Handling Infinitely Branching WSTS

Michael Blondin^{1 2}, Alain Finkel¹ & Pierre McKenzie ^{1 2}

¹LSV, ENS Cachan

²DIRO, Université de Montréal

June 16, 2014

Overview WSTS Reachability problems

Well-structured transition systems (WSTS) encompass a large number of infinite state systems.

Overview WSTS Reachability problems

Well-structured transition systems (WSTS) encompass a large number of infinite state systems.

Overview WSTS Reachability problems

Well-structured transition systems (WSTS) encompass a large number of infinite state systems.

Overview WSTS Reachability problems

Multiple decidability results are known for finitely branching WSTS.

Overview WSTS Reachability problems

Overview WSTS Reachability problems

- $S = (X,
 ightarrow, \leq)$ where
 - X set,
 - $\rightarrow \subseteq X \times X$,
 - monotony,
 - well-quasi-ordered.

Overview WSTS Reachability problems

- $S = (X,
 ightarrow, \leq)$ where
 - ∎ N³,
 - $\rightarrow \subseteq X \times X$,
 - monotony,
 - well-quasi-ordered.

Overview WSTS Reachability problems

- $S = (X,
 ightarrow, \leq)$ where
 - X set,
 - $\label{eq:starses} \bullet \ \to \subseteq \mathbb{N}^3 \times \mathbb{N}^3,$
 - monotony,
 - well-quasi-ordered.

Overview WSTS Reachability problems

- $S = (X,
 ightarrow, \leq)$ where
 - X set,
 - $\rightarrow \subseteq X \times X$,
 - monotony,
 - well-quasi-ordered.

Overview WSTS Reachability problems

- $S = (X,
 ightarrow, \leq)$ where
 - X set,
 - $\rightarrow \subseteq X \times X$,
 - monotony,
 - well-quasi-ordered.

Overview WSTS Reachability problems

- $S = (X,
 ightarrow, \leq)$ where
 - X set,
 - $\rightarrow \subseteq X \times X$,
 - monotony,
 - well-quasi-ordered.

Overview WSTS Reachability problems

Well-structured transition system (Finkel ICALP'87, Finkel & Schnoebelen TCS'01)

⊬

- $S = (X,
 ightarrow, \leq)$ where
 - X set,
 - $\rightarrow \subseteq X \times X$,
 - monotony,
 - well-quasi-ordered.

$$\begin{array}{cccc} f' & x & \rightarrow & y \\ & & & & \\ & & & & \\ & x' & & & & \\ & & & & y' \end{array} \quad \exists$$

Overview WSTS Reachability problems

- $S = (X,
 ightarrow, \leq)$ where
 - X set,
 - $\rightarrow \subseteq X \times X$,
 - transitive monotony,
 - well-quasi-ordered.

$$\begin{array}{cccc} \not & x & \to & y \\ & & & & & \\ & & & & & \\ & x' & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ &$$

Overview WSTS Reachability problems

Well-structured transition system (Finkel ICALP'87, Finkel & Schnoebelen TCS'01)

⊬

- $S = (X,
 ightarrow, \leq)$ where
 - X set,
 - $\rightarrow \subseteq X \times X$,
 - strong monotony,
 - well-quasi-ordered.

$$\begin{array}{cccc} f & x & \to & y \\ & & & & \\ & & & & \\ & x' & & \to & y' \\ & & & & & \\ \end{array}$$

Overview WSTS Reachability problems

Well-structured transition system (Finkel ICALP'87, Finkel & Schnoebelen TCS'01)

- $S = (X, \rightarrow, \leq)$ where
 - X set,
 - $\rightarrow \subseteq X \times X$,
 - monotony,
 - well-quasi-ordered:

 $\forall x_0, x_1, \dots \exists i < j \text{ s.t. } x_i \leq x_j.$

Overview WSTS Reachability problems

Branching

A WSTS (X, \rightarrow, \leq) is *finitely branching* if Post(x) is finite for every $x \in X$.

Overview WSTS Reachability problems

Branching

A WSTS (X, \rightarrow, \leq) is *finitely branching* if Post(x) is finite for every $x \in X$.

Some finitely branching WSTS

Petri nets, vector addition systems,

Overview WSTS Reachability problems

Branching

A WSTS (X, \rightarrow, \leq) is *finitely branching* if Post(x) is finite for every $x \in X$.

Some finitely branching WSTS

- Petri nets, vector addition systems,
- Counter machines with affine updates,

Overview WSTS Reachability problems

Branching

A WSTS (X, \rightarrow, \leq) is *finitely branching* if Post(x) is finite for every $x \in X$.

Some finitely branching WSTS

- Petri nets, vector addition systems,
- Counter machines with affine updates,
- Lossy channel systems (Abdulla, Cerans, Jonsson & Tsay LICS'96),

Overview WSTS Reachability problems

Branching

A WSTS (X, \rightarrow, \leq) is *finitely branching* if Post(x) is finite for every $x \in X$.

Some finitely branching WSTS

- Petri nets, vector addition systems,
- Counter machines with affine updates,
- Lossy channel systems (Abdulla, Cerans, Jonsson & Tsay LICS'96),
- Much more.

Overview WSTS Reachability problems

Branching

A WSTS (X, \rightarrow, \leq) is *finitely branching* if Post(x) is finite for every $x \in X$.

Some infinitely branching WSTS

■ Inserting FIFO automata (Cécé, Finkel, Iyer IC'96),

Overview WSTS Reachability problems

Branching

A WSTS (X, \rightarrow, \leq) is *finitely branching* if Post(x) is finite for every $x \in X$.

Some infinitely branching WSTS

- Inserting FIFO automata (Cécé, Finkel, Iyer IC'96),
- Inserting automata (Bouyer, Markey, Ouaknine, Schnoebelen, Worrell FAC'12),

Overview WSTS Reachability problems

Branching

A WSTS (X, \rightarrow, \leq) is *finitely branching* if Post(x) is finite for every $x \in X$.

Some infinitely branching WSTS

- Inserting FIFO automata (Cécé, Finkel, Iyer IC'96),
- Inserting automata (Bouyer, Markey, Ouaknine, Schnoebelen, Worrell FAC'12),
- ω-Petri nets (Geeraerts, Heussner, Praveen & Raskin PN'13),

Overview WSTS Reachability problems

Branching

A WSTS (X, \rightarrow, \leq) is *finitely branching* if Post(x) is finite for every $x \in X$.

Some infinitely branching WSTS

- Inserting FIFO automata (Cécé, Finkel, Iyer IC'96),
- Inserting automata (Bouyer, Markey, Ouaknine, Schnoebelen, Worrell FAC'12),
- ω-Petri nets (Geeraerts, Heussner, Praveen & Raskin PN'13),
- Parametric WSTS.

Overview WSTS Reachability problems

Objective

We want to study the usual reachability problems for these infinitely branching systems, e.g.,

Overview WSTS Reachability problems

Objective

We want to study the usual reachability problems for these infinitely branching systems, e.g.,

Termination,

Overview WSTS Reachability problems

Objective

We want to study the usual reachability problems for these infinitely branching systems, e.g.,

- Termination,
- Coverability,

Overview WSTS Reachability problems

Objective

We want to study the usual reachability problems for these infinitely branching systems, e.g.,

- Termination,
- Coverability,
- Boundedness.

Overview WSTS Reachability problems

Termination

Input:
$$(X, \rightarrow, \leq)$$
 a WSTS, $x_0 \in X$.
Question: $\nexists x_0 \rightarrow x_1 \rightarrow x_2 \rightarrow \ldots$?

Overview WSTS Reachability problems

Termination

Input:
$$(X, \rightarrow, \leq)$$
 a WSTS, $x_0 \in X$.
Question: $\nexists x_0 \rightarrow x_1 \rightarrow x_2 \rightarrow \ldots$?

Theorem (Finkel & Schnoebelen TCS'01)

Termination is decidable for finitely branching WSTS with transitive monotony.
Overview WSTS Reachability problems

Termination

Input:
$$(X, \rightarrow, \leq)$$
 a WSTS, $x_0 \in X$.
Question: $\nexists x_0 \rightarrow x_1 \rightarrow x_2 \rightarrow \ldots$?

Termination is <u>undecidable</u> for infinitely branching WSTS.

Overview WSTS Reachability problems

Strong term	ination
Input:	$(X, ightarrow,\leq)$ a WSTS, $x_0\in X$.
Question:	$\exists k$ bounding length of executions from x_0 ?

Overview WSTS Reachability problems

Strong termination		
Input:	$(X, ightarrow,\leq)$ a WSTS, $x_0\in X.$	
Question:	$\exists k \text{ bounding length of executions from } x_0?$	

Remark

Strong termination and termination are the same in finitely branching WSTS.

Overview WSTS Reachability problems

Strong termination		
Input:	$(X, ightarrow,\leq)$ a WSTS, $x_0\in X.$	
Question:	$\exists k$ bounding length of executions from x_0 ?	

Theorem (B., Finkel & McKenzie ICALP'14)

Strong termination is decidable for infinitely branching WSTS under some assumptions.

Ideals Completion

Issues with finite branching techniques

Some techniques for WSTS based on finite reachability trees; impossible for infinite branching.

Some rely on upward closed sets; what about downward closed, in particular with infinite branching?

Ideals Completion

Issues with finite branching techniques

Some techniques for WSTS based on finite reachability trees; impossible for infinite branching.

Some rely on upward closed sets; what about downward closed, in particular with infinite branching?

A tool

Develop from the WSTS *completion* introduced by Finkel & Goubault-Larrecq 2009.

Ideals Completion

- $I \subseteq X$ is an *ideal* if
 - downward closed: $I = \downarrow I$,

Ideals Completion

- $I \subseteq X$ is an *ideal* if
 - downward closed: $I = \downarrow I$,
 - directed: $a, b \in I \implies \exists c \in I \text{ s.t. } a \leq c \text{ and } b \leq c$.

Ideals Completion

- $I \subseteq X$ is an *ideal* if
 - downward closed: $I = \downarrow I$,
 - directed: $a, b \in I \implies \exists c \in I \text{ s.t. } a \leq c \text{ and } b \leq c$.

Ideals Completion

- $I \subseteq X$ is an *ideal* if
 - downward closed: $I = \downarrow I$,
 - directed: $a, b \in I \implies \exists c \in I \text{ s.t. } a \leq c \text{ and } b \leq c$.

Ideals Completion

Theorem (Finkel & Goubault-Larrecq ICALP'09; Goubault-Larrecq '14)

$$D$$
 downward closed $\implies D = \bigcup_{\text{finite}} \text{Ideals}$

Ideals Completion

Theorem (Finkel & Goubault-Larrecq ICALP'09; Goubault-Larrecq '14)

Corollary (B., Finkel & McKenzie ICALP'14)

Every downward closed set decomposes <u>canonically</u> as the union of its maximal ideals.

Ideals Completion

Completion (B., Finkel & McKenzie ICALP'14)

The completion of $S = (X, \rightarrow_S, \leq)$ is $\widehat{S} = (\widehat{X}, \rightarrow_{\widehat{S}}, \subseteq)$ such that

Ideals Completion

Completion (B., Finkel & McKenzie ICALP'14)

The completion of $S = (X, \rightarrow_S, \leq)$ is $\widehat{S} = (\widehat{X}, \rightarrow_{\widehat{S}}, \subseteq)$ such that

$$\widehat{X} = \mathsf{Ideals}(X),$$

Ideals Completion

Completion (B., Finkel & McKenzie ICALP'14)

The completion of $S = (X, \rightarrow_S, \leq)$ is $\widehat{S} = (\widehat{X}, \rightarrow_{\widehat{S}}, \subseteq)$ such that

•
$$\widehat{X} = \text{Ideals}(X),$$

• $I \rightarrow_{\widehat{S}} J \text{ if } \downarrow \text{Post}(I) = \underbrace{\dots \cup J \cup \dots}_{\text{constraint}}$

canonical decomposition

ldeals Completion

Theorem (B., Finkel & McKenzie ICALP'14)

Let
$$S = (X, \rightarrow_S, \leq)$$
 be a WSTS, then $\widehat{S} = (\widehat{X}, \rightarrow_{\widehat{S}}, \subseteq)$ such that
 \widehat{S} is finitely branching,

Ideals Completion

Theorem (B., Finkel & McKenzie ICALP'14)

Let
$$S = (X,
ightarrow_{\mathcal{S}}, \leq)$$
 be a WSTS, then $\widehat{S} = (\widehat{X},
ightarrow_{\widehat{S}}, \subseteq)$ such that

- \hat{S} is finitely branching,
- \widehat{S} has (strong) monotony,

Ideals Completion

Theorem (B., Finkel & McKenzie ICALP'14)

Let $S = (X, \rightarrow_S, \leq)$ be a WSTS, then $\widehat{S} = (\widehat{X}, \rightarrow_{\widehat{S}}, \subseteq)$ such that

- \widehat{S} is finitely branching,
- \widehat{S} has (strong) monotony,
- \hat{S} is not always a WSTS (Jančar IPL'99).

Termination Coverability

Relating executions of S and \widehat{S}

Let
$$S = (X, \rightarrow_{\mathcal{S}}, \leq)$$
 be a WSTS, then

• if
$$x \xrightarrow{k} g y$$
,

Termination Coverability

Relating executions of S and \widehat{S}

Let $S = (X, \rightarrow_{\mathcal{S}}, \leq)$ be a WSTS, then

• if $x \xrightarrow{k} g$, then for every ideal $I \supseteq \downarrow x$

Termination Coverability

Relating executions of S and \widehat{S}

Let
$$S = (X, \rightarrow_{\mathcal{S}}, \leq)$$
 be a WSTS, then

• if
$$x \xrightarrow{k} g$$
, then for every ideal $I \supseteq \downarrow x$ there exists an ideal $J \supseteq \downarrow y$

Termination Coverability

Relating executions of S and \widehat{S}

Let $S = (X, \rightarrow_{\mathcal{S}}, \leq)$ be a WSTS, then

• if $x \xrightarrow{k} g$, then for every ideal $I \supseteq \downarrow x$ there exists an ideal $J \supseteq \downarrow y$ such that $I \xrightarrow{k} g$,

Termination Coverability

Relating executions of S and \widehat{S}

Let
$$S = (X, \rightarrow_{\mathcal{S}}, \leq)$$
 be a WSTS, then

• if $x \xrightarrow{k} g$, then for every ideal $I \supseteq \downarrow x$ there exists an ideal $J \supseteq \downarrow y$ such that $I \xrightarrow{k} g$,

• if
$$I \xrightarrow{k}{3} J$$
,

Termination Coverability

Relating executions of S and \widehat{S}

Let
$$S = (X, \rightarrow_{\mathcal{S}}, \leq)$$
 be a WSTS, then

• if
$$x \xrightarrow{k} g y$$
, then for every ideal $I \supseteq \downarrow x$ there exists an ideal $J \supseteq \downarrow y$ such that $I \xrightarrow{k} g J$,

• if
$$I \xrightarrow{k} \widehat{S} J$$
, then for every $y \in J$

Termination Coverability

Relating executions of S and \widehat{S}

Let
$$S = (X, \rightarrow_{\mathcal{S}}, \leq)$$
 be a WSTS, then

• if
$$x \xrightarrow{k} g$$
, then for every ideal $I \supseteq \downarrow x$ there exists an ideal $J \supseteq \downarrow y$ such that $I \xrightarrow{k} g$,

• if
$$I \xrightarrow{k}{\widehat{S}} J$$
, then for every $y \in J$ there exists $x \in I$

Termination Coverability

Relating executions of S and \hat{S}

Let
$$S = (X, \rightarrow_{\mathcal{S}}, \leq)$$
 be a WSTS, then

- if $x \xrightarrow{k} g$, then for every ideal $I \supseteq \downarrow x$ there exists an ideal $J \supseteq \downarrow y$ such that $I \xrightarrow{k} g$,
- if $I \xrightarrow{k} \hat{S} J$, then for every $y \in J$ there exists $x \in I$ such that $x \xrightarrow{*} S y' \ge y$.

Termination Coverability

Relating executions of S and \widehat{S}

Let $S = (X, \rightarrow_S, \leq)$ be a WSTS with transitive monotony, then

- if $x \xrightarrow{k} g$, then for every ideal $I \supseteq \downarrow x$ there exists an ideal $J \supseteq \downarrow y$ such that $I \xrightarrow{k} g$,
- if $I \xrightarrow{k} \hat{S} J$, then for every $y \in J$ there exists $x \in I$ such that $x \xrightarrow{\geq k} S y' \geq y$.

Termination Coverability

Relating executions of S and \widehat{S}

Let $S = (X, \rightarrow_S, \leq)$ be a WSTS with strong monotony, then

- if $x \xrightarrow{k} S y$, then for every ideal $I \supseteq \downarrow x$ there exists an ideal $J \supseteq \downarrow y$ such that $I \xrightarrow{k} \hat{S} J$,
- if $I \xrightarrow{k}_{\widehat{S}} J$, then for every $y \in J$ there exists $x \in I$ such that $x \xrightarrow{k}_{S} y' \ge y$.

Termination Coverability

Theorem (B., Finkel & McKenzie ICALP'14)

Strong termination is decidable for infinitely branching WSTS with transitive monotony and such that \hat{S} is a post-effective WSTS.

Termination Coverability

Theorem (B., Finkel & McKenzie ICALP'14)

Strong termination is decidable for infinitely branching WSTS with transitive monotony and such that \hat{S} is a post-effective WSTS.

Post-effectiveness

Possible to compute cardinality of

 $\mathsf{Post}(\odot \bigcirc \bigcirc) = \bigcirc \odot \bigcirc$, $\bigcirc \odot \bigcirc$, $\bigcirc \odot \bigcirc$, $\bigcirc \odot \bigcirc$, \ldots

Termination Coverability

Theorem (B., Finkel & McKenzie ICALP'14)

Strong termination is decidable for infinitely branching WSTS with transitive monotony and such that \hat{S} is a post-effective WSTS.

Theorem (B., Finkel & McKenzie ICALP'14)

Strong termination is decidable for infinitely branching WSTS with transitive monotony and such that \hat{S} is a post-effective WSTS.

Proof

- Executions bounded in S iff bounded in \hat{S} .
- \hat{S} finitely branching, can decide termination in \hat{S} by Finkel & Schnoebelen 2001.

Termination Coverability

Coverability

Input:
$$(X, \rightarrow, \leq)$$
 a WSTS, $x_0, x \in X$.

Question: $x_0 \xrightarrow{*} x' \ge x$?

Termination Coverability

Coverability

Termination Coverability

Coverability

Forward method

Coverability:

- Enumerate executions $\downarrow x_0 \xrightarrow{*}_{\widehat{S}} I$,
- Accept if $x \in I$.

Termination Coverability

Coverability

Forward method

Coverability:

- Enumerate executions $\downarrow x_0 \xrightarrow{*}_{\widehat{S}} I$,
- Accept if $x \in I$.

Non coverability:

- Enumerate $D \subseteq X$ downward closed, $x_0 \in D$ and $\downarrow \mathsf{Post}_S(D) \subseteq D$
- Reject if $x \notin D$.
Termination Coverability

Coverability

Forward method

Coverability:

- Enumerate executions $\downarrow x_0 \xrightarrow{*}_{\widehat{S}} I$,
- Accept if $x \in I$.

Non coverability:

• Enumerate $D = I_1 \cup \ldots \cup I_k$

• Reject if
$$x \notin D$$
.

Termination Coverability

Coverability

Forward method

Coverability:

- Enumerate executions $\downarrow x_0 \xrightarrow{*}_{\widehat{S}} I$,
- Accept if $x \in I$.

Non coverability:

• Enumerate $D \subseteq X$ downward closed

• Reject if
$$x \notin D$$
.

Termination Coverability

Coverability

Forward method

Coverability:

- Enumerate executions $\downarrow x_0 \xrightarrow{*}_{\widehat{S}} I$,
- Accept if $x \in I$.

Non coverability:

• Enumerate $D \subseteq X$ downward closed, $x_0 \in D$

• Reject if
$$x \notin D$$
.

Termination Coverability

Coverability

Forward method

Coverability:

- Enumerate executions $\downarrow x_0 \xrightarrow{*}_{\widehat{S}} I$,
- Accept if $x \in I$.

Non coverability:

• Enumerate $D \subseteq X$ downward closed, $\downarrow x_0 \subseteq I_1 \cup \ldots \cup I_k$

• Reject if
$$x \notin D$$
.

Termination Coverability

Coverability

Forward method

Coverability:

- Enumerate executions $\downarrow x_0 \xrightarrow{*}_{\widehat{S}} I$,
- Accept if $x \in I$.

Non coverability:

• Enumerate $D \subseteq X$ downward closed, $\exists j \text{ s.t. } \downarrow x_0 \subseteq I_j$

• Reject if
$$x \notin D$$
.

Termination Coverability

Coverability

Forward method

Coverability:

- Enumerate executions $\downarrow x_0 \xrightarrow{*}_{\widehat{S}} I$,
- Accept if $x \in I$.

Non coverability:

- Enumerate $D \subseteq X$ downward closed, $x_0 \in D$ and $\downarrow \mathsf{Post}_S(D) \subseteq D$
- Reject if $x \notin D$.

Termination Coverability

Coverability

Backward method (Abdulla, Cerans, Jonsson & Tsay IC'00)

Compute $\uparrow \operatorname{Pre}^*(\uparrow x)$ iteratively assuming $\uparrow \operatorname{Pre}(U)$ computable.

Termination Coverability

Coverability

Backward method (Abdulla, Cerans, Jonsson & Tsay IC'00)

Compute $\uparrow \operatorname{Pre}^*(\uparrow x)$ iteratively assuming $\uparrow \operatorname{Pre}(U)$ computable.

Further results for infinitely branching WSTS

Boundedness is decidable for post-effective WSTS with strict monotony,

Further results for infinitely branching WSTS

- Boundedness is decidable for post-effective WSTS with strict monotony,
- Strong maintainability is decidable for WSTS with strong monotony and such that \hat{S} is a post-effective WSTS.

Further work

■ ∃ general class of infinitely branching WSTS with a Karp-Miller procedure?

Further work

- ∃ general class of infinitely branching WSTS with a Karp-Miller procedure?
- Toward the algorithmics of complete WSTS.

Further work

- ∃ general class of infinitely branching WSTS with a Karp-Miller procedure?
- Toward the algorithmics of complete WSTS.
- What else can we do with the WSTS completion?

Thank you! Merci!