Reachability in continuous vector addition systems: from theory to practice

Michael Blondin
DIRO, Université de Montréal, Canada
LSV, ENS Cachan \& CNRS, France
May 13, 2015

Reachability in continuous vector addition systems: from theory to practice

Vincent Antaki ${ }^{1}$, Michael Blondin ${ }^{12}$ \& Pierre McKenzie ${ }^{12}$

${ }^{1}$ DIRO, Université de Montréal, Canada
${ }^{2}$ LSV, ENS Cachan \& CNRS, France

$$
\text { May 13, } 2015
$$

Project

- Tool for reachability in VASS

Project

- Tool for reachability in VASS

■ Relaxations to decide non reachability

Project

- Tool for reachability in VASS

■ Relaxations to decide non reachability

- Coverability: EXPSPACE/PSPACE-complete

Project

- Tool for reachability in VASS

■ Relaxations to decide non reachability
■ Coverability:

- 2-VASS:

$$
\begin{aligned}
& \text { EXPSPACE/PSPACE-complete } \\
& \text { PSPACE-complete }
\end{aligned}
$$

Project

- Tool for reachability in VASS
- Relaxations to decide non reachability
- Coverability:
- 2-VASS:
- 1-VASS, \mathbb{Z}-VASS:
EXPSPACE/PSPACE-complete PSPACE-complete NP-complete

Project

- Tool for reachability in VASS

■ Relaxations to decide non reachability

- Coverability:
- 2-VASS:
- 1-VASS, \mathbb{Z}-VASS:
- Continuous Petri nets:

EXPSPACE/PSPACE-complete PSPACE-complete NP-complete
P-complete

Project

- Tool for reachability in VASS
- Relaxations to decide non reachability
- Coverability: EXPSPACE/PSPACE-complete
- 2-VASS:
- 1-VASS, \mathbb{Z}-VASS:
- Continuous Petri nets: PSPACE-complete NP-complete
P-complete

Continous Petri nets (CPN)

Transitions fired by an amount $\alpha \in \mathbb{R}_{\geq 0}$

Continous Petri nets (CPN)

Transitions fired by an amount $\alpha \in \mathbb{R}_{\geq 0}$

Continous Petri nets (CPN)

Transitions fired by an amount $\alpha \in \mathbb{R}_{\geq 0}$

Continous Petri nets (CPN)

Transitions fired by an amount $\alpha \in \mathbb{R}_{\geq 0}$

Continous Petri nets (CPN)

Transitions fired by an amount $\alpha \in \mathbb{R}_{\geq 0}$

Continuous vector addition systems with states (CVASS)

- What is a continuous VASS?

Continuous vector addition systems with states (CVASS)

- What is a continuous VASS?

■ Not defined in the literature

Continuous vector addition systems with states (CVASS)

- What is a continuous VASS?
- Not defined in the literature
- Two possible definitions

CVASS with "unique states"

CVASS with "unique states"

CVASS with "unique states"

CVASS with "unique states"

CVASS with "unique states"

CVASS with "unique states"

CVASS with "unique states"

CVASS with "unique states"

CVASS with "multiple states"

$$
\begin{array}{l:l}
\boldsymbol{p} \boldsymbol{q} \boldsymbol{r} \\
(1,0,0, & 0,1) \\
\left(\frac{1}{2}, \frac{1}{2}, 0,\right. & 1,0) \\
\left(0, \frac{1}{2}, \frac{1}{2},\right. & 1,2) \\
& \xrightarrow{\frac{1}{2} t_{1}} \\
&
\end{array}
$$

CVASS with "multiple states"

$$
\begin{aligned}
& \text { p } q \text { r } \\
& \begin{array}{l:l:l}
(1,0,0, & 0,1) \\
\left(\frac{1}{2}, \frac{1}{2}, 0,\right. & 1,0) \\
\xrightarrow{\frac{1}{2} t_{1}} \\
\xrightarrow{\frac{1}{2} t_{2}}
\end{array} \\
& \left(0, \frac{1}{2}, \frac{1}{2}, 1,2\right) \xrightarrow{\frac{1}{2} t_{3}} \\
& (0,0,1,1,2)
\end{aligned}
$$

CVASS with "multiple states" \leq CPN

Usual transformation, straightforward proof

CPN \leq CVASS with "multiple states"

Usual transformation, less straightforward proof

Our implementation

```
\(T^{\prime} \leftarrow T\)
while \(T^{\prime} \neq \emptyset\) do
    nbsol \(\leftarrow 0\); sol \(\leftarrow \mathbf{0}\)
    for \(t \in T^{\prime}\) do
        solve \(\exists\) ? \(\mathbf{v} \mathbf{v} \geq \mathbf{0} \wedge \mathbf{v}[t]>0 \wedge \boldsymbol{C}_{P \times T^{\prime}} \mathbf{v}=\boldsymbol{m}-\boldsymbol{m}_{0}\)
        if \(\exists \mathbf{v}\) then \(n b s o l ~ \leftarrow n b s o l+1\); sol \(\leftarrow \mathrm{sol}+\mathbf{v}\)
    end
    if \(n b s o l=0\) then return false else sol \(\leftarrow \frac{1}{n b s o l}\) sol
```


Our implementation

```
\(T^{\prime} \leftarrow T\)
while \(T^{\prime} \neq \emptyset\) do
    nbsol \(\leftarrow 0\); sol \(\leftarrow \mathbf{0}\)
    for \(t \in T^{\prime}\) do
        solve \(\exists\) ? \(\mathbf{v} \mathbf{v} \geq \mathbf{0} \wedge \mathbf{v}[t]>0 \wedge \boldsymbol{C}_{P \times T^{\prime}} \mathbf{v}=\boldsymbol{m}-\boldsymbol{m}_{0}\)
        if \(\exists \mathbf{v}\) then \(n b s o l ~ \leftarrow n b s o l+1\); sol \(\leftarrow \mathrm{sol}+\mathbf{v}\)
    end
    if \(n b s o l=0\) then return false else sol \(\leftarrow \frac{1}{n b s o l}\) sol
```

- Fraca \& Haddad PN'13
- Reachability in $C P N \in P$

Our implementation

```
T
while T'}\mp@subsup{T}{}{\prime}\not=\emptyset\mathrm{ do
    nbsol }\leftarrow0\mathrm{ ; sol }\leftarrow\mathbf{0
    for }t\in\mp@subsup{T}{}{\prime}\mathrm{ do
            solve }\exists\mathrm{ ? v v }\geq\mathbf{0}\wedge\mathbf{v}[t]>0\wedge\mp@subsup{\boldsymbol{C}}{P\times\mp@subsup{T}{}{\prime}}{\mathbf{v}}=\boldsymbol{m}-\mp@subsup{\boldsymbol{m}}{0}{
            if \exists\mathbf{v}\mathrm{ then nbsol }\leftarrownbsol +1; sol }\leftarrow\textrm{sol}+\mathbf{v
    end
    if nbsol =0 then return false else sol }\leftarrow\frac{1}{nbsol}\mathrm{ sol
t1 = np.array(range(0, n2))
b_eq = np.array(m - m0)
while t1.size != 0:
    l = t1.size
    nbsol, sol = 0, np.zeros(l, dtype=Fraction)
    A_eq = incident(subnet(net, t1))
    for t in t1:
        objective_vector = [objective(t, x) for x in range(0, l)]
        result = solve_qsopt(objective_vector, A_eq, b_eq, t)
        if result is not None:
            nbsol += 1
            sol += result
```


Our implementation

```
T
while T'}\mp@subsup{T}{}{\prime}\not=\emptyset\mathrm{ do
    nbsol }\leftarrow0\mathrm{ ; sol }\leftarrow\mathbf{0
    for }t\in\mp@subsup{T}{}{\prime}\mathrm{ do
            solve }\exists\mathrm{ ? v v }\geq\mathbf{0}\wedge\mathbf{v}[t]>0\wedge\mp@subsup{\boldsymbol{C}}{P\times\mp@subsup{T}{}{\prime}}{\mathbf{v}}=\boldsymbol{m}-\mp@subsup{\boldsymbol{m}}{0}{
            if \exists\mathbf{v}\mathrm{ then nbsol }\leftarrownbsol +1; sol }\leftarrow\mathbf{sol}+\mathbf{v
    end
    if nbsol =0 then return false else sol }\leftarrow\frac{1}{nbsol}\mathrm{ sol
t1 = np.array(range(0, n2))
b_eq = np.array(m - m0)
while t1.size != 0:
    l = t1.size
    nbsol, sol = 0, np.zeros(l, dtype=Fraction)
    A_eq = incident(subnet(net, t1))
    for t in t1:
        objective_vector = [objective(t, x) for x in range(0, l)]
        result = solve_qsopt(objective_vector, A_eq, b_eq, t)
        if result is not None:
            nbsol += 1
            sol += result
```


Polynomial time algorithm (Fraca \& Haddad PN'13)

```
Algorithm 2: Decision algorithm for reachability
    Reachable \(\left(\left\langle\mathcal{N}, \boldsymbol{m}_{0}\right\rangle, \boldsymbol{m}\right)\) : status
    Input: a CPN system \(\left\langle\mathcal{N}, \boldsymbol{m}_{0}\right\rangle\), a marking \(\boldsymbol{m}\)
    Output: the reachability status of \(\boldsymbol{m}\)
    Output: the Parikh image of a witness in the positive case
    Data: nbsol: integer; \(\mathbf{v}\), sol: vectors; \(T^{\prime}\) : subset of transitions
    if \(\boldsymbol{m}=\boldsymbol{m}_{0}\) then return (true, \(\mathbf{0}\) )
    \(T^{\prime} \leftarrow T\)
    while \(T^{\prime} \neq \emptyset\) do
        nbsol \(\leftarrow 0\); sol \(\leftarrow \mathbf{0}\)
        for \(t \in T^{\prime}\) do
            solve \(\exists\) ? \(\mathbf{v} \mathbf{v} \geq \mathbf{0} \wedge \mathbf{v}[t]>0 \wedge \boldsymbol{C}_{P \times T^{\prime}} \mathbf{v}=\boldsymbol{m}-\boldsymbol{m}_{0}\)
            if \(\exists \mathbf{v}\) then \(n b s o l ~ \leftarrow n b s o l+1\); sol \(\leftarrow \mathbf{s o l}+\mathbf{v}\)
        end
        if nbsol \(=0\) then return false else sol \(\leftarrow \frac{1}{n b s o l}\) sol
        \(T^{\prime} \leftarrow \llbracket\) sol】
        \(T^{\prime} \leftarrow T^{\prime} \cap \operatorname{maxFS}\left(\mathcal{N}_{T^{\prime}}, \boldsymbol{m}_{0}\left[{ }^{\bullet} T^{\prime \bullet}\right]\right)\)
        \(T^{\prime} \leftarrow T^{\prime} \cap \operatorname{maxFS}\left(\mathcal{N}_{T^{\prime}}^{-1}, \boldsymbol{m}\left[{ }^{\bullet} T^{\prime \bullet}\right]\right) / *\) deleted for lim-reachability */
        if \(T^{\prime}=\llbracket \mathrm{sol} \rrbracket\) then return (true,sol)
    end
    return false
```


Polynomial time algorithm (Fraca \& Haddad PN'13)

```
Algorithm 2: Decision algorithm for reachability
    Reachable \(\left(\left\langle\mathcal{N}, \boldsymbol{m}_{0}\right\rangle, \boldsymbol{m}\right)\) : status
    Input: a CPN system \(\left\langle\mathcal{N}, \boldsymbol{m}_{0}\right\rangle\), a marking \(\boldsymbol{m}\)
    Output: the reachability status of \(\boldsymbol{m}\)
    Output: the Parikh image of a witness in the positive case
    Data: nbsol: integer; \(\mathbf{v}\), sol: vectors; \(T^{\prime}\) : subset of transitions
    if \(\boldsymbol{m}=\boldsymbol{m}_{0}\) then return (true, \(\mathbf{0}\) )
    \(T^{\prime} \leftarrow T\)
    while \(T^{\prime} \neq \emptyset\) do
        nbsol \(\leftarrow 0\); sol \(\leftarrow \mathbf{0}\)
        for \(t \in T^{\prime}\) do
with NumPy
6 solve \(\exists\) ? \(\mathbf{v} \mathbf{v} \geq \mathbf{0} \wedge \mathbf{v}[t]>0 \wedge \boldsymbol{C}_{P \times T^{\prime}} \mathbf{v}=\boldsymbol{m}-\boldsymbol{m}_{0}\)
        if \(\exists \mathbf{v}\) then nbsol \(\leftarrow\) nbsol +1 ; sol \(\leftarrow\) sol \(+\mathbf{v}\)
        end
        if nbsol \(=0\) then return false else sol \(\leftarrow \frac{1}{n b s o l}\) sol
        \(T^{\prime} \leftarrow \llbracket\) sol】
        \(T^{\prime} \leftarrow T^{\prime} \cap \operatorname{maxFS}\left(\mathcal{N}_{T^{\prime}}, \boldsymbol{m}_{0}\left[{ }^{\bullet} T^{\prime \bullet}\right]\right)\)
        \(T^{\prime} \leftarrow T^{\prime} \cap \operatorname{maxFS}\left(\mathcal{N}_{T^{\prime}}^{-1}, \boldsymbol{m}\left[{ }^{\bullet} T^{\prime \bullet}\right]\right) / *\) deleted for lim-reachability */
        if \(T^{\prime}=\llbracket\) sol \(\rrbracket\) then return (true,sol)
    end
    return false
```


Polynomial time algorithm (Fraca \& Haddad PN'13)

```
Algorithm 2: Decision algorithm for reachability
    Reachable \(\left(\left\langle\mathcal{N}, \boldsymbol{m}_{0}\right\rangle, \boldsymbol{m}\right)\) : status
    Input: a CPN system \(\left\langle\mathcal{N}, \boldsymbol{m}_{0}\right\rangle\), a marking \(\boldsymbol{m}\)
    Output: the reachability status of \(\boldsymbol{m}\)
    Output: the Parikh image of a witness in the positive case
    Data: nbsol: integer; \(\mathbf{v}\), sol: vectors; \(T^{\prime}\) : subset of transitions
    if \(\boldsymbol{m}=\boldsymbol{m}_{0}\) then return (true, \(\mathbf{0}\) )
    \(T^{\prime} \leftarrow T\)
    while \(T^{\prime} \neq \emptyset\) do
        nbsol \(\leftarrow 0\); sol \(\leftarrow \mathbf{0}\)
        for \(t \in T^{\prime}\) do
            solve \(\exists\) ? \(\mathbf{v} \mathbf{v} \geq \mathbf{0} \wedge \mathbf{v}[t]>0 \wedge \boldsymbol{C}_{P \times T^{\prime}} \mathbf{v}=\boldsymbol{m}-\boldsymbol{m}_{0}\) A bit trickier
            if \(\exists \mathbf{v}\) then \(n\) bsol \(\leftarrow\) nbsol +1 ; \(\mathbf{s o l} \leftarrow \mathbf{s o l}+\mathbf{v}\)
        end
        if nbsol \(=0\) then return false else sol \(\leftarrow \frac{1}{n b s o l}\) sol
        \(T^{\prime} \leftarrow \llbracket\) sol】
        \(T^{\prime} \leftarrow T^{\prime} \cap \operatorname{maxFS}\left(\mathcal{N}_{T^{\prime}}, \boldsymbol{m}_{0}\left[{ }^{\bullet} T^{\prime \bullet}\right]\right)\)
        \(T^{\prime} \leftarrow T^{\prime} \cap \operatorname{maxFS}\left(\mathcal{N}_{T^{\prime}}^{-1}, \boldsymbol{m}\left[{ }^{\bullet} T^{\prime \bullet}\right]\right) / *\) deleted for lim-reachability */
        if \(T^{\prime}=\llbracket \mathrm{sol} \rrbracket\) then return (true,sol)
    end
    return false
```


System of linear inequalities

System of linear inequalities

Without this condition, could simply use simplex

Handling the strict inequality

1 Solve

$$
\begin{array}{ll}
\text { Maximize } & \mathbf{x}_{t} \\
\text { Subject to } & A \mathbf{x}=\mathbf{b}, \mathbf{x} \geq \mathbf{0}
\end{array}
$$

Handling the strict inequality

1 Solve

Maximize	\mathbf{x}_{t}
Subject to	$A \mathbf{x}=\mathbf{b}, \mathbf{x} \geq \mathbf{0}$

2 ■ If $\mathbf{x}_{t}>0$, return \mathbf{x}

Handling the strict inequality

1 Solve

$$
\begin{array}{ll}
\text { Maximize } & \mathbf{x}_{t} \\
\text { Subject to } & A \mathbf{x}=\mathbf{b}, \mathbf{x} \geq \mathbf{0}
\end{array}
$$

2 ■ If $\mathbf{x}_{t}>0$, return \mathbf{x}

- If $\mathbf{x}_{t}=0, \quad$ return "no solution"

Handling the strict inequality
1 Solve

$$
\begin{array}{ll}
\text { Maximize } & \mathbf{x}_{t} \\
\text { Subject to } & A \mathbf{x}=\mathbf{b}, \mathbf{x} \geq \mathbf{0}
\end{array}
$$

2 ■ If $\mathbf{x}_{t}>0$, return \mathbf{x}

- If $\mathbf{x}_{t}=0$, return "no solution"
- If no solution, return "no solution"

Handling the strict inequality
1 Solve

$$
\begin{array}{ll}
\text { Maximize } & \mathbf{x}_{t} \\
\text { Subject to } & A \mathbf{x}=\mathbf{b}, \mathbf{x} \geq \mathbf{0}
\end{array}
$$

2 ■ If $\mathbf{x}_{t}>0$, return \mathbf{x}

- If $\mathbf{x}_{t}=0$, return "no solution"
- If no solution, return "no solution"
- If unbounded, continue

Handling the strict inequality

3 Solve

$$
\begin{array}{ll}
\text { Minimize } & \mathbf{x}_{t} \\
\text { Subject to } & A \mathbf{x}=\mathbf{b}, \mathbf{x} \geq \mathbf{0}, \mathbf{x}_{t} \geq 1
\end{array}
$$

Handling the strict inequality

3 Solve

$$
\begin{array}{ll}
\text { Minimize } & \mathbf{x}_{t} \\
\text { Subject to } & A \mathbf{x}=\mathbf{b}, \mathbf{x} \geq \mathbf{0}, \mathbf{x}_{t} \geq 1
\end{array}
$$

return \mathbf{x}

Simplex implementations

■ Usually in floating-point arithmetic

Simplex implementations

■ Usually in floating-point arithmetic

- Error-prone, even worse with $2|T|^{2}$ resolutions

Simplex implementations

■ Usually in floating-point arithmetic

- Error-prone, even worse with $2|T|^{2}$ resolutions
- Interested in non reachability, no certificate to verify answer

Simplex implementations

- Usually in floating-point arithmetic
- Error-prone, even worse with $2|T|^{2}$ resolutions
- Interested in non reachability, no certificate to verify answer

Current solution

QSopt-Exact: exact solver from
Exact solutions to linear programming problems David L. Applegate ${ }^{\text {a }}$ William Cook ${ }^{\text {b }}$ Sanjeeb Dash ${ }^{\text {c }}$ Daniel G. Espinoza ${ }^{\text {d,* }}$

Open questions

■ Floating-point solver + testing certificates (Farkas' lemma, reconstruct simplex tableaux in \mathbb{Q})

Open questions

■ Floating-point solver + testing certificates (Farkas' lemma, reconstruct simplex tableaux in \mathbb{Q})

■ Reachability in CVASS with "unique states"?

Open questions

■ Floating-point solver + testing certificates (Farkas' lemma, reconstruct simplex tableaux in \mathbb{Q})

■ Reachability in CVASS with "unique states"?

- Any use for CVASS with "unique states"?

Further work

- Test other solvers

Further work

- Test other solvers
- Benchmarks

Further work

- Test other solvers
- Benchmarks
- Next modules

Thank you! Merci! Danke!

