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Population protocols: distributed computing
model for massive networks of passively mobile
finite-state agents
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Population protocols: distributed computing %00 o &
model for massive networks of passively mobile
finite-state agents

Can model e.g. networks of passively mobile sensors and
chemical reaction networks

Protocols compute predicates of the form : N — {0,1}

e.g. if ¢ is unary, then ¢(n) is computed by n agents
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This talk: automatic derivation of upper bounds on the
running time of protocols
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Population protocols Angluin et al. PODC'04

< anonymous mobile agents with very few resources

- agents change states via random pairwise interactions

each agent has opinion true/false

« computes by stabilizing agents to some opinion
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Example: majority protocol

At least as many blue birds than red birds?

Protocol:
- Two large birds of
different colors
become small
« Large birds convert i
small birds to their

color

+ To break ties: small
blue birds convert
small red birds

1
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Example: threshold protocol

Are there at least 4 sick birds?

Protocol: E

« Each bird isin a @
state of {0,1,2,3, 4}

@

i@

- Sick birds initially in
state 1and healthy
birds in state 0

* (m,n)— (m+n,0)
ifm+n<a

= (m,n) — (4,4)
ifm+n>4

4/11



Demonstration



Population protocols: formal model

- States: finite set Q

+ Opinions: 0:Q—{0,1}
- Initial states: ICQ

- Transitions: TCQ*x Q@

Qi1
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Population protocols: formal model

- States: finite set Q

- Opinions: 0:Q—{0,1}
- Initial states: IcQ

- Transitions: TCQ*x@
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Population protocols: formal model
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Population protocols: formal model

Protocols can be translated into Petri nets
conservative / bounded
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Population protocols: computations

Reachability graph:
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Population protocols: computations

A run is an infinite path:
(pairs of agents are picked uniformly at random)

Q
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Population protocols: computations

A protocol computes a predicate o: N' — {0,1}

if runs reach common stable consensus
with probability 1
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Population protocols: computations

A protocol computes a predicate o: N' — {0,1}

if runs reach common stable consensus
with probability 1

Expressive power Angluin, Aspnes, Eisenstat PODC'06

Population protocols compute precisely predicates
definable in Presburger arithmetic, i.e. FO(N, +, <)
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Protocols speed

B.R — b,r
B,r — B,b
R,b — Rr
b,r — bb

Compu‘/’es cor—r‘ec'{’ly Pr‘ec'ic«‘l(’e #B 2 #R
IDU'IL L-OW -CaS'(’.?
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Protocols speed

B.R — b,r
B.,r — B.b
R,b — Rr
b,r — bb

Compuﬁ‘es cor-r-ec+l~7 Pr-eéice:f'e #B 2 #R
bt Low Faust?

Natural to want protocols to be fast

Upper bounds on speed useful since generally not
possible to know whether a protocol has stabilized 6/11



Protocols speed

B,R
B, r
R.b

b,r

11711

b,r
B,b
R,r

Y

Steps

100000
7
27

100000

3

Initial
configuration
{B: 7, R: 8}
{B: 3, R: 12}
{B: 4, R: 11}

{B: 7, R: 8}

{B: 13, R: 2}

Simu[«-r‘ions sL.ow +L|a+ it is slow
when R Las sliéLnL m«jor*i+7:
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Protocols speed

X,y — X,x forx,ye{b,rt}

BR — Tt
BT — B,b
RT — R
TT — Tt

)

expected number
of steps to
stable consensus

Ol?'/'aineé usir\é PQ’SM

10/

10*
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Clement et al. ICDCS'L L, Offtermeatt 1 7
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Protocols speed

BR — Tt X,y — X, x forx,ye{b,r,t}
BT — B,b
R,T s R,r OUPQOGI.‘ c\"\alyz.e SPeecl
T.T — Tt ﬁor a“ sizes
| |
107 | i
expected number
of steps to 104 |-
stable consensus g E = ; % = E : o
10155555555555115

1234567 89101121314
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Protocols speed: related work

- Any Presburger-definable predicate is computable
in time O(n?logn) Angluin et al. (PODC'04)

- Upper/lower bounds for majority and leader election
« Study of trade-offs between speed and number of states

e.g.
« Alistarh, Aspnes, Eisenstat, Gelashvili and Rivest (SODA"17)
- Belleville, Doty and Soloveichik (ICALP'17)
- Doty and Soloveichik (DISC'15), etc.
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Definitions: probabilities

Plfire p,q — p’,q"in (] =
(p) AEC_(p) -

P[C — C] = Z Plfire tin C]

t
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Definitions: probabilities

(Runs(C), F,P¢) is the probability space such that

- Fis the o-algebra generated by all

Runs(Co,Cq,...,C) ={C=Co— -+ > C—---}

« Pc is the probability measure satisfying

R—1

Pc(Runs(Co, ..., Cr)) = [ PIC;i = Cizal
i=0

7/11



Definitions: a simple temporal logic

C = Outy

CEeAY
CEOp
CEOp

O(q) =bforeveryg =C

CFEe

CEeAY

Pc({o € Runs(C) : oj = ¢ foreveryi} =1

Pc({o € Runs(C) : o; = ¢ forsomei} =1
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Definitions: a simple temporal logic

CFq =  (q) =1

CEq! <~ ((q)=1

CEOut, <= 0(q)=>bforeverygpEC

CE-y — Clop

CEpAyYy = CEpAY

CE Dy < Pc({o € Runs(C) : o; = foreveryi} =1
CE Oy <= Pc({o € Runs(C) : o; = ¢ forsomei} =1

7/11



Definitions: expected termination time

Random variable Steps:

assigns to each run o the smallest kR s.t. o, |= ¢, otherwise oo
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Maximal expected termination time
We are interested in time: N — N where

time(n) =
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Stage graphs

Our approach:

- Most protocols are naturally designed in stages
- Construct these stages automatically

- Derive bounds on expected running time
from stages structure
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Stage graphs

A stage graph is a directed acyclic graph (S, —) such that

- every node S € S is associated to a formula s
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Stage graphs

A stage graph is a directed acyclic graph (S, —) such that
- every node S € S is associated to a formula s
- for every C € Init, there exists S € S such that C = ¢s
* CE=OVsops foreverySe Sand C = s

* C = ps implies C = OOuty Vv OOut, for every bottom S € S

@‘@ e
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Stage graphs

time(n) is bounded by the maximal expected number of steps to
move from a stage to a successor
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Stage graphs

time(n) is bounded by the maximal expected number of steps to
move from a stage to a successor

For example, time(n) € O(n?logn) if:
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A procedure for computing stage graphs

B.R — Tt SO:(BVR)/\/\ﬁq
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TT —» Tt
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Experimental results

- Prototype implemented in @ pgthon”" + Microsoft Z3
« Can report: O(1),0(n?),0(n?logn), O(n%), O(poly(n)) or O(exp(n))

- Tested on various protocols from the literature
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Experimental results

Protocol q Protocol q
Stages | Bound | Time Stages | Bound | Time
o params. [1Q]] |7 8 o [params. [ Q[ [ 1] | ¢
x V...V, [b] | 2 1 5 | n?logn 0.1 Threshold [b]: x > ¢
x> ylal 6 10 23 n’logn | 0.9 c=5 6] o9 54 n3 25
x>yld 4 3] 9 |nlogn| 02| |c=7 8| 13| 198| 3 113
x>yld 4 4 11 exp(n) | 03 c=10 11| 19| 1542| nd 83.9
Threshold [a]: x > ¢ c=13 14 | 25| 12294 n’ 816.4
c=5 6 21 26 n3 0.8 c=15 16 | 29 — — 1/0
c=15 16 | 136 66| n’ 121 Average-and-conquer [d]: x>y  (param. m, d)
c=25 26| 351| 106 | n? 580 | [m—3d=1] 6] 21 41 nflogn | 20
— 3
E=H 36| 666 | 146| n° 2223 | | _34_2| 8| 36| 1948 |nlogn | 987
c=45 46 1081 186 n® 495.3 m=5.d=1 8| 36 1870 n3 80.1
S=6B s6]15% | -] - 0| |m=sd=2|10] 55 ol 7/0
Logarithmic threshold: x > c Remainder [al: 3>,;_, i - X; = 0 (mod )
c=7 6 14 34 n? 1.9
3 10 3 130 5 o1 c=5 71 25 225 | n?logn | 12.5
< 1;7 wl ol si " soa| |67 9| 42| 1351 |n2logn| 889
€= 1023 20 | 119 | 4008 " a7 | |€=9 11| 63| 7035 | n2logn | 544.0
€= " ' c=10 12| 75 =| = 7/0
¢ = 4095 24 167 = = T/0 n n o
Linear inequalities [a]
—X1+X<0| 12| 57 21 n? 3.0
[a] Angluin et al. 2006 [b] Clément et al. 2011 “xi4+x <1 20155 131 n3 30.3
[c] Draief et al. 2012 [d] Alistarh et al. 2015 —X1+X <2 | 28301 — — T/0
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- First procedure providing asymptotic upper
bounds on expected termination time

 Approach promising in practice

- New crucial notions: stage graphs and
transformation graphs

1/1



Conclusion: future work

* Is our procedure “weakly complete”? ie. for
every o, is there a protocol for ¢ analyzable by our procedure?

- Approach can be used for verification?

- How to compute lower bounds?

1/1



Thank you!

Merci!



