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Overview

Population protocols: distributed computing
model for massive networks of passively mobile
finite-state agents

Can model e.g. networks of passively mobile sensors and
chemical reaction networks

Protocols compute predicates of the form φ : Nd → {0, 1}

e.g. if φ is unary, then φ(n) is computed by n agents
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Overview

Population protocols: distributed computing
model for massive networks of passively mobile
finite-state agents

This talk: automatic derivation of upper bounds on the
running time of protocols

Can model e.g. networks of passively mobile sensors and
chemical reaction networks

Protocols compute predicates of the form φ : Nd → {0, 1}

e.g. if φ is unary, then φ(n) is computed by n agents
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Population protocols Angluin et al. PODC’04

• anonymous mobile agents with very few resources

• agents change states via random pairwise interactions

• each agent has opinion true/false

• computes by stabilizing agents to some opinion
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Example: majority protocol

At least as many blue birds than red birds?

Protocol:

• Two large birds of
different colors
become small

• Large birds convert
small birds to their
color

• To break ties: small
blue birds convert
small red birds
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Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

• Each bird is in a
state of {0, 1, 2, 3, 4}

• Sick birds initially in
state 1 and healthy
birds in state 0

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

1

1

1

0

1

4/11



Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

• Each bird is in a
state of {0, 1, 2, 3, 4}

• Sick birds initially in
state 1 and healthy
birds in state 0

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

1

1

1

0

1

4/11



Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

• Each bird is in a
state of {0, 1, 2, 3, 4}

• Sick birds initially in
state 1 and healthy
birds in state 0

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

1

1

1

0

1

4/11



Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

• Each bird is in a
state of {0, 1, 2, 3, 4}

• Sick birds initially in
state 1 and healthy
birds in state 0

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

2

1

1

0

0

4/11



Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

• Each bird is in a
state of {0, 1, 2, 3, 4}

• Sick birds initially in
state 1 and healthy
birds in state 0

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

2

1

1

0

0

4/11



Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

• Each bird is in a
state of {0, 1, 2, 3, 4}

• Sick birds initially in
state 1 and healthy
birds in state 0

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

2

1

1

0

0

4/11



Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

• Each bird is in a
state of {0, 1, 2, 3, 4}

• Sick birds initially in
state 1 and healthy
birds in state 0

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

2

1

1

0

0

4/11



Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

• Each bird is in a
state of {0, 1, 2, 3, 4}

• Sick birds initially in
state 1 and healthy
birds in state 0

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

2

2

0

0

0

4/11



Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

• Each bird is in a
state of {0, 1, 2, 3, 4}

• Sick birds initially in
state 1 and healthy
birds in state 0

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

2

2

0

0

0

4/11



Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

• Each bird is in a
state of {0, 1, 2, 3, 4}

• Sick birds initially in
state 1 and healthy
birds in state 0

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

4

4

0

0

0

4/11



Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

• Each bird is in a
state of {0, 1, 2, 3, 4}

• Sick birds initially in
state 1 and healthy
birds in state 0

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

4

4

0

0

0

4/11



Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

• Each bird is in a
state of {0, 1, 2, 3, 4}

• Sick birds initially in
state 1 and healthy
birds in state 0

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

4

4

0

4

0

4/11



Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

• Each bird is in a
state of {0, 1, 2, 3, 4}

• Sick birds initially in
state 1 and healthy
birds in state 0

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

4

4

0

4

0

4/11



Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

• Each bird is in a
state of {0, 1, 2, 3, 4}

• Sick birds initially in
state 1 and healthy
birds in state 0

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

4

4

0

4

4

4/11



Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

• Each bird is in a
state of {0, 1, 2, 3, 4}

• Sick birds initially in
state 1 and healthy
birds in state 0

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

4

4

0

4

4

4/11



Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

• Each bird is in a
state of {0, 1, 2, 3, 4}

• Sick birds initially in
state 1 and healthy
birds in state 0

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

4

4

4

4

4

4/11



Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

• Each bird is in a
state of {0, 1, 2, 3, 4}

• Sick birds initially in
state 1 and healthy
birds in state 0

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

4

4

4

4

4

4/11



Demonstration

4/11



Population protocols: formal model

• States: finite set Q

• Opinions: O : Q → {0, 1}

• Initial states: I ⊆ Q

• Transitions: T ⊆ Q2 × Q2
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Population protocols: formal model

Protocols can be translated into Petri nets

2
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Population protocols: formal model

Protocols can be translated into Petri nets

2

conservative / bounded
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Population protocols: computations

Reachability graph:
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Population protocols: computations

A run is an infinite path:
(pairs of agents are picked uniformly at random)
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Population protocols: computations

A protocol computes a predicate φ : NI → {0, 1}
if runs reach common stable consensus

with probability 1

Init0

0 0

Init1

1 1

Init2

1

. . .
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Population protocols: computations

A protocol computes a predicate φ : NI → {0, 1}
if runs reach common stable consensus

with probability 1

Expressive power Angluin, Aspnes, Eisenstat PODC’06

Population protocols compute precisely predicates
definable in Presburger arithmetic, i.e. FO(N, +, <)
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Protocols speed

B,R 7→ b, r
B, r 7→ B,b
R,b 7→ R, r
b, r 7→ b,b

O(B) = O(b) = O(T) = O(t) = 1
O(R) = O(r) = 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14

101

104

107

number of agents initially in state R

expected number
of steps to

stable consensus

Computes correctly predicate #B ≥ #R

...but how fast?
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Computes correctly predicate #B ≥ #R

...but how fast?

• Natural to want protocols to be fast

• Upper bounds on speed useful since generally not
possible to know whether a protocol has stabilized 6/11
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number of agents initially in state R

expected number
of steps to

stable consensus

Simulations show that it is slow
when R has slight majority:
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Protocols speed
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Protocols speed

B,R 7→ T, t X, y 7→ X, x for x, y ∈ {b, r, t}
B, T 7→ B,b
R, T 7→ R, r
T, T 7→ T, t

O(B) = O(b) = O(T) = O(t) = 1
O(R) = O(r) = 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14

101

104

107

number of agents initially in state R

expected number
of steps to

stable consensus

Obtained using PRISM

Clément et al. ICDCS'11, Offtermatt '17
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Protocols speed

B,R 7→ T, t X, y 7→ X, x for x, y ∈ {b, r, t}
B, T 7→ B,b
R, T 7→ R, r
T, T 7→ T, t

O(B) = O(b) = O(T) = O(t) = 1
O(R) = O(r) = 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14

101

104

107

number of agents initially in state R

expected number
of steps to

stable consensus

Our goal: analyze speed
for all sizes
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Protocols speed: related work

• Any Presburger-definable predicate is computable
in time O(n2 log n) Angluin et al. (PODC’04)

• Upper/lower bounds for majority and leader election

• Study of trade-offs between speed and number of states

e.g.
• Alistarh, Aspnes, Eisenstat, Gelashvili and Rivest (SODA’17)
• Belleville, Doty and Soloveichik (ICALP’17)
• Doty and Soloveichik (DISC’15), etc.

[AUTOMATIC NEVER DONE]

6/11



Definitions: probabilities

P[fire p,q 7→ p′,q′ in C] =


2 · C(p) · C(q)

n2 − n if p ̸= q

C(p) · (C(p)− 1)
n2 − n if p = q

P[C −→ C′] =
∑

t s.t. C t−→C′

P[fire t in C]

Agent 1 Agent 2

Agent 3 Agent 4
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Definitions: probabilities

(Runs(C),F ,PC) is the probability space such that

• F is the σ-algebra generated by all

Runs(C0, C1, . . . , Ck) = {C = C0 −→ · · · −→ Ck −→ · · · }

• PC is the probability measure satisfying

PC(Runs(C0, . . . , Ck)) =
k−1∏
i=0

P[Ci −→ Ci+1]

7/11



Definitions: a simple temporal logic

C |= q ⇐⇒ C(q) ≥ 1

C |= q! ⇐⇒ C(q) = 1

C |= Outb ⇐⇒ O(q) = b for every q |= C

C |= ¬φ ⇐⇒ C ̸|= φ

C |= φ ∧ ψ ⇐⇒ C |= φ ∧ ψ

C |= □φ ⇐⇒ PC({σ ∈ Runs(C) : σi |= φ for every i } = 1

C |= ♢φ ⇐⇒ PC({σ ∈ Runs(C) : σi |= φ for some i } = 1
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Definitions: expected termination time

Random variable Stepsφ:

assigns to each run σ the smallest k s.t. σk |= φ, otherwise ∞

Maximal expected termination time
We are interested in time : N → N where

time(n) = max{EC[Steps□Out0 ∨□Out1 ] : C is initial and |C| = n}
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Stage graphs

Our approach:

• Most protocols are naturally designed in stages

• Construct these stages automatically

• Derive bounds on expected running time
from stages structure
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Stage graphs

time(n) is bounded by the maximal expected number of steps to
move from a stage to a successor
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Stage graphs

time(n) is bounded by the maximal expected number of steps to
move from a stage to a successor

For example, time(n) ∈ O(n2 log n) if:
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A procedure for computing stage graphs

B,R 7→ T, t
B, T 7→ B,b
R, T 7→ R, r
T, T 7→ T, t
X, y 7→ X, x

S0 : (B ∨ R) ∧
∧

q ̸∈{B,R}
¬q

S1 : □

B ∧
∧
q ̸=B

¬q

 S2 : □

R ∧
∧
q ̸=R

¬q



S3 : □ [(¬B ∨ ¬R) ∧ (¬B ∨ ¬T) ∧ (¬R ∨ ¬T) ∧ (¬T ∨ T!)] ∧
((B ∧ b) ∨ (R ∧ r) ∨ (T ∧ t))

S6 : □

T! ∧ t ∧
∧

q ̸∈{T,t}
¬q

S5 : □

R ∧ r ∧
∧

q ̸∈{R,r}
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B ∧ b ∧
∧

q ̸∈{B,b}
¬q



O(1)
O(1)

O(n2)

O(n2 log n)O(n2 log n)

O(n2 log n)

B

T

R

b

t

r
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

O(1)
O(1)
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O(n2 log n)O(n2 log n)

O(n2 log n)

B

T

R

b

t

r
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A procedure for computing stage graphs
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∧
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A procedure for computing stage graphs

Φ: propositional formula describing current configurations
π: set of permanently present/absent states
T : set of permanently disabled transitions

Successors computed by enriching
π through trap/siphon-like analysis and
T and Φ from transformation graph 9/11
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Experimental results

• Prototype implemented in + Microsoft Z3

• Can report: O(1),O(n2),O(n2 log n),O(n3),O(poly(n)) or O(exp(n))

• Tested on various protocols from the literature
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Experimental results

Protocol Stages Bound Time
φ / params. |Q| |T|

x1 ∨ . . . ∨ xn [b] 2 1 5 n2 log n 0.1
x ≥ y [a] 6 10 23 n2 log n 0.9
x ≥ y [c] 4 3 9 n2 log n 0.2
x ≥ y [c] 4 4 11 exp(n) 0.3
Threshold [a]: x ≥ c
c = 5 6 21 26 n3 0.8
c = 15 16 136 66 n3 12.1
c = 25 26 351 106 n3 58.0
c = 35 36 666 146 n3 222.3
c = 45 46 1081 186 n3 495.3
c = 55 56 1596 — — T/O
Logarithmic threshold: x ≥ c
c = 7 6 14 34 n3 1.9
c = 31 10 34 130 n3 6.1
c = 127 14 62 514 n3 39.4
c = 1023 20 119 4098 n3 395.7
c = 4095 24 167 — — T/O

Protocol Stages Bound Time
φ / params. |Q| |T|
Threshold [b]: x ≥ c
c = 5 6 9 54 n3 2.5
c = 7 8 13 198 n3 11.3
c = 10 11 19 1542 n3 83.9
c = 13 14 25 12294 n3 816.4
c = 15 16 29 — — T/O
Average-and-conquer [d]: x ≥ y (param. m, d)
m = 3,d = 1 6 21 41 n2 log n 2.0
m = 3,d = 2 8 36 1948 n2 log n 98.7
m = 5,d = 1 8 36 1870 n3 80.1
m = 5,d = 2 10 55 — — T/O
Remainder [a]:

∑
1≤i<m i · xi ≡ 0 (mod c)

c = 5 7 25 225 n2 log n 12.5
c = 7 9 42 1351 n2 log n 88.9
c = 9 11 63 7035 n2 log n 544.0
c = 10 12 75 — — T/O
Linear inequalities [a]
−x1 + x2 < 0 12 57 21 n3 3.0
−x1 + x2 < 1 20 155 131 n3 30.3
−x1 + x2 < 2 28 301 — — T/O

[a] Angluin et al. 2006 [b] Clément et al. 2011
[c] Draief et al. 2012 [d] Alistarh et al. 2015
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Conclusion: summary

• First procedure providing asymptotic upper
bounds on expected termination time

• Approach promising in practice

• New crucial notions: stage graphs and
transformation graphs
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Conclusion: future work

• Is our procedure “weakly complete”? i.e. for
every φ, is there a protocol for φ analyzable by our procedure?

• Approach can be used for verification?

• How to compute lower bounds?
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Thank you!
Merci!
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