.

target marking

...... 2.

....

3/10

Backward algorithm

..

Cannot cover

.

target marking

...... 2.

....

3/10

Backward algorithm

..

Cannot cover

.

target marking

...... 2.

....

3/10

Backward algorithm

..

Cannot cover

.

target marking

...... 2.

....

3/10

Backward algorithm

..

Cannot cover

.

target marking

...... 2.

....

3/10

Backward algorithm

..

Cannot cover

.

target marking

...... 2.

....

3/10

Backward algorithm

..

Cannot cover

.

target marking

...... 2.

....

3/10

Backward algorithm

..

Cannot cover

.

target marking

...... 2.

....

Basis size may become doubly exponential
(Bozzelli & Ganty '11)

3/10

Backward algorithm

..

Cannot cover

.

target marking

........ 2.

....

We only care about some initial marking...

Speedup by pruning basis!

3/10

Backward algorithm

..

Cannot cover

.

target marking

...... 2.

....

We only care about some initial marking...
Speedup by pruning basis!

3/10

(Discrete) Petri nets

........ 2.

1/2

.

1/4

.

1/2n

.

4/10

(Discrete) Petri nets

........ 2.

1/2

.

1/4

.

1/2n

.

4/10

(Discrete) Petri nets

....... 2.

1/2

.

1/4

.

1/2n

..

4/10

(Discrete) Petri nets

....... 2.

1/2

.

1/4

.

1/2n

..

4/10

(Discrete) Petri nets ..
Continuous

....... 2.

1/2

.

1/4

.

1/2n

..

4/10

(Discrete) Petri nets ..
Continuous

....... 2.

1/2

.

1/4

.

1/2n

..

4/10

(Discrete) Petri nets ..
Continuous

....... 2.

1/2

.

1/4

.

1/2n

...

4/10

(Discrete) Petri nets ..
Continuous

....... 2.

1/2

.

1/4

.

1/2n

...

4/10

(Discrete) Petri nets ..
Continuous

....... 2.

1/2

.

1/4

.

1/2n

....

4/10

(Discrete) Petri nets ..
Continuous

....... 2.

1/2

.

1/4

.

1/2n

....

4/10

(Discrete) Petri nets ..
Continuous

....... 2.

1/2

.

1/4

.

1/2n

.....

4/10

Continuity to over-approximate coverability

m is coverable from m0

..

⇒

m is Q-coverable from m0

..

⇒
..

̸⇒
m0 and m satisfy conditions of
Esparza, Ledesma-Garza, Majumdar, Meyer & Niksic '14

..

EXPSPACE

.

PTIME

.

NP / EXPTIME

.

Safety

5/10

Continuity to over-approximate coverability

m is coverable from m0

..

⇒

m is Q-coverable from m0

..

⇒
.. ̸⇒

m0 and m satisfy conditions of
Esparza, Ledesma-Garza, Majumdar, Meyer & Niksic '14

..

EXPSPACE

.

PTIME

.

NP / EXPTIME

.

Safety

5/10

Continuity to over-approximate coverability

m is not coverable from m0

.. ⇒
m is not Q-coverable from m0

..

⇒
..

̸⇒
m0 and m satisfy conditions of
Esparza, Ledesma-Garza, Majumdar, Meyer & Niksic '14

..

EXPSPACE

.

PTIME

.

NP / EXPTIME

.

Safety

5/10

Coverability in continuous Petri nets

Fix some continuous Petri net (P, T,Pre,Post)

m is Q-coverable fromm0 iff... Fraca & Haddad '13

there exist m′ ≥ m and v ∈ QT
≥0 such that

• m′ = m0 + (Post− Pre) · v

• some execution from m0 fires exactly {t ∈ T : vt > 0}

3

• some execution to m′ fires exactly {t ∈ T : vt > 0}

7

..

Straightforward

.

More subtle

.

Even better approximation

..

Polynomial time!

6/10

Coverability in continuous Petri nets

Fix some continuous Petri net (P, T,Pre,Post)

m is Q-coverable fromm0 iff... Fraca & Haddad '13

there exist m′ ≥ m and v ∈ QT
≥0 such that

• m′ = m0 + (Post− Pre) · v

• some execution from m0 fires exactly {t ∈ T : vt > 0}

3

• some execution to m′ fires exactly {t ∈ T : vt > 0}

7

..

Straightforward

.

More subtle

.

Even better approximation

..

Polynomial time!

6/10

Coverability in continuous Petri nets

Fix some continuous Petri net (P, T,Pre,Post)

m is Q-coverable fromm0 iff... Fraca & Haddad '13

there exist m′ ≥ m and v ∈ QT
≥0 such that

• m′ = m0 + (Post− Pre) · v

• some execution from m0 fires exactly {t ∈ T : vt > 0}

3

• some execution to m′ fires exactly {t ∈ T : vt > 0}

7

..

Straightforward

.

More subtle

.

Even better approximation

..

Polynomial time!

6/10

Coverability in continuous Petri nets

Fix some continuous Petri net (P, T,Pre,Post)

m is Q-coverable fromm0 iff... Fraca & Haddad '13

there exist m′ ≥ m and v ∈ QT
≥0 such that

• m′ = m0 + (Post− Pre) · v

• some execution from m0 fires exactly {t ∈ T : vt > 0}

3

• some execution to m′ fires exactly {t ∈ T : vt > 0}

7

..

Straightforward

.

More subtle

.

Even better approximation

..

Polynomial time!

6/10

Coverability in continuous Petri nets

.. Not Q-coverable from

...... 2.

a

.

b

.... m0 = (2,0).
m = (0, 2)

m is Q-coverable fromm0 iff... Fraca & Haddad '13

there exist m′ ≥ m and va, vb ∈ Q≥0 such that

• m′ = m0 + (Post− Pre) · v

• some execution from m0 fires exactly {t ∈ {a,b} : vt > 0}

3

• some execution to m′ fires exactly {t ∈ {a,b} : vt > 0}

7

..

Straightforward

.

More subtle

.

Even better approximation

..

Polynomial time!

6/10

Coverability in continuous Petri nets

.. Not Q-coverable from

...... 2.

a

.

b

.... m0 = (2,0).
m = (0, 2)

m is Q-coverable fromm0 iff... Fraca & Haddad '13

there exist m′ ≥ m and va, vb ∈ Q≥0 such that

• 0 ≤ vb + va ≤ 2
2 ≤ vb

3

• some execution from m0 fires exactly {t ∈ {a,b} : vt > 0}

3

• some execution to m′ fires exactly {t ∈ {a,b} : vt > 0}

7

..

Straightforward

.

More subtle

.

Even better approximation

..

Polynomial time!

6/10

Coverability in continuous Petri nets

.. Not Q-coverable from

...... 2.

a

.

b

.... m0 = (2,0).
m = (0, 2)

m is Q-coverable fromm0 iff... Fraca & Haddad '13

there exist m′ ≥ m and va, vb ∈ Q≥0 such that

• 0 ≤ vb + va ≤ 2
2 ≤ vb

=⇒ va = 0, vb = 2, m′ = m

3

• some execution from m0 fires exactly {t ∈ {a,b} : vt > 0}

3

• some execution to m′ fires exactly {t ∈ {a,b} : vt > 0}

7

..

Straightforward

.

More subtle

.

Even better approximation

..

Polynomial time!

6/10

Coverability in continuous Petri nets

.. Not Q-coverable from

...... 2.

a

.

b

.... m0 = (2,0).
m = (0, 2)

m is Q-coverable fromm0 iff... Fraca & Haddad '13

there exist m′ ≥ m and va, vb ∈ Q≥0 such that

• 0 ≤ vb + va ≤ 2
2 ≤ vb

=⇒ va = 0, vb = 2, m′ = m 3

• some execution from m0 fires exactly {t ∈ {a,b} : vt > 0}

3

• some execution to m′ fires exactly {t ∈ {a,b} : vt > 0}

7

..

Straightforward

.

More subtle

.

Even better approximation

..

Polynomial time!

6/10

Coverability in continuous Petri nets

.. Not Q-coverable from

...... 2.

a

.

b

.... m0 = (2,0).
m = (0, 2)

m is Q-coverable fromm0 iff... Fraca & Haddad '13

there exist m′ ≥ m and va, vb ∈ Q≥0 such that

• 0 ≤ vb + va ≤ 2
2 ≤ vb

=⇒ va = 0, vb = 2, m′ = m 3

• some execution from m0 fires exactly {t ∈ {a,b} : vt > 0}

3

• some execution to m′ fires exactly {t ∈ {a,b} : vt > 0}

7

..

Straightforward

.

More subtle

.

Even better approximation

..

Polynomial time!

6/10

Coverability in continuous Petri nets

.. Not Q-coverable from

...... 2.

a

.

b

.... m0 = (2,0).
m = (0, 2)

m is Q-coverable fromm0 iff... Fraca & Haddad '13

there exist m′ ≥ m and va, vb ∈ Q≥0 such that

• 0 ≤ vb + va ≤ 2
2 ≤ vb

=⇒ va = 0, vb = 2, m′ = m 3

• some execution from m0 fires exactly {b}

3

• some execution to m′ fires exactly {b}

7

..

Straightforward

.

More subtle

.

Even better approximation

..

Polynomial time!

6/10

Coverability in continuous Petri nets

.. Not Q-coverable from

........ 2.

a

.

b

.... m0 = (2,0).
m = (0, 2)

m is Q-coverable fromm0 iff... Fraca & Haddad '13

there exist m′ ≥ m and va, vb ∈ Q≥0 such that

• 0 ≤ vb + va ≤ 2
2 ≤ vb

=⇒ va = 0, vb = 2, m′ = m 3

• some execution from m0 fires exactly {b}

3

• some execution to m′ fires exactly {b}

7

..

Straightforward

.

More subtle

.

Even better approximation

..

Polynomial time!

6/10

Coverability in continuous Petri nets

.. Not Q-coverable from

...... 2.

a

.

b

.... m0 = (2,0).
m = (0, 2)

m is Q-coverable fromm0 iff... Fraca & Haddad '13

there exist m′ ≥ m and va, vb ∈ Q≥0 such that

• 0 ≤ vb + va ≤ 2
2 ≤ vb

=⇒ va = 0, vb = 2, m′ = m 3

• some execution from m0 fires exactly {b} 3

• some execution to m′ fires exactly {b}

7

..

Straightforward

.

More subtle

.

Even better approximation

..

Polynomial time!

6/10

Coverability in continuous Petri nets

.. Not Q-coverable from

...... 2.

a

.

b

.... m0 = (2,0).
m = (0, 2)

m is Q-coverable fromm0 iff... Fraca & Haddad '13

there exist m′ ≥ m and va, vb ∈ Q≥0 such that

• 0 ≤ vb + va ≤ 2
2 ≤ vb

=⇒ va = 0, vb = 2, m′ = m 3

• some execution from m0 fires exactly {b} 3

• some execution to m′ fires exactly {b}

7

..

Straightforward

.

More subtle

.

Even better approximation

..

Polynomial time!

6/10

Coverability in continuous Petri nets

.. Not Q-coverable from

...... 2.

a

.

b

.... m0 = (2,0).
m = (0, 2)

m is Q-coverable fromm0 iff... Fraca & Haddad '13

there exist m′ ≥ m and va, vb ∈ Q≥0 such that

• 0 ≤ vb + va ≤ 2
2 ≤ vb

=⇒ va = 0, vb = 2, m′ = m 3

• some execution from m0 fires exactly {b} 3

• some execution to m′ fires exactly {b}

7

..

Straightforward

.

More subtle

.

Even better approximation

..

Polynomial time!

6/10

Coverability in continuous Petri nets

.. Not Q-coverable from

...... 2.

a

.

b

.... m0 = (2,0).
m = (0, 2)

m is Q-coverable fromm0 iff... Fraca & Haddad '13

there exist m′ ≥ m and va, vb ∈ Q≥0 such that

• 0 ≤ vb + va ≤ 2
2 ≤ vb

=⇒ va = 0, vb = 2, m′ = m 3

• some execution from m0 fires exactly {b} 3

• some execution to m′ fires exactly {b} 7
..

Straightforward

.

More subtle

.

Even better approximation

..

Polynomial time!

6/10

Coverability in continuous Petri nets

.. Not Q-coverable from

...... 2.

a

.

b

.... m0 = (2,0).
m = (0, 2)

m is Q-coverable fromm0 iff... Fraca & Haddad '13

there exist m′ ≥ m and va, vb ∈ Q≥0 such that

• 0 ≤ vb + va ≤ 2
2 ≤ vb

=⇒ va = 0, vb = 2, m′ = m 3

• some execution from m0 fires exactly {b} 3

• some execution to m′ fires exactly {b} 7
..

Straightforward

.

More subtle

.

Even better approximation

..

Polynomial time!

6/10

Coverability in continuous Petri nets

m is Q-coverable fromm0 iff... Fraca & Haddad '13

there exist m′ ≥ m and v ∈ QT
≥0 such that

• m′ = m0 + (Post− Pre) · v

• some execution from m0 fires exactly {t ∈ T : vt > 0}

3

• some execution to m′ fires exactly {t ∈ T : vt > 0}

7

..

Straightforward

.

More subtle

.

Even better approximation

..

Polynomial time!

6/10

Coverability in continuous Petri nets

Logical characterization TACAS'16

Q-coverability can be encoded in a linear size formula of

existential FO(Q≥0,+, <)

m is Q-coverable fromm0 iff... Fraca & Haddad '13

there exist m′ ≥ m and v ∈ QT
≥0 such that

• m′ = m0 + (Post− Pre) · v

• some execution from m0 fires exactly {t ∈ T : vt > 0}

3

• some execution to m′ fires exactly {t ∈ T : vt > 0}

7

..

Straightforward

.

More subtle

.

Even better approximation

..

Polynomial time!

6/10

Coverability in continuous Petri nets

Logical characterization TACAS'16

Q-coverability can be encoded in a linear size formula of

existential FO(N, +, <)

m is Q-coverable fromm0 iff... Fraca & Haddad '13

there exist m′ ≥ m and v ∈ QT
≥0 such that

• m′ = m0 + (Post− Pre) · v

• some execution from m0 fires exactly {t ∈ T : vt > 0}

3

• some execution to m′ fires exactly {t ∈ T : vt > 0}

7

..

Straightforward

.

More subtle

.

Even better approximation

..

Polynomial time!

6/10

Coverability in continuous Petri nets

Logical characterization TACAS'16

Q-coverability can be encoded in a linear size formula of

existential FO(Q≥0,+, <)

m is Q-coverable fromm0 iff... Fraca & Haddad '13

there exist m′ ≥ m and v ∈ QT
≥0 such that

• m′ = m0 + (Post− Pre) · v

• some execution from m0 fires exactly {t ∈ T : vt > 0}

3

• some execution to m′ fires exactly {t ∈ T : vt > 0}

7

..

Straightforward

.

More subtle

.

Even better approximation

..

Polynomial time!

6/10

Coverability in continuous Petri nets

Logical characterization TACAS'16

Q-coverability can be encoded in a linear size formula of

existential FO(Q≥0,+, <)

m is Q-coverable fromm0 iff... Fraca & Haddad '13

there exist m′ ≥ m and v ∈ QT
≥0 such that

• m′ = m0 + (Post− Pre) · v

• some execution from m0 fires exactly {t ∈ T : vt > 0}

3

• some execution to m′ fires exactly {t ∈ T : vt > 0}

7

..

Straightforward

.

More subtle

.

Even better approximation

..

Polynomial time!

6/10

Encoding the firing set conditions

...

.....

..

....

...

...

.

.

...

.

..

1
.

2
.

3
.

4

.

1

. a.

b
.

c

.

d

.
>

. >.

>

.

>

.............

Testing whether some transitions can be fired
from initial marking .

7/10

Encoding the firing set conditions

...

.....

..

....

...

...

.

.

...

.

..

1
.

2
.

3
.

4

.

1

. a.

b
.

c

.

d

.
>

. >.

>

.

>

.............

Testing whether some transitions can be fired
from initial marking .

7/10

Encoding the firing set conditions

...

.....

..

....

...

...

.

.

...

.

..

1
.

2
.

3
.

4

.

1

. a.

b
.

c

.

d

.
>

. >.

>

.

>

.............

Testing whether some transitions can be fired
from initial marking .

7/10

Encoding the firing set conditions

...

.....

..

....

...

...

.

.

...

.

..

1
.

2
.

3
.

4

.

1

. a.

b
.

c

.

d

.
>

. >.

>

.

>

.............

Simulate a "breadth-first" transitions firing
.

7/10

Encoding the firing set conditions

...

.....

..

....

...

...

.

.

...

.

..

1
.

2
.

3
.

4

.

1

. a.

b
.

c

.

d

.
>

. >.

>

.

>

.............

Simulate a "breadth-first" transitions firing
by numbering places/transitions

(Verma, Seidl & Schwentick '05) .
7/10

Encoding the firing set conditions

...

.....

..

....

...

...

.

.

...

.

..

1
.

2
.

3
.

4

.

1

. a.

b
.

c

.

d

.
>

. >.

>

.

>

.............

Simulate a "breadth-first" transitions firing
by numbering places/transitions

(Verma, Seidl & Schwentick '05) .
7/10

Encoding the firing set conditions

...

.....

..

....

...

...

.

.

...

.

..

1
.

2
.

3
.

4

.

1

. a.

b
.

c

.

d

.
>

. >.

>

.

>

.............

Simulate a "breadth-first" transitions firing
by numbering places/transitions

(Verma, Seidl & Schwentick '05) .
7/10

Encoding the firing set conditions

...

.....

..

....

...

...

.

.

...

.

..

1
.

2
.

3
.

4

.

1

. a.

b
.

c

.

d

.
>

. >.

>

.

>

.............

Simulate a "breadth-first" transitions firing
by numbering places/transitions

(Verma, Seidl & Schwentick '05) .
7/10

Encoding the firing set conditions

.

..

..

...

.

.

..

..

...

...

.

.

...

.

..

1
.

2
.

3
.

4

.

1

. a.

b
.

c

.

d

.
>

. >.

>

.

>

.............

Simulate a "breadth-first" transitions firing
by numbering places/transitions

(Verma, Seidl & Schwentick '05) .
7/10

Encoding the firing set conditions

.

..

..

...

.

.

..

..

...

...

.

.

...

.

..

1
.

2
.

3
.

4

.

1

. a.

b
.

c

.

d

.
>

. >.

>

.

>

.............

Simulate a "breadth-first" transitions firing
by numbering places/transitions

(Verma, Seidl & Schwentick '05) .
7/10

Encoding the firing set conditions

.

..

..

...

.

.

..

..

...

...

.

.

...

.

..

1
.

2
.

3
.

4

.

1

. a.

b
.

c

.

d

.
>

. >.

>

.

>

.............

Simulate a "breadth-first" transitions firing
by numbering places/transitions

(Verma, Seidl & Schwentick '05) .
7/10

Encoding the firing set conditions

.

..

..

...

.

.

..

..

...

...

.

.

...

.

..

1
.

2
.

3
.

4

.

1

. a.

b
.

c

.

d

.
>

. >.

>

.

>

.............

Simulate a "breadth-first" transitions firing
by numbering places/transitions

(Verma, Seidl & Schwentick '05) .
7/10

Encoding the firing set conditions

.

..

......

.

.....

..

....

.

...

.

..

1
.

2
.

3
.

4

.

1

. a.

b
.

c

.

d

.
>

. >.

>

.

>

.............

Simulate a "breadth-first" transitions firing
by numbering places/transitions

(Verma, Seidl & Schwentick '05) .
7/10

Encoding the firing set conditions

.

..

......

.

.....

..

...

.

...

.

...

1
.

2
.

3
.

4

.

1

. a.

b
.

c

.

d

.
>

. >.

>

.

>

.............

Simulate a "breadth-first" transitions firing
by numbering places/transitions

(Verma, Seidl & Schwentick '05) .
7/10

Encoding the firing set conditions

.

..

......

.

.....

..

...

.

...

.

...

1
.

2
.

3
.

4

.

1

. a.

b
.

c

.

d

.
>

. >.

>

.

>

.............

Simulate a "breadth-first" transitions firing
by numbering places/transitions

(Verma, Seidl & Schwentick '05) .
7/10

Encoding the firing set conditions

.

..

......

.

.....

..

...

.

...

.

...

1
.

2
.

3
.

4

.

1

. a.

b
.

c

.

d

.
>

. >.

>

.

>

.............

φ(x) = ∃y : ∧p∈P y(p) > 0→
∧
t∈•p y(t) < y(p) · · · .

7/10

Backward coverability modulo Q-coverability

if target marking m is not Q-coverable:
return False

X = {target marking m}

while (initial marking m0 not covered by X):
B = markings obtained from X one step backward
B = B \ {b ∈ B : ¬φ(b)}
if B = ∅: return False
φ(x) = φ(x) ∧

∧
pruned b x ̸≥ b

X = X ∪ B

return True

..

Polynomial time

.

Q-coverability pruning

.

(better than poly. time)

.

SMT solver guidance

8/10

Backward coverability modulo Q-coverability

if target marking m is not Q-coverable:
return False

X = {target marking m}

while (initial marking m0 not covered by X):
B = markings obtained from X one step backward
B = B \ {b ∈ B : ¬φ(b)}
if B = ∅: return False
φ(x) = φ(x) ∧

∧
pruned b x ̸≥ b

X = X ∪ B

return True
..

Polynomial time

.

Q-coverability pruning

.

(better than poly. time)

.

SMT solver guidance

8/10

Backward coverability modulo Q-coverability

if target marking m is not Q-coverable:
return False

X = {target marking m}

while (initial marking m0 not covered by X):
B = markings obtained from X one step backward
B = B \ {b ∈ B : ¬φ(b)}
if B = ∅: return False
φ(x) = φ(x) ∧

∧
pruned b x ̸≥ b

X = X ∪ B

return True
..

Polynomial time

.

Q-coverability pruning

.

(better than poly. time)

.

SMT solver guidance

8/10

Backward coverability modulo Q-coverability

if target marking m is not Q-coverable:
return False

X = {target marking m}

while (initial marking m0 not covered by X):
B = markings obtained from X one step backward
B = B \ {b ∈ B : ¬φ(b)}
if B = ∅: return False
φ(x) = φ(x) ∧

∧
pruned b x ̸≥ b

X = X ∪ B

return True
..

Polynomial time

.

Q-coverability pruning

.

(better than poly. time)

.

SMT solver guidance

8/10

Backward coverability modulo Q-coverability

if target marking m is not Q-coverable:
return False

X = {target marking m}

while (initial marking m0 not covered by X):
B = markings obtained from X one step backward
B = B \ {b ∈ B : ¬φ(b)}
if B = ∅: return False
φ(x) = φ(x) ∧

∧
pruned b x ̸≥ b

X = X ∪ B

return True
..

Polynomial time

.

Q-coverability pruning

.

(better than poly. time)

.

SMT solver guidance

8/10

Backward coverability modulo Q-coverability

if target marking m is not Q-coverable:
return False

X = {target marking m}

while (initial marking m0 not covered by X):
B = markings obtained from X one step backward
B = B \ {b ∈ B : ¬φ(b)}
if B = ∅: return False
φ(x) = φ(x) ∧

∧
pruned b x ̸≥ b

X = X ∪ B

return True
..

Polynomial time

.

Q-coverability pruning

.

(better than poly. time)

.

SMT solver guidance

8/10

Backward coverability modulo Q-coverability

if target marking m is not Q-coverable:
return False

X = {target marking m}

while (initial marking m0 not covered by X):
B = markings obtained from X one step backward
B = B \ {b ∈ B : ¬φ(b)}
if B = ∅: return False
φ(x) = φ(x) ∧

∧
pruned b x ̸≥ b

X = X ∪ B

return True
..

Polynomial time

.

Q-coverability pruning

.

(better than poly. time)

.

SMT solver guidance

8/10

Backward coverability modulo Q-coverability

if target marking m is not Q-coverable:
return False

X = {target marking m}

while (initial marking m0 not covered by X):
B = markings obtained from X one step backward
B = B \ {b ∈ B : ¬φ(b)}
if B = ∅: return False
φ(x) = φ(x) ∧

∧
pruned b x ̸≥ b

X = X ∪ B

return True
..

Polynomial time

.

Q-coverability pruning

.

(better than poly. time)

.

SMT solver guidance

8/10

Backward coverability modulo Q-coverability

if target marking m is not Q-coverable:
return False

X = {target marking m}

while (initial marking m0 not covered by X):
B = markings obtained from X one step backward
B = B \ {b ∈ B : ¬φ(b)}
if B = ∅: return False
φ(x) = φ(x) ∧

∧
pruned b x ̸≥ b

X = X ∪ B

return True
..

Polynomial time

.

Q-coverability pruning

.

(better than poly. time)

.

SMT solver guidance

8/10

Backward coverability modulo Q-coverability

if target marking m is not Q-coverable:
return False

X = {target marking m}

while (initial marking m0 not covered by X):
B = markings obtained from X one step backward
B = B \ {b ∈ B : ¬φ(b)}
if B = ∅: return False
φ(x) = φ(x) ∧

∧
pruned b x ̸≥ b

X = X ∪ B

return True
..

Polynomial time

.

Q-coverability pruning

.

(better than poly. time)

.

SMT solver guidance

8/10

An implementation: QCover

+ SMT solver Z3 (Microsoft Research)

https://github.com/blondimi/qcover

Tested on...

• 176 Petri nets (avg. 1054 places, 8458 transitions)

• C/Erlang programs with threads

• Mutual exclusion protocols, communication protocols, etc.

• Message analysis of a medical and a bug tracking system

..

Largest nets proved safe:

.

21143 places
7150 trans.

42 secs.

.

6690 places

11934 trans.

21 secs.

.

754 places
27370 trans.

3 secs.

9/10

An implementation: QCover

Markings pruning efficiency across all iterations

Instances proven safe

.....
1

.
4

.
16

.
64

.
256

.
2000

.20 .
40
.

60

.

80

.

100

.

running time in seconds

.

105/115

.

95

.

63

.
35

. QCover . Petrinizer . bfc . mist

..

Largest nets proved safe:

.

21143 places
7150 trans.

42 secs.

.

6690 places

11934 trans.

21 secs.

.

754 places
27370 trans.

3 secs.

9/10

An implementation: QCover

Markings pruning efficiency across all iterations

Instances proven safe

.....
1

.
4

.
16

.
64

.
256

.
2000

.20 .
40
.

60

.

80

.

100

.

running time in seconds

.

105/115

.

95

.

63

.
35

. QCover . Petrinizer . bfc . mist

..

Largest nets proved safe:

.

21143 places
7150 trans.

42 secs.

.

6690 places

11934 trans.

21 secs.

.

754 places
27370 trans.

3 secs.

9/10

An implementation: QCover

Markings pruning efficiency across all iterations

Instances proven safe

.....
1

.
4

.
16

.
64

.
256

.
2000

.20 .
40
.

60

.

80

.

100

.

running time in seconds

.

105/115

.

95

.

63

.
35

Instances proven safe or unsafe

.....
1

.
4

.
16

.
64

.
256

.
2000

.40 .
60
.

80

.

100

.

120

.

140

.

running time in seconds

.

142/176

.

122

.

95

.

74

. QCover . Petrinizer . bfc . mist

..

Largest nets proved safe:

.

21143 places
7150 trans.

42 secs.

.

6690 places

11934 trans.

21 secs.

.

754 places
27370 trans.

3 secs.

9/10

An implementation: QCover

Markings pruning efficiency across all iterations

.....
0
.

20
.

40
.

60
.

80
.

100
.0 .

20

.

40

.

60

..

% pruned markings

.....
0
.

20
.

40
.

60
.

80
.

100
.0 .

200

.

400

.

inv. cumulative % pruned markings
..

Largest nets proved safe:

.

21143 places
7150 trans.

42 secs.

.

6690 places

11934 trans.

21 secs.

.

754 places
27370 trans.

3 secs.

9/10

Possible extensions

• Combine our approach with a forward algorithm to better
handle unsafe instances

• Use more efficient data structures, e.g. sharing trees
(Delzanno, Raskin & Van Begin '04)

• Support Petri nets extensions

...
..
1

.
4

.
16

.
64

.
256

.
2000

.0 .
10
.

20

.

30

.

40

.

50

.

60

.

running time in seconds

.

59/61 bfc

.

39 mist

.
37 QCover

.

0 Petrinizer (not supported)

.

10/10

Possible extensions

• Combine our approach with a forward algorithm to better
handle unsafe instances

• Use more efficient data structures, e.g. sharing trees
(Delzanno, Raskin & Van Begin '04)

• Support Petri nets extensions

...
..
1

.
4

.
16

.
64

.
256

.
2000

.0 .
10
.

20

.

30

.

40

.

50

.

60

.

running time in seconds

.

59/61 bfc

.

39 mist

.
37 QCover

.

0 Petrinizer (not supported)

.

10/10

Possible extensions

• Combine our approach with a forward algorithm to better
handle unsafe instances

• Use more efficient data structures, e.g. sharing trees
(Delzanno, Raskin & Van Begin '04)

• Support Petri nets extensions

...
..
1

.
4

.
16

.
64

.
256

.
2000

.0 .
10
.

20

.

30

.

40

.

50

.

60

.

running time in seconds

.

59/61 bfc

.

39 mist

.
37 QCover

.

0 Petrinizer (not supported)

.

10/10

Possible extensions

• Combine our approach with a forward algorithm to better
handle unsafe instances

• Use more efficient data structures, e.g. sharing trees
(Delzanno, Raskin & Van Begin '04)

• Support Petri nets extensions

...
..
1

.
4

.
16

.
64

.
256

.
2000

.0 .
10
.

20

.

30

.

40

.

50

.

60

.

running time in seconds

.

59/61 bfc

.

39 mist

.
37 QCover

.

0 Petrinizer (not supported)

.

10/10

Part II: ICover
Grégoire Sutre

Joint work with Thomas Geffroy and Jérôme Leroux

10/10

Verifying Systems with Petri Nets

C code
Property

Erlang code

Property

...

...

Satabs

Soter

...

Petri Net
+

Coverability
Question

ICover

QCover

BFC

...

COVERABLE?

2 / 14

Verifying Systems with Petri Nets

C code
Property

Erlang code

Property

...

...

Satabs

Soter

...

Petri Net
+

Coverability
Question

ICover

QCover

BFC

...

COVERABLE?

2 / 14

Verifying Systems with Petri Nets

C code
Property

Erlang code

Property

...

...

Satabs

Soter

...

Petri Net
+

Coverability
Question

ICover

QCover

BFC

...

COVERABLE?

2 / 14

Coverability in Petri nets

init ∗−→ m ≥ target?

Decidability - Complexity
Decidable (Karp and Miller - 1969)
ExpSpace-complete (Lipton - 1976, Rackoff - 1978)

3 / 14

Coverability in Petri nets

init ∗−→ m ≥ target?

Tools
Mist (Ganty, Geeraerts, Raskin, Van Begin, . . .)

interval sharing trees
backward search + place invariants
abstraction refinement

BFC (Kaiser, Kroening, Wahl)
Target set widening + forward Karp-Miller

Petrinizer (Esparza, Ledesma-Garza, Majumdar, Meyer, Niksic)
SMT, state equation + traps

QCover (Blondin, Finkel, Haase, Haddad)
SMT, continuous reachability + backward search

3 / 14

ICover : Generalisation of QCover with Invariants

Assumption:
1 I is an invariant (I contains all

reachable markings)
2 I is a downward closed set

U0 := ↑(target ∩ I)

U0 := ∅ : Safe !
U1 := U0 ∪ ↑(pre(U0) ∩ I)
U2 := U1 ∪ ↑(pre(U1) ∩ I)
. . .
Uk+1 := Uk ∪ ↑(pre(Uk) ∩ I)

Always terminates
(Dickson’s lemma)

init target

I

U1U2

...

Un+1 = Un

4 / 14

ICover : Generalisation of QCover with Invariants

Assumption:
1 I is an invariant (I contains all

reachable markings)
2 I is a downward closed set

U0 := ↑(target ∩ I)

U0 := ∅ : Safe !

U1 := U0 ∪ ↑(pre(U0) ∩ I)
U2 := U1 ∪ ↑(pre(U1) ∩ I)
. . .
Uk+1 := Uk ∪ ↑(pre(Uk) ∩ I)

Always terminates
(Dickson’s lemma)

init target

I

U1U2

...

Un+1 = Un

4 / 14

ICover : Generalisation of QCover with Invariants

Assumption:
1 I is an invariant (I contains all

reachable markings)
2 I is a downward closed set

U0 := ↑(target ∩ I)

U0 := ∅ : Safe !

U1 := U0 ∪ ↑(pre(U0) ∩ I)

U2 := U1 ∪ ↑(pre(U1) ∩ I)
. . .
Uk+1 := Uk ∪ ↑(pre(Uk) ∩ I)

Always terminates
(Dickson’s lemma)

init target

I

U1

U2

...

Un+1 = Un

4 / 14

ICover : Generalisation of QCover with Invariants

Assumption:
1 I is an invariant (I contains all

reachable markings)
2 I is a downward closed set

U0 := ↑(target ∩ I)

U0 := ∅ : Safe !

U1 := U0 ∪ ↑(pre(U0) ∩ I)
U2 := U1 ∪ ↑(pre(U1) ∩ I)

. . .
Uk+1 := Uk ∪ ↑(pre(Uk) ∩ I)

Always terminates
(Dickson’s lemma)

init target

I

U1U2

...

Un+1 = Un

4 / 14

ICover : Generalisation of QCover with Invariants

Assumption:
1 I is an invariant (I contains all

reachable markings)
2 I is a downward closed set

U0 := ↑(target ∩ I)

U0 := ∅ : Safe !

U1 := U0 ∪ ↑(pre(U0) ∩ I)
U2 := U1 ∪ ↑(pre(U1) ∩ I)
. . .
Uk+1 := Uk ∪ ↑(pre(Uk) ∩ I)

Always terminates
(Dickson’s lemma)

init target

I

U1U2

...

Un+1 = Un

4 / 14

Backward Algorithm with Invariant-Based Pruning

if target ∈ I then
B ← {target};

else
return False;

end
while minit 6∈ ↑B do

N ← min(pre(↑B)) \ ↑B
P ← N ∩ I
if P = ∅ then

return False;
end
B ← min(B ∪ P);

end
return True;

I is an invariant
I is a downward closed
set

5 / 14

Invariant: Sign Analysis

t1

t2

t6

t7

t5

pq

= 0

≥ 0

can’t be fired

fireable

pr

t3

t4 ps

2

t1

t2

t6

t7

Invariant: pq = 0 ∧ pr = 0 ∧ ps = 0

6 / 14

Invariant: Sign Analysis

t1

t2

t6

t7

t5

pq = 0

≥ 0

can’t be fired

fireable

pr

t3

t4 ps

2

t1

t2

t6

t7

Invariant: pq = 0 ∧ pr = 0 ∧ ps = 0

6 / 14

Invariant: Sign Analysis

t1

t2

t6

t7

t5

pq = 0

≥ 0

can’t be fired

fireable

pr

t3

t4 ps

2
t1

t2

t6

t7

Invariant: pq = 0 ∧ pr = 0 ∧ ps = 0

6 / 14

Invariant: Sign Analysis

t1

t2

t6

t7

t5

pq = 0

≥ 0

can’t be fired

fireable

pr

t3

t4 ps

2
t1

t2

t6

t7

Invariant: pq = 0 ∧ pr = 0 ∧ ps = 0

6 / 14

Invariant: Sign Analysis

t1

t2

t6

t7

t5

pq = 0

≥ 0

can’t be fired

fireable

pr

t3

t4 ps

2
t1

t2

t6

t7

Invariant: pq = 0 ∧ pr = 0 ∧ ps = 0

6 / 14

Invariant: State Inequation

p1

t1
p2

t2

t3

p3
2

2

x1, x2, x3 ≥ 0

m(p1) ≤ 1− x1
m(p2) ≤ x1 − x2 + 2x3

m(p3) ≤ 2x2 − x3

p1
t1−→ t2−→ t3−→ . . .

t2−→ t3−→ r

≥ m

∆(t1) = p2 − p1
∆(t2) = 2p3 − p2
∆(t3) = 2p2 − p3

xi : number of occurrences of ti
r = init + x1∆(t1) + x2∆(t2) + x3∆(t3)

Invariant
I := {m | ∃x , init +

∑
t∈T x(t)∆(t) ≥ m}

7 / 14

Invariant: State Inequation

p1

t1
p2

t2

t3

p3
2

2

x1, x2, x3 ≥ 0

m(p1) ≤ 1− x1
m(p2) ≤ x1 − x2 + 2x3

m(p3) ≤ 2x2 − x3

p1
t1−→ t2−→ t3−→ . . .

t2−→ t3−→ r

≥ m

∆(t1) = p2 − p1
∆(t2) = 2p3 − p2
∆(t3) = 2p2 − p3

xi : number of occurrences of ti
r = init + x1∆(t1) + x2∆(t2) + x3∆(t3)

Invariant
I := {m | ∃x , init +

∑
t∈T x(t)∆(t) ≥ m}

7 / 14

Invariant: State Inequation

p1

t1
p2

t2

t3

p3
2

2

x1, x2, x3 ≥ 0

m(p1) ≤ 1− x1
m(p2) ≤ x1 − x2 + 2x3

m(p3) ≤ 2x2 − x3

p1
t1−→ t2−→ t3−→ . . .

t2−→ t3−→ r ≥ m

∆(t1) = p2 − p1
∆(t2) = 2p3 − p2
∆(t3) = 2p2 − p3

xi : number of occurrences of ti
m ≤ r = init + x1∆(t1) + x2∆(t2) + x3∆(t3)

Invariant
I := {m | ∃x , init +

∑
t∈T x(t)∆(t) ≥ m}

7 / 14

Invariant: State Inequation

p1

t1
p2

t2

t3

p3
2

2

x1, x2, x3 ≥ 0

m(p1) ≤ 1− x1
m(p2) ≤ x1 − x2 + 2x3

m(p3) ≤ 2x2 − x3

p1
t1−→ t2−→ t3−→ . . .

t2−→ t3−→ r ≥ m

∆(t1) = p2 − p1
∆(t2) = 2p3 − p2
∆(t3) = 2p2 − p3

xi : number of occurrences of ti
m ≤ r = init + x1∆(t1) + x2∆(t2) + x3∆(t3)

Invariant
I := {m | ∃x , init +

∑
t∈T x(t)∆(t) ≥ m}

7 / 14

Invariant: State Inequation

p1

t1
p2

t2

t3

p3
2

2

x1, x2, x3 ≥ 0

m(p1) ≤ 1− x1
m(p2) ≤ x1 − x2 + 2x3

m(p3) ≤ 2x2 − x3

p1
t1−→ t2−→ t3−→ . . .

t2−→ t3−→ r ≥ m

∆(t1) = p2 − p1
∆(t2) = 2p3 − p2
∆(t3) = 2p2 − p3

xi : number of occurrences of ti
m ≤ r = init + x1∆(t1) + x2∆(t2) + x3∆(t3)

Invariant
I := {m | ∃x , init +

∑
t∈T x(t)∆(t) ≥ m}

7 / 14

Invariant: State Inequation

p1

t1
p2

t2

t3

p3
2

2

p1 ≤ 1

p1
t1−→ t2−→ t3−→ . . .

t2−→ t3−→ r ≥ m

∆(t1) = p2 − p1
∆(t2) = 2p3 − p2
∆(t3) = 2p2 − p3

xi : number of occurrences of ti
m ≤ r = init + x1∆(t1) + x2∆(t2) + x3∆(t3)

Invariant
I := {m | ∃x , init +

∑
t∈T x(t)∆(t) ≥ m}

7 / 14

Experimentations

New Tool: ICover
Based on QCover written in Python (~900 lines of codes)
Both use the SMT-Solver z3 (Bjorner et al. - 2007)
ICover available as a patch of QCover (~400 lines of codes)
dept-info.labri.u-bordeaux.fr/~tgeffroy/icover

Results
Benchmarks (176 instances) used by QCover and others
QCover solved 106 / 115 safe instances (2000 seconds per instance)
QCover solved 37 / 61 unsafe instances (idem)
ICover solved as much safe instances and one more unsafe
It works ! 10 000 seconds (QCover) to 5 000 seconds (ICover)

8 / 14

dept-info.labri.u-bordeaux.fr/~tgeffroy/icover

Experimentations: Sign Analysis As A Pre-processing

t1

t2

t6

t7

t5

t3

t4

2

t1

t2

t6

t7

= 0

≥ 0

can’t be fired

fireable

9 / 14

Experimentations: Sign Analysis As A Pre-processing

t1

t2

t6

t7

t5

t3

t4

2
t1

t2

t6

t7

= 0

≥ 0

can’t be fired

fireable

9 / 14

Experimentations: Sign Analysis As A Pre-processing

t1

t2

t6

t7

t5

t3

t4

2

t1

t2

t6

t7

= 0

≥ 0

can’t be fired

fireable

9 / 14

Experimentations: Sign Analysis As A Pre-processing

t1

t2

t6

t7

t5

t3

t4

2

t1

t2

t6

t7

= 0

≥ 0

can’t be fired

fireable

9 / 14

Experimentations: Sign Analysis As A Pre-processing

t1

t2

t6

t7

t5

t3

t4

2
t1

t2

t6

t7

= 0

≥ 0

can’t be fired

fireable

9 / 14

Results of Pre-processing

100 102 104
0

50

100

places in the original Petri net

% of places left

100 102 104
0

50

100

transitions in the original Petri net

% of transitions left

10 / 14

Experimental results: Pruning with State Inequation vs �

100 101 102 103

100

101

102

103

time for Pre + QCover (s)

tim
e
fo
rI
Co

ve
r
(s
)

Time

100 102 104

20
40
60
80

100

markings pruned in QCover
%

al
so

pr
un

ed
in

IC
ov
er

Efficiency

11 / 14

State Inequation More Precise with Pre-Processing

p1

t1
p2

t2

t3

p3

t4

t5

t6

2

Can’t cover p1 + p2 + p3 from p1

State inequation: p1 ≤ 1 not precise enough
State inequation: p1 + p2 + p3 ≤ 1 precise enough

12 / 14

State Inequation More Precise with Pre-Processing

p1

t1
p2

t2

t3

p3

t4

t5

t6

2

Can’t cover p1 + p2 + p3 from p1

State inequation: p1 ≤ 1 not precise enough
State inequation: p1 + p2 + p3 ≤ 1 precise enough

12 / 14

State Inequation vs 99K

p1

1

1-ε

t1
p2

t2
2

ε2ε4ε>1

p1 + p2 not coverable from p1
with 99K

p1 + p2 satisfy the state
inequation: p1 ≤ 1

Theorem (Recalde, Teruel and Silva - 1999)
In a pre-processed Petri net, m satisfies the state inequation iff there exists
m′ ≥ m and a sequence m0,m1, ... such that init ∗ � mk for every k and
such that m0,m1, ... converges toward m′.

13 / 14

State Inequation vs 99K

p1

1

1-ε t1
p2

t2
2

ε

2ε4ε>1

p1 + p2 not coverable from p1
with 99K

p1 + p2 satisfy the state
inequation: p1 ≤ 1

Theorem (Recalde, Teruel and Silva - 1999)
In a pre-processed Petri net, m satisfies the state inequation iff there exists
m′ ≥ m and a sequence m0,m1, ... such that init ∗ � mk for every k and
such that m0,m1, ... converges toward m′.

13 / 14

State Inequation vs 99K

p1

1

1-ε t1
p2

t2
2

ε

2ε

4ε>1

p1 + p2 not coverable from p1
with 99K

p1 + p2 satisfy the state
inequation: p1 ≤ 1

Theorem (Recalde, Teruel and Silva - 1999)
In a pre-processed Petri net, m satisfies the state inequation iff there exists
m′ ≥ m and a sequence m0,m1, ... such that init ∗ � mk for every k and
such that m0,m1, ... converges toward m′.

13 / 14

State Inequation vs 99K

p1

1

1-ε t1
p2

t2
2

ε2ε

4ε

>1

p1 + p2 not coverable from p1
with 99K

p1 + p2 satisfy the state
inequation: p1 ≤ 1

Theorem (Recalde, Teruel and Silva - 1999)
In a pre-processed Petri net, m satisfies the state inequation iff there exists
m′ ≥ m and a sequence m0,m1, ... such that init ∗ � mk for every k and
such that m0,m1, ... converges toward m′.

13 / 14

State Inequation vs 99K

p1

1

1-ε t1
p2

t2
2

ε2ε4ε

>1

p1 + p2 not coverable from p1
with 99K

p1 + p2 satisfy the state
inequation: p1 ≤ 1

Theorem (Recalde, Teruel and Silva - 1999)
In a pre-processed Petri net, m satisfies the state inequation iff there exists
m′ ≥ m and a sequence m0,m1, ... such that init ∗ � mk for every k and
such that m0,m1, ... converges toward m′.

13 / 14

State Inequation vs 99K

p1

1

1-ε t1
p2

t2
2

ε2ε4ε

>1

p1 + p2 not coverable from p1
with 99K

p1 + p2 satisfy the state
inequation: p1 ≤ 1

Theorem (Recalde, Teruel and Silva - 1999)
In a pre-processed Petri net, m satisfies the state inequation iff there exists
m′ ≥ m and a sequence m0,m1, ... such that init ∗ � mk for every k and
such that m0,m1, ... converges toward m′.

13 / 14

Conclusion

New
Backward coverability algorithm with invariant-based pruning
Pre-processing is a cheap way to accelerate verification
In practice, in a pre-processed Petri net, state inequation is almost as
good as 99K coverability

Future work
Find other cheap pre-processings and invariants
Apply to other classes of well-structured transition systems

14 / 14

Part III: Best practices
Christoph Haase

10/10

General remarks

Tools...

• increase visibility outside your peer group

• help understanding what is relevant to
other people

• generate feedback for theoretical work

• can convince reviewers

• attract students

1/7

Before you start

• Choice of language
• interpreted vs. compiled
• statically vs. dynamically typed

• Bindings for SMT solver

• Performance of memory operations

2/7

Software engineering aspects

• Object oriented programming

• Unit tests

• Documentation

• Use profilers to find bottlenecks

3/7

Benchmarks

• One of the most important aspects

• Use other people's benchmarks

• Contact authors if necessary

• Pitfalls:
• Parsing can entail large costs
• Avoid unfair treatment of competitors
• Choose evaluation metrics wisely

4/7

Availability

• Obtain institutional clearance ∈ Fω

• Choose license: BSD preferred by industry

• Use public code repositories, e.g. GitHub

5/7

Future

• Identify relevant Petri net subclasses and
extensions, e.g.
• business processes
• process mining
• population protocols
• thread transition systems

• Submit to and integrate into existing
software competitions

6/7

Final words

The SMT solver is always faster than you!

7/7

Thank you! Diolch!

7/7

