Reachability in continuous vector addition systems: from theory to practice

Michael Blondin

DIRO, Université de Montréal, Canada

LSV, ENS Cachan & CNRS, France

May 13, 2015

Reachability in continuous vector addition systems: from theory to practice

Vincent Antaki¹, Michael Blondin¹² & Pierre McKenzie¹²

¹DIRO, Université de Montréal, Canada

²LSV, ENS Cachan & CNRS, France

May 13, 2015

Project Continuous Petri nets

Project

Tool for reachability in VASS

Project Continuous Petri nets

Project

- Tool for reachability in VASS
- Relaxations to decide non reachability

Project Continuous Petri nets

Project

- Tool for reachability in VASS
- Relaxations to decide non reachability
 - Coverability: EXPSPACE/PSPACE-complete

Project Continuous Petri nets

Project

- Tool for reachability in VASS
- Relaxations to decide non reachability
 - Coverability: EXPSPACE/PSPACE-complete
 - 2-VASS:

PSPACE-complete

Project Continuous Petri nets

Project

- Tool for reachability in VASS
- Relaxations to decide non reachability
 - Coverability: EXPSPACE/PSPACE-complete
 - 2-VASS:
 - 1-VASS, ℤ-VASS:

PSPACE-complete

NP-complete

Project Continuous Petri nets

Project

- Tool for reachability in VASS
- Relaxations to decide non reachability
 - Coverability: EXPSPACE/PSPACE-complete
 - 2-VASS:
 - 1-VASS, ℤ-VASS:
 - Continuous Petri nets:

PSPACE-complete

- NP-complete
 - P-complete

Project Continuous Petri nets

Project

- Tool for reachability in VASS
- Relaxations to decide non reachability
 - Coverability: EXPSPACE/PSPACE-complete
 - 2-VASS:
 - 1-VASS, ℤ-VASS:
 - Continuous Petri nets:

PSPACE-complete NP-complete

P-complete

Project Continuous Petri nets

Continous Petri nets (CPN)

Project Continuous Petri nets

Continous Petri nets (CPN)

Project Continuous Petri nets

Continous Petri nets (CPN)

Project Continuous Petri nets

Continous Petri nets (CPN)

Project Continuous Petri nets

Continous Petri nets (CPN)

Jnique states Multiple states Equivalence with CPN

Continuous vector addition systems with states (CVASS)

What is a continuous VASS?

Jnique states Multiple states Equivalence with CPN

Continuous vector addition systems with states (CVASS)

- What is a continuous VASS?
- Not defined in the literature

Jnique states Multiple states Equivalence with CPN

Continuous vector addition systems with states (CVASS)

- What is a continuous VASS?
- Not defined in the literature
- Two possible definitions

Unique states Multiple states Equivalence with CPN

Unique states Multiple states Equivalence with CPN

CVASS with "multiple states"

p q r (1, 0, 0, 1)

Unique states Multiple states Equivalence with CPN

Unique states Multiple states Equivalence with CPN

$$\begin{array}{c|c} p \ q \ r \\ (1, 0, 0, 0, 0, 1) & \xrightarrow{\frac{1}{2}t_1} \\ (\frac{1}{2}, \frac{1}{2}, 0, 1, 0) & \xrightarrow{\frac{1}{2}t_2} \\ (0, \frac{1}{2}, \frac{1}{2}, 0, 1, 2) & \xrightarrow{\frac{1}{2}t_2} \end{array}$$

Unique states Multiple states Equivalence with CPN

pqr		
(1, 0, 0,	0,1)	$\xrightarrow{\frac{1}{2}t_1}$
$(\frac{1}{2}, \frac{1}{2}, 0,$	1,0)	$\xrightarrow{\frac{1}{2}t_2}$
$(0, \frac{1}{2}, \frac{1}{2}, $	1,2)	$\xrightarrow{\frac{1}{2}t_3}$
(0, 0, 1,	1,2)	

Unique states Multiple states Equivalence with CPN

CVASS with "multiple states" \leq CPN

Usual transformation, straightforward proof

Unique states Multiple states Equivalence with CPN

$\mathsf{CPN} \leq \mathsf{CVASS}$ with "multiple states"

Usual transformation, less straightforward proof

 \rightarrow

Overview Details of implementation

Our implementation

 $\begin{array}{l} T' \leftarrow T \\ \text{while } T' \neq \emptyset \text{ do} \\ nbsol \leftarrow 0; \text{ sol } \leftarrow 0 \\ \text{for } t \in T' \text{ do} \\ & | \text{ solve } \exists ? \mathbf{v} \mathbf{v} \geq \mathbf{0} \wedge \mathbf{v}[t] > 0 \wedge \boldsymbol{C}_{P \times T'} \mathbf{v} = m - m_0 \\ & | \text{ if } \exists \mathbf{v} \text{ then } nbsol \leftarrow nbsol + 1; \text{ sol } \leftarrow \text{ sol } + \mathbf{v} \\ & \text{end} \\ & \text{ if } nbsol = 0 \text{ then return false else sol } \leftarrow \frac{1}{nbsol} \text{ sol} \end{array}$

Fraca & Haddad PN'13

Overview Details of implementation

Our implementation

 $\begin{array}{l} T' \leftarrow T \\ \text{while } T' \neq \emptyset \text{ do} \\ nbsol \leftarrow 0; \text{ sol } \leftarrow 0 \\ \text{ for } t \in T' \text{ do} \\ & \text{ solve } \exists ? \mathbf{v} \mathbf{v} \geq \mathbf{0} \wedge \mathbf{v}[t] > 0 \wedge C_{P \times T'} \mathbf{v} = m - m_0 \\ & \text{ if } \exists \mathbf{v} \text{ then } nbsol \leftarrow nbsol + 1; \text{ sol } \leftarrow \text{ sol } + \mathbf{v} \\ & \text{ end} \\ & \text{ if } nbsol = 0 \text{ then return false else sol } \leftarrow \frac{1}{nbsol} \text{ sol} \end{array}$

- Fraca & Haddad PN'13
- $\blacksquare \ {\sf Reachability} \ {\sf in} \ {\sf CPN} \in {\sf P}$

Overview Details of implementation

Our implementation

```
T' \leftarrow T
while T' \neq \emptyset do
                                                           Fraca & Haddad PN'13
    nbsol \leftarrow 0; sol \leftarrow 0
    for t \in T' do
                                                           Reachability in CPN \in P
       solve \exists \mathbf{v} \mathbf{v} \geq \mathbf{0} \land \mathbf{v}[t] > 0 \land C_{P \times T'} \mathbf{v} = m - m_0
       if \exists v \text{ then } nbsol \leftarrow nbsol + 1; sol \leftarrow sol + v
    end
    if nbsol = 0 then return false else sol \leftarrow \frac{1}{nbsol} sol
                                                           python with NumPy
t1 = np.array(range(0, n2))
b eq = np.array(m - m0)
while t1.size != 0:
              = t1.size
  nbsol, sol = 0, np.zeros(1, dtype=Fraction)
  A_eq = incident(subnet(net, t1))
  for t in t1:
     objective_vector = [objective(t, x) for x in range(0, 1)]
                        = solve_qsopt(objective_vector, A_eq, b_eq, t)
    result
     if result is not None:
       nbsol += 1
       sol += result
```

Overview Details of implementation

Our implementation

```
T' \leftarrow T
while T' \neq \emptyset do
                                                           Fraca & Haddad PN'13
    nbsol \leftarrow 0; sol \leftarrow 0
    for t \in T' do
                                                          Reachability in CPN \in P
       solve \exists \mathbf{v} \mathbf{v} \geq \mathbf{0} \land \mathbf{v}[t] > 0 \land C_{P \times T'} \mathbf{v} = m - m_0
       if \exists v \text{ then } nbsol \leftarrow nbsol + 1; sol \leftarrow sol + v
    end
    if nbsol = 0 then return false else sol \leftarrow \frac{1}{nbsol} sol
                                                          puthon with NumPy
t1 = np.array(range(0, n2))
b eq = np.array(m - m0)
while t1.size != 0:
                                                           299 lines of code
              = t1.size
  nbsol, sol = 0, np.zeros(1, dtype=Fraction)
                                                                  (215 \text{ code} + 84 \text{ docstring})
  A_eq = incident(subnet(net, t1))
  for t in t1:
    objective_vector = [objective(t, x) for x in range(0, 1)]
                        = solve_qsopt(objective_vector, A_eq, b_eq, t)
    result
    if result is not None:
       nbsol += 1
       sol += result
```

Overview Details of implementation

Polynomial time algorithm (Fraca & Haddad PN'13)

Algorithm 2: Decision algorithm for reachability Reachable($\langle \mathcal{N}, \boldsymbol{m}_0 \rangle, \boldsymbol{m}$): status **Input**: a CPN system $\langle \mathcal{N}, \boldsymbol{m}_0 \rangle$, a marking \boldsymbol{m} Output: the reachability status of m Output: the Parikh image of a witness in the positive case **Data**: *nbsol*: integer: **v**. **sol**: vectors: T': subset of transitions 1 if $m = m_0$ then return (true,0) 2 $T' \leftarrow T$ 3 while $T' \neq \emptyset$ do $nbsol \leftarrow 0$; sol $\leftarrow 0$ 4 for $t \in T'$ do 5 solve $\exists \mathbf{v} \mathbf{v} \geq \mathbf{0} \land \mathbf{v}[t] > \mathbf{0} \land C_{P \times T'} \mathbf{v} = m - m_0$ 6 if $\exists v \text{ then } nbsol \leftarrow nbsol + 1$; sol \leftarrow sol + v 7 end 8 if nbsol = 0 then return false else sol $\leftarrow \frac{1}{nbsol}$ sol 9 $T' \leftarrow [[sol]]$ 10 $T' \leftarrow \overline{T'} \cap \max FS(\mathcal{N}_{T'}, m_0[{}^{\bullet}T'{}^{\bullet}])$ 11 $T' \leftarrow T' \cap \max FS(\mathcal{N}_{T'}^{-1}, \boldsymbol{m}[{}^{\bullet}T'{}^{\bullet}]) /*$ deleted for lim-reachability 12 */ if T' = [sol] then return (true.sol) 13 14 end 15 return false

Overview Details of implementation

Polynomial time algorithm (Fraca & Haddad PN'13)

Overview Details of implementation

Polynomial time algorithm (Fraca & Haddad PN'13)

Algorithm 2: Decision algorithm for reachability Reachable($\langle \mathcal{N}, \boldsymbol{m}_0 \rangle, \boldsymbol{m}$): status **Input**: a CPN system $\langle \mathcal{N}, \boldsymbol{m}_0 \rangle$, a marking \boldsymbol{m} Output: the reachability status of m Output: the Parikh image of a witness in the positive case **Data**: *nbsol*: integer: **v**. **sol**: vectors: T': subset of transitions 1 if $m = m_0$ then return (true,0) 2 $T' \leftarrow T$ 3 while $T' \neq \emptyset$ do $nbsol \leftarrow 0$; sol $\leftarrow 0$ 4 for $t \in T'$ do 5 solve $\exists \mathbf{v} \mathbf{v} \geq \mathbf{0} \land \mathbf{v}[t] > 0 \land C_{P \times T'} \mathbf{v} = m - m_0$ A bit trickier 6 if $\exists \mathbf{v} \text{ then } nbsol \leftarrow nbsol + 1; \mathbf{sol} \leftarrow \mathbf{sol} + \mathbf{v}$ 7 8 end if nbsol = 0 then return false else sol $\leftarrow \frac{1}{nbsol}$ sol 9 $T' \leftarrow [[sol]]$ 10 $T' \leftarrow \overline{T'} \cap \max FS(\mathcal{N}_{T'}, m_0[{}^{\bullet}T'{}^{\bullet}])$ 11 $T' \leftarrow T' \cap \max FS(\mathcal{N}_{T'}^{-1}, m[{}^{\bullet}T'{}^{\bullet}]) /* \text{ deleted for lim-reachability}$ 12 */ if T' = [sol] then return (true.sol) 13 14 end 15 return false

Overview Details of implementation

System of linear inequalities

Overview Details of implementation

System of linear inequalities

Overview Details of implementation

Handling the strict inequality

1 Solve

 $\begin{array}{lll} \mathsf{Maximize} & \mathbf{x}_t \\ \mathsf{Subject to} & A\mathbf{x} = \mathbf{b}, \ \mathbf{x} \geq \mathbf{0} \end{array}$

Overview Details of implementation

Handling the strict inequality

1 Solve

2 If x $_t > 0, return x$

Overview Details of implementation

Handling the strict inequality

1 Solve

- $\begin{array}{lll} \text{Maximize} & \mathbf{x}_t \\ \text{Subject to} & A\mathbf{x} = \mathbf{b}, \ \mathbf{x} \geq \mathbf{0} \end{array}$
- **2** If $\mathbf{x}_t > 0$, return \mathbf{x}
 - If $\mathbf{x}_t = 0$, return "no solution"

Overview Details of implementation

Handling the strict inequality

1 Solve

- 2 If $\mathbf{x}_t > 0$, return \mathbf{x} If $\mathbf{x}_t = 0$, return "no solution" If no solution, return "no solution"

Overview Details of implementation

Handling the strict inequality

1 Solve

- **2** If $\mathbf{x}_t > 0$, return \mathbf{x}
 - If $\mathbf{x}_t = 0$, return "no solution"
 - If no solution, return "no solution"
 - If unbounded, continue

Overview Details of implementation

Handling the strict inequality

3 Solve

$\begin{array}{lll} \mbox{Minimize} & \mathbf{x}_t \\ \mbox{Subject to} & A\mathbf{x} = \mathbf{b}, \ \mathbf{x} \geq \mathbf{0}, \ \mathbf{x}_t \geq 1 \end{array}$

Overview Details of implementation

Handling the strict inequality

3 Solve

 $\begin{array}{ll} \mbox{Minimize} & \mathbf{x}_t \\ \mbox{Subject to} & A\mathbf{x} = \mathbf{b}, \ \mathbf{x} \geq \mathbf{0}, \ \mathbf{x}_t \geq 1 \end{array}$

return **x**

Overview Details of implementation

Simplex implementations

Usually in floating-point arithmetic

Overview Details of implementation

Simplex implementations

- Usually in floating-point arithmetic
- Error-prone, even worse with $2|T|^2$ resolutions

Overview Details of implementation

Simplex implementations

- Usually in floating-point arithmetic
- Error-prone, even worse with $2|T|^2$ resolutions
- Interested in non reachability, no certificate to verify answer

Overview Details of implementation

Simplex implementations

- Usually in floating-point arithmetic
- Error-prone, even worse with $2|T|^2$ resolutions
- Interested in non reachability, no certificate to verify answer

Current solution

QSopt-Exact: exact solver from

 $\label{eq:Exact solutions to linear programming problems \\ David L. Applegate ^a William Cook ^b Sanjeeb Dash ^c Daniel G. Espinoza ^{d,*}$

Open questions

 Floating-point solver + testing certificates (Farkas' lemma, reconstruct simplex tableaux in Q)

Open questions

- Floating-point solver + testing certificates (Farkas' lemma, reconstruct simplex tableaux in Q)
- Reachability in CVASS with "unique states"?

Open questions

- Floating-point solver + testing certificates (Farkas' lemma, reconstruct simplex tableaux in Q)
- Reachability in CVASS with "unique states"?
- Any use for CVASS with "unique states"?

Further work

Test other solvers

Further work

- Test other solvers
- Benchmarks

Further work

- Test other solvers
- Benchmarks
- Next modules

Thank you! Merci! Danke!