Automatic Analysis of Expected Termination
Time for Population Protocols

Michael Blondin

Joint work with Javier Esparza and Antonin Kucera

Technical
University
of Munich

Population protocols: distributed computing
model for massive networks of passively mobile
finite-state agents

1/1

- D 7 G c0

=T = = 8 e 70 e %
G i % %

I 8 (p o°O
% %

= . . . % & o0
Population protocols: distributed computing 000 &

model for massive networks of passively mobile 8 gzo

finite-state agents

Can model e.g. networks of passively mobile sensors and
chemical reaction networks

1/1

Population protocols: distributed computing %00 o &
model for massive networks of passively mobile
finite-state agents

Can model e.g. networks of passively mobile sensors and
chemical reaction networks

Protocols compute predicates of the form : N — {0,1}

e.g. if ¢ is unary, then ¢(n) is computed by n agents

1/1

1~
-
IS
~

F

-

D @ =
(N 0000080000‘?%630000000 0® 00

= %o ; 0000
P
o 94
. o . % & o0
Population protocols: distributed computing 000 &
model for massive networks of passively mobile 8 gzo

finite-state agents

This talk: automatic derivation of upper bounds on the
running time of protocols

1/1

Population protocols Angluin et al. PODC'04

< anonymous mobile agents with very few resources

- agents change states via random pairwise interactions

each agent has opinion true/false

« computes by stabilizing agents to some opinion

2/11

Population protocols Angluin et al. PODC'04

« anonymous mobile agents with very few resources

- agents change states via random pairwise interactions

each agent has opinion true/false

« computes by stabilizing agents to some opinion

119 %9q

2/11

Population protocols Angluin et al. PODC'04

< anonymous mobile agents with very few resources

- agents change states via random pairwise interactions

each agent has opinion true/false

« computes by stabilizing agents to some opinion

1149%

2/11

Population protocols Angluin et al. PODC'04

< anonymous mobile agents with very few resources

- agents change states via random pairwise interactions

each agent has opinion true/false

« computes by stabilizing agents to some opinion

R LA L)

2/11

Population protocols Angluin et al. PODC'04

< anonymous mobile agents with very few resources

- agents change states via random pairwise interactions

each agent has opinion true/false

« computes by stabilizing agents to some opinion

19444

2/11

Population protocols Angluin et al. PODC'04

< anonymous mobile agents with very few resources

- agents change states via random pairwise interactions

each agent has opinion true/false

« computes by stabilizing agents to some opinion

11444

2/11

Population protocols Angluin et al. PODC'04

< anonymous mobile agents with very few resources

- agents change states via random pairwise interactions

each agent has opinion true/false

« computes by stabilizing agents to some opinion

11444

2/11

Population protocols Angluin et al. PODC'04

< anonymous mobile agents with very few resources

- agents change states via random pairwise interactions

each agent has opinion true/false

« computes by stabilizing agents to some opinion

"4 @i@*@i@

2/11

Population protocols Angluin et al. PODC'04

< anonymous mobile agents with very few resources

- agents change states via random pairwise interactions

each agent has opinion true/false

« computes by stabilizing agents to some opinion

EREREY

2/11

Population protocols Angluin et al. PODC'04

< anonymous mobile agents with very few resources

- agents change states via random pairwise interactions

each agent has opinion true/false

- computes by stabilizing agents to some opinion

Aty

2/11

Population protocols Angluin et al. PODC'04

< anonymous mobile agents with very few resources

- agents change states via random pairwise interactions

each agent has opinion true/false

« computes by stabilizing agents to some opinion
Ley g Ley =g L]
oo oo 2
. . _ 0%
1] 1] Q.

AL

2/11

Example: majority protocol

At least as many blue birds than red birds?

1
L 8

1
. 5

Example: majority protocol

At least as many blue birds than red birds?

Protocol:

- Two large birds of
different colors
become small

« Large birds convert
small birds to their
color

1
L 8

1
. 5

Example: majority protocol

At least as many blue birds than red birds?

Protocol:

- Two large birds of
different colors
become small

« Large birds convert
small birds to their
color

1

Example: majority protocol

At least as many blue birds than red birds?

Protocol:

- Two large birds of
different colors
become small

« Large birds convert
small birds to their
color

1T 1

3/11

Example: majority protocol

At least as many blue birds than red birds?

Protocol:

- Two large birds of
different colors
become small

« Large birds convert
small birds to their
color

i%q
T 91

3/11

Example: majority protocol

At least as many blue birds than red birds?

Protocol:

- Two large birds of
different colors
become small

« Large birds convert
small birds to their
color

1 1

3/11

Example: majority protocol

At least as many blue birds than red birds?

Protocol:

- Two large birds of
different colors
become small

« Large birds convert
small birds to their
color

3/11

Example: majority protocol

At least as many blue birds than red birds?

Protocol:

- Two large birds of
different colors
become small

« Large birds convert
small birds to their
color

1T 1

3/11

Example: majority protocol

At least as many blue birds than red birds?

Protocol:

- Two large birds of
different colors
become small

« Large birds convert
small birds to their
color

3/11

Example: majority protocol

At least as many blue birds than red birds?

Protocol:

- Two large birds of
different colors
become small

« Large birds convert
small birds to their
color

8

1

1

1

3/11

Example: majority protocol

At least as many blue birds than red birds?

Protocol:

- Two large birds of
different colors
become small

« Large birds convert
small birds to their
color

1

1

3/11

Example: majority protocol

At least as many blue birds than red birds?

Protocol:

- Two large birds of
different colors
become small

« Large birds convert
small birds to their
color

8

1

1

1

3/11

Example: majority protocol

At least as many blue birds than red birds?

Protocol:

- Two large birds of
different colors
become small

« Large birds convert
small birds to their
color

8

1

1

1

3/11

Example: majority protocol

At least as many blue birds than red birds?

Protocol:

- Two large birds of
different colors
become small

« Large birds convert
small birds to their
color

8

1

1

1

3/11

Example: majority protocol

At least as many blue birds than red birds?

Protocol:

- Two large birds of
different colors
become small

« Large birds convert
small birds to their
color

R
R

)

Q]

R

3/11

Example: majority protocol

At least as many blue birds than red birds?

Protocol:
- Two large birds of
different colors
become small
« Large birds convert i
small birds to their

color

+ To break ties: small
blue birds convert
small red birds

1

3/11

Example: threshold protocol

Are there at least 4 sick birds?

1
9

{
i
41

Example: threshold protocol

Are there at least 4 sick birds?

1
44

Protocol:

« Each bird isin a
state of {0,1,2,3, 4}

- Sick birds initially in
state 1and healthy
birds in state 0

* (m,n)— (m+n,0)
ifm+n<a

= (m,n) — (4,4)
ifm+n>4

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

« Each bird isin a
state of {0,1,2,3, 4}

- Sick birds initially in
state 1and healthy
birds in state 0

* (m,n)— (m+n,0)
ifm+n<a

« (m,n) — (4,4)

ifm+n>a4 41

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

« Each bird isin a
state of {0,1,2,3, 4}

- Sick birds initially in
state 1and healthy
birds in state 0

~
~

8
%

()

* (m,n)— (m+n,0)
ifm+n<a

= (m,n) — (4,4)
ifm+n>4

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

« Each bird isin a
state of {0,1,2,3, 4}

- Sick birds initially in
state 1and healthy
birds in state 0

* (m,n)— (m+n,0)
ifm+n<a

= (m,n) — (4,4)
ifm+n>4

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

« Each bird isin a
state of {0,1,2,3, 4}

- Sick birds initially in
state 1and healthy
birds in state 0

~
~

8
%

()

* (m,n)— (m+n,0)
ifm+n<a

= (m,n) — (4,4)
ifm+n>4

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

« Each bird isin a
state of {0,1,2,3, 4}

- Sick birds initially in
state 1and healthy
birds in state 0

* (m,n)— (m+n,0)
ifm+n<a

= (m,n) — (4,4)
ifm+n>4

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

(0]

« Each bird isin a

state of {0,1,2,3, 4}
- Sick birds initially in

state 1and healthy

birds in state 0

~
~

()

* (m,n)— (m+n,0)
ifm+n<a

= (m,n) — (4,4)
ifm+n>4

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

« Each bird isin a
state of {0,1,2,3, 4}

- Sick birds initially in
state 1and healthy
birds in state 0

* (m,n)— (m+n,0)
ifm+n<a

« (m,n) — (4,4)

ifm+n>a4 41

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

(0]

« Each bird isin a
state of {0,1,2,3, 4}

- Sick birds initially in
state 1and healthy
birds in state 0

~
~

1
4

* (m,n)— (m+n,0)
ifm+n<a

= (m,n) — (4,4)
ifm+n>4

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

« Each bird isin a
state of {0,1,2,3, 4}

- Sick birds initially in
state 1and healthy
birds in state 0

* (m,n)— (m+n,0)
ifm+n<a

« (m,n) — (4,4)

ifm+n>a4 41

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

(0]

« Each bird isin a
state of {0,1,2,3, 4}

- Sick birds initially in
state 1and healthy
birds in state 0

i
~

1
4

* (m,n)— (m+n,0)
ifm+n<a

= (m,n) — (4,4)
ifm+n>4

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

« Each bird isin a
state of {0,1,2,3, 4}

- Sick birds initially in
state 1and healthy
birds in state 0

* (m,n)— (m+n,0)
ifm+n<a

= (m,n) — (4,4)
ifm+n>4

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

(0]

« Each bird isin a
state of {0,1,2,3, 4}

- Sick birds initially in
state 1and healthy
birds in state 0

i
i
41

1
4

* (m,n)— (m+n,0)
ifm+n<a

= (m,n) — (4,4)
ifm+n>4

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

« Each bird isin a
state of {0,1,2,3, 4}

- Sick birds initially in
state 1and healthy
birds in state 0

* (m,n)— (m+n,0)
ifm+n<a

= (m,n) — (4,4)
ifm+n>4

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

« Each bird isin a
state of {0,1,2,3, 4}

- Sick birds initially in
state 1and healthy
birds in state 0

i
i
41

1
4

* (m,n)— (m+n,0)
ifm+n<a

= (m,n) — (4,4)
ifm+n>4

Example: threshold protocol

Are there at least 4 sick birds?

Protocol: E

« Each bird isin a @
state of {0,1,2,3, 4}

@

i@

- Sick birds initially in
state 1and healthy
birds in state 0

* (m,n)— (m+n,0)
ifm+n<a

= (m,n) — (4,4)
ifm+n>4

4/11

Demonstration

Population protocols: formal model

- States: finite set Q

+ Opinions: 0:Q—{0,1}
- Initial states: ICQ

- Transitions: TCQ*x Q@

Qi1

5/11

Population protocols: formal model

- States:

- Opinions:

- Initial states:

« Transitions:

)

L]

finite set Q
0:Q— {0,1}
ICQ

TCQ*x Q@

&

TN

5/11

Population protocols: formal model

- States:
- Opinions:

- Initial states:

« Transitions:

finite set Q
0:Q—{0,1}
I CQ

TCQ*x Q@

5/11

Population protocols: formal model

- States: finite set Q

- Opinions: 0:Q—{0,1}
- Initial states: IcQ

- Transitions: TCQ*x@

ii—ﬂli ii*ii
11497414 ii—’ii

5/11

Population protocols: formal model

Protocols can be translated into Petri nets

©
v

5/11

Population protocols: formal model

Protocols can be translated into Petri nets
conservative / bounded

5/11

Population protocols: computations

Reachability graph:
Q
11444
Q IR Q
sy o EEE TYY L L5 K BT
I Q IR 1R Q
Lidat N Laddd Ldddd Ldddd

5/11

Population protocols: computations

A run is an infinite path:
(pairs of agents are picked uniformly at random)

Q
14444
Q JQ Q
LLU [440404 [14044
db (l . a 2 (l ﬂ
Lidad N Ldddd M a4 M Liddd

5/11

Population protocols: computations

A protocol computes a predicate o: N' — {0,1}

if runs reach common stable consensus
with probability 1

5/11

Population protocols: computations

A protocol computes a predicate o: N' — {0,1}

if runs reach common stable consensus
with probability 1

Expressive power Angluin, Aspnes, Eisenstat PODC'06

Population protocols compute precisely predicates
definable in Presburger arithmetic, i.e. FO(N, +, <)

5/11

Protocols speed

B.R — b,r
B,r — B,b
R,b — Rr
b,r — bb

Compu‘/’es cor—r‘ec'{’ly Pr‘ec'ic«‘l(’e #B 2 #R
IDU'IL L-OW -CaS'(’.?

6/11

Protocols speed

B.R — b,r
B.,r — B.b
R,b — Rr
b,r — bb

Compuﬁ‘es cor-r-ec+l~7 Pr-eéice:f'e #B 2 #R
bt Low Faust?

Natural to want protocols to be fast

Upper bounds on speed useful since generally not
possible to know whether a protocol has stabilized 6/11

Protocols speed

B,R
B, r
R.b

b,r

11711

b,r
B,b
R,r

Y

Steps

100000
7
27

100000

3

Initial
configuration
{B: 7, R: 8}
{B: 3, R: 12}
{B: 4, R: 11}

{B: 7, R: 8}

{B: 13, R: 2}

Simu[«-r‘ions sL.ow +L|a+ it is slow
when R Las sliéLnL m«jor*i+7:

6/11

Protocols speed

Tt X,y — X, x forx,ye{b,r,t}

AI‘/‘ehﬂa‘/’ive PPO‘/‘OcoI

6/11

Protocols speed

BR — Tt X,y — X, x forx,ye{b,r,t}

BT — B,b

RT — Rr Is i+ -Cc\S‘{'er‘.?
|_>

AH’er‘ncﬂLive Pfo+0col

6/11

Protocols speed

BR — Tt X,y — X, x forx,ye{b,r,t}

BT — B,b

RT — Rt Is it CaS'/’ef‘-?
TT — T,t Yes, ‘Cor‘ size lS

)

10/

expected number
of stepsto 10*
stable consensus

o D
12 3 4 5 6 7 8 91011121314
number of agents initially in state R 6/11

Protocols speed

X,y — X,x forx,ye{b,rt}

BR — Tt
BT — B,b
RT — R
TT — Tt

)

expected number
of steps to
stable consensus

Ol?'/'aineé usir\é PQ’SM

10/

10*

101

Clement et al. ICDCS'L L, Offtermeatt 1 7

1 2 3 4 5 6 7 8 91011121314
number of agents initially in state R

6/11

Protocols speed

BR — Tt X,y — X, x forx,ye{b,r,t}
BT — B,b
R,T s R,r OUPQOGI.‘ c\"\alyz.e SPeecl
T.T — Tt ﬁor a“ sizes
| |
107 | i
expected number
of steps to 104 |-
stable consensus g E = ; % = E : o
10155555555555115

1234567 89101121314
number of agents initially in state R 6/11

Protocols speed: related work

- Any Presburger-definable predicate is computable
in time O(n?logn) Angluin et al. (PODC'04)

- Upper/lower bounds for majority and leader election
« Study of trade-offs between speed and number of states

e.g.
« Alistarh, Aspnes, Eisenstat, Gelashvili and Rivest (SODA"17)
- Belleville, Doty and Soloveichik (ICALP'17)
- Doty and Soloveichik (DISC'15), etc.

6/11

Definitions: probabilities

Plfire p,q — p’,q"in (] =
(p) AEC_(p) -

7/11

Definitions: probabilities

2-C(p) - C(q) :
. —2 o ftp#g
Plfire p,g+— p’,q"inC] =
Cp)-(Cp)—1) .
Py ifp=gq
Agent 1 Agent 2

Agent 3 Agent 4

7/11

Definitions: probabilities

2'Cn(f)_'nC(Q) ifp#q

Plfire p,g+— p’,q"inC] =) () —1)
C(p) - (C(p) — e
n2—n fp=q

7/11

Definitions: probabilities

2'Cn(f)_'nC(Q) ifp#q

Plfire p,g+— p’,q"inC] =) () —1)
C(p) - (C(p) — e
n2—n fp=q

7/11

Definitions: probabilities

Plfire p,q — p’,q"in (] =
(p) AEC_(p) -

P[C — C] = Z Plfire tin C]

t
tst C—=C

7/11

Definitions: probabilities

(Runs(C), F,P¢) is the probability space such that

- Fis the o-algebra generated by all

Runs(Co,Cq,...,C) ={C=Co— -+ > C—---}

« Pc is the probability measure satisfying

R—1

Pc(Runs(Co, ..., Cr)) = [PIC;i = Cizal
i=0

7/11

Definitions: a simple temporal logic

C = Outy

CEeAY
CEOp
CEOp

O(q) =bforeveryg =C

CFEe

CEeAY

Pc({o € Runs(C) : oj = ¢ foreveryi} =1

Pc({o € Runs(C) : o; = ¢ forsomei} =1

7/11

Definitions: a simple temporal logic

I

11

C(q) >1

C(q)

O(q) = bforeveryg=C

1

C It %)
CEoAY
Pc({o € Runs(C) : oj = ¢ foreveryi} =1

Pc({o € Runs(C) : o; = ¢ forsomei} =1

7/11

Definitions: a simple temporal logic

CFq = (q) =1

CEq! <~ ((q)=1

CEOut, <= 0(q)=>bforeverygpEC

CE-y — Clop

CEpAyYy = CEpAY

CE Dy < Pc({o € Runs(C) : o; = foreveryi} =1
CE Oy <= Pc({o € Runs(C) : o; = ¢ forsomei} =1

7/11

Definitions: expected termination time

Random variable Steps:

assigns to each run o the smallest kR s.t. o, |= ¢, otherwise oo

7/11

Definitions: expected termination time

Random variable Steps:

assigns to each run o the smallest k s.t. o = ¢, otherwise oo

Maximal expected termination time
We are interested in time: N — N where

time(n) = max{Ec[Stepsqoyz, v oout,] - C is initial and |C| = n}

7/11

Definitions: expected termination time

Random variable Steps:

assigns to each run o the smallest k s.t. o = ¢, otherwise oo

Maximal expected termination time
We are interested in time: N — N where

time(n) = max{E¢[Steps | : Cisinitial and |C| = n}

7/11

Definitions: expected termination time

Random variable Steps:

assigns to each run o the smallest k s.t. o = ¢, otherwise oo

Maximal expected termination time
We are interested in time: N — N where

time(n) = max{ : Cisinitial and |C| = n}

7/11

Definitions: expected termination time

Random variable Steps:

assigns to each run o the smallest k s.t. o = ¢, otherwise oo

Maximal expected termination time
We are interested in time: N — N where

time(n) =

7/11

Stage graphs

Our approach:

- Most protocols are naturally designed in stages
- Construct these stages automatically

- Derive bounds on expected running time
from stages structure

8/11

Stage graphs

A stage graph is a directed acyclic graph (S, —) such that

- every node S € S is associated to a formula s

@ @ 8/11

Stage graphs

A stage graph is a directed acyclic graph (S, —) such that
- every node S € S is associated to a formula s

- for every C € Init, there exists S € S such that C = ¢s

8/11

Stage graphs

A stage graph is a directed acyclic graph (S, —) such that
- every node S € S is associated to a formula s
- for every C € Init, there exists S € S such that C = ¢s

* CEOVsyo ps forevery S e Sand C = ¢s

8/11

Stage graphs

A stage graph is a directed acyclic graph (S, —) such that
- every node S € S is associated to a formula s
- for every C € Init, there exists S € S such that C = ¢s
* CE=OVsops foreverySe Sand C = s

* C = ps implies C = OOuty Vv OOut, for every bottom S € S

@‘@ e

8/11

Stage graphs

time(n) is bounded by the maximal expected number of steps to
move from a stage to a successor

@ @ 8/11

Stage graphs

time(n) is bounded by the maximal expected number of steps to
move from a stage to a successor

For example, time(n) € O(n?logn) if:

8/11

A procedure for computing stage graphs

B.R — Tt SO:(BVR)/\/\ﬁq
ag{BR}

B,T — B,b

R, T — R

TT —» Tt

Xy — XX

9/11

A procedure for computing stage graphs

B.R — Tt SO:(BVR)/\/\ﬁq
a¢{B.R}
o

B,T — B,b (M 0(1)l
RT — Rr

S, 0O BA/\ﬁq S,: 0 R/\/\ﬁq
1o re S0(aA) so(rep)
Xy — XX

9/11

A procedure for computing stage graphs

BR — Tt So: BVR)A A g
a#{B.R}
o@

B,T — B,b (M 0(1)1
RT — Rr

S: 0 BA/\ﬁq S,: 0 R/\/\ﬁq
1o re S0(aA) so(rep)
Xy — XX

TP&ﬂS-COf‘Ma‘/’iO’\ ér‘*aPL,

@ @
ONONO

9/11

A procedure for computing stage graphs

[B,R — T,t] So: BVR)A A g
ag{BR}
o

B,T — B,b (M 0(1)1
RT — Rr

S: 0 BA/\ﬁq S,: 0 R/\/\ﬁq
1o re S0(aA) so(rep)
Xy — XX

9/11

A procedure for computing stage graphs

BR — Tt So: BVR)A A g
q¢{B,R}
o

(BT = Bb| oo o0
RT — Rr

S, 0O BA/\ﬁq S,: 0 R/\/\ﬁq
1o re S0(aA) so(rep)
Xy — XX

9/11

A procedure for computing stage graphs

BR — Tt So: BVR)A A g
a#{B.R}
o@

B,T — B,b (M OWl
[R,T — R,r

S, 0O BA/\ﬁq S,: 0 R/\/\ﬁq
o re S0 so(rep)
Xy — XX

9/11

A procedure for computing stage graphs

BR — Tt So: BVR)A A g
ag{BR}
o

B,T — B,b (M OWl
RT — Rr

S, 0O BA/\ﬁq S,: 0 R/\/\ﬁq
[T,T — T,t] (b) (o)
Xy — XX

Oy OyO
T

9/11

A procedure for computing stage graphs

BR — Tt So: BVR)A A g
ag{BR}
o

B,T — B,b (M 0(1)1
RT — Rr

S: 0 BA/\ﬁq S,: 0 R/\/\ﬁq
rr oo re S0(eAe) so(rep)
[X,y — X,x]

9/11

A procedure for computing stage graphs

()

BR — Tt So: BVR)A A g
ag{BR}
o

B,T — B,b ™ om|
RT — Rr

S: 0 B/\/\ﬁq S,: 0 R/\/\ﬁq
LT,T — T,tJ (b) (o)
Xy — XX

9/11

A procedure for computing stage graphs

BR — Tt So: BVR)A A g
a#{B.R}
o@

B,T — Bb ™ om|
RT — Rr

S: 0 B/\/\ﬁq S,: 0 R/\/\ﬁq
LT,T — T,tJ (b) (o)
Xy — XX

S;: O[(-BV-R)A (-BV =T)A (-RV -T) A (=TVT!)] A
(BAb)V(RAT)V (TAL)

9/11

A procedure for computing stage graphs

B.R — Tt So: BVR)A A\ —q
a¢{B.R}
on

B,T — Bb () O(”l
RT — Rr

S:0|BA N —q S;:O(RA A g
1o re S0(aA) so(rep)
Xy — XX

S3: O[(-BV =R) A (-BV =T) A (-RV =T) A (=T V T!)] A

@ (BAD)V(RAF)V (TAL))

9/11

A procedure for computing stage graphs

BR — Tt So: BVR)A A g
a#{B.R}
o@

B,T — B,b ™ om|
RT — Rr

S: 0 B/\/\ﬁq S,: 0 R/\/\ﬁq
1o re S0(aA) so(rep)
Xy — XX

S3: O[(-BV =R) A (-BV =T) A (-RV =T) A (=T V T!)] A

@ (BAb)V(RAT)V (TAL)

wiill beconne Per‘m«ner\'HY c’isa\blecl

G'JMOS‘/' sur‘el
'

9/11

A procedure for computing stage graphs

BR — Tt So: BVR)A A g
ag{BR}
on

B,T — Bb () O(%
RT — Rr

S:0|BA N —q S;:O(RA A g
1o re S0(aA) so(rep)
Xy — XX

S3: O[(-BV-R) A (-BV-T)A(-RV -T) A (-TVT!)] A
O T
@ 56:D<T!/\t/\/\ﬁq)

qg{T,t}
9/11

A procedure for computing stage graphs

B.R — Tt So: BVR)A A\ —q
9#{B.R}
o
B,T — B,b Q) om |
RT — Rr
Si:O1BA /\ q S;:O|RA A\ g
1o re S0(aA) so(rep)
Xy — XX
S3: O[(-BV =R) A (-BV =T) A (-RV =T) A (=T VT)] A
[COTRC I 1. ((BAb)V(RAT)V(TAL)
Ec[Steps_pr] < D 2 C) 0
=1
n nz
< =
- = Ss:lj(T!/\t/\/\ﬁq)
qE{T,t}
< a-n®-logn 9/11

A procedure for computing stage graphs

BR — Tt So: BVR)A A g
ag{BR}
on

B,T — Bb () O(%
RT — Rr

S:0|BA N —q S;:O(RA A g
1o re S0(aA) so(rep)
Xy — XX

S3: O[(-BV =R) A (-BV =T) A (-RV =T) A (=T V T!)] A

C(b)+C(r) 5 (BAb)V(RAT)V(TAL))

n
; 2.C(T)-i

IA

EC[Stepsﬂb/\ﬂr] O(n? log n)
2|og

n 2

n

. _ | B
— 56.D<T./\t/\/\ q)

qg{T.t}
< a-n®-logn 9/11

IA

A procedure for computing stage graphs

BR — Tt So: BVR)A A g
ag{BR}
on

B,T — Bb () O(%
RT — Rr

S:0|BA N —q S;:O(RA A g
1o re S0(aA) so(rep)
Xy — XX

S;: O[(-BV -R) A (=B V =T) A (-RV =T) A (=T V TI)] A
(BAb)V (RAF)V (TAL))

O(n?logn)

O(n?logn)

Sy: O B/\b/\/\ﬁq> 55:D(R/\r/\/\ﬁq) 56:D<T!/\t/\/\ﬁq)
q¢{B,b} qaZ{R,r} qg{Tt}
9/11

A procedure for computing stage graphs

BR — Tt So: BVR)A A g
ag{BR}
o

B,T — B,b 4 om|
RT — Rr o(n?)

S, 0O BA/\ﬁq S,: 0 R/\/\ﬁq
LT,T — T,tl (b) (o)
Xy — XX

S;: O[(-BV -R) A (=B V =T) A (-RV =T) A (=T V TI)] A
(BAb)V (RAF)V (TAL))

O(n?logn)

O(n?logn)

Sy: O B/\b/\/\ﬁq> Ss:D(R/\r/\/\ﬁq) 56:D<T!/\t/\/\ﬁq)
q¢{B,b} qaZ{R,r} qg{Tt}
9/11

A procedure for computing stage graphs

®: propositional formula describing current configurations
m: set of permanently present/absent states

T: setof permanently disabled transitions

-
----e
*

Successors computed by enriching
7 through trap/siphon-like analysis and
7T and ¢ from transformation graph o/11

A procedure for computing stage graphs

®: propositional formula describing current configurations

7. set of permanently present/absent states
T setof permanently disabled transitions

-~

*

Successors computed by enriching
m through trap/siphon-like analysis and
T and ¢ from transformation graph o/11

Experimental results

- Prototype implemented in @ pgthon”" + Microsoft Z3
« Can report: O(1),0(n?),0(n?logn), O(n%), O(poly(n)) or O(exp(n))

- Tested on various protocols from the literature

10/11

Experimental results

Protocol q Protocol q
Stages | Bound | Time Stages | Bound | Time
o params. [1Q]] |7 8 o [params. [Q[[1] | ¢
x V...V, [b] | 2 1 5 | n?logn 0.1 Threshold [b]: x > ¢
x> ylal 6 10 23 n’logn | 0.9 c=5 6] o9 54 n3 25
x>yld 4 3] 9 |nlogn| 02| |c=7 8| 13| 198| 3 113
x>yld 4 4 11 exp(n) | 03 c=10 11| 19| 1542| nd 83.9
Threshold [a]: x > ¢ c=13 14 | 25| 12294 n’ 816.4
c=5 6 21 26 n3 0.8 c=15 16 | 29 — — 1/0
c=15 16 | 136 66| n’ 121 Average-and-conquer [d]: x>y (param. m, d)
c=25 26| 351| 106 | n? 580 | [m—3d=1] 6] 21 41 nflogn | 20
— 3
E=H 36| 666 | 146| n° 2223 | | _34_2| 8| 36| 1948 |nlogn | 987
c=45 46 1081 186 n® 495.3 m=5.d=1 8| 36 1870 n3 80.1
S=6B s6]15% | -] - 0| |m=sd=2|10] 55 ol 7/0
Logarithmic threshold: x > c Remainder [al: 3>,;_, i - X; = 0 (mod)
c=7 6 14 34 n? 1.9
3 10 3 130 5 o1 c=5 71 25 225 | n?logn | 12.5
< 1;7 wl ol si " soa| |67 9| 42| 1351 |n2logn| 889
€= 1023 20 | 119 | 4008 " a7 | |€=9 11| 63| 7035 | n2logn | 544.0
€= " ' c=10 12| 75 =| = 7/0
¢ = 4095 24 167 = = T/0 n n o
Linear inequalities [a]
—X1+X<0| 12| 57 21 n? 3.0
[a] Angluin et al. 2006 [b] Clément et al. 2011 “xi4+x <1 20155 131 n3 30.3
[c] Draief et al. 2012 [d] Alistarh et al. 2015 —X1+X <2 | 28301 — — T/0

10/11

- First procedure providing asymptotic upper
bounds on expected termination time

 Approach promising in practice

- New crucial notions: stage graphs and
transformation graphs

1/1

Conclusion: future work

* Is our procedure “weakly complete”? ie. for
every o, is there a protocol for ¢ analyzable by our procedure?

- Approach can be used for verification?

- How to compute lower bounds?

1/1

Thank you!

Merci!

