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Input: (X ,−→,≤) a WSTS, x0 ∈ X .
Question: ∃k bounding length of executions from x0?

Theorem (B., Finkel & McKenzie ICALP’14)
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if I k−→Ŝ J , then for every y ∈ J there exists x ∈ I such that
x k−→S y ′ ≥ y .

13 / 18



Introduction
WSTS completion

Applications
Conclusion

Termination
Coverability

Theorem (B., Finkel & McKenzie ICALP’14)

Strong termination is decidable for infinitely branching WSTS with
transitive monotony and such that Ŝ is a post-effective WSTS.

Post-effectiveness
Possible to compute cardinality of

Post( ) = , , , . . .
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Post-effectiveness
Possible to compute cardinality of

Post( ) = , , , . . .

14 / 18



Introduction
WSTS completion

Applications
Conclusion

Termination
Coverability

Theorem (B., Finkel & McKenzie ICALP’14)

Strong termination is decidable for infinitely branching WSTS with
transitive monotony and such that Ŝ is a post-effective WSTS.

Proof
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Forward method
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Non coverability:
Enumerate

,

Reject if x 6∈ D.
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