Automatic Analysis of Expected Termination Time for Population Protocols

Michael Blondin

Joint work with Javier Esparza and Antonín Kučera

Population protocols: distributed computing model for massive networks of passively mobile finite-state agents

Overview

Can model *e.g.* networks of passively mobile sensors and chemical reaction networks

Overview

Can model *e.g.* networks of passively mobile sensors and chemical reaction networks

Protocols compute predicates of the form $\varphi \colon \mathbb{N}^d \to \{0, 1\}$ e.g. if φ is unary, then $\varphi(n)$ is computed by n agents

Overview

Population protocols: distributed computing model for massive networks of passively mobile finite-state agents

This talk: automatic derivation of upper bounds on the running time of protocols

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- Two large birds of different colors become small
- Large birds convert small birds to their color

- Two large birds of different colors become small
- Large birds convert small birds to their color

- Two large birds of different colors become small
- Large birds convert small birds to their color

- Two large birds of different colors become small
- Large birds convert small birds to their color

- Two large birds of different colors become small
- Large birds convert small birds to their color

- Two large birds of different colors become small
- Large birds convert small birds to their color

- Two large birds of different colors become small
- Large birds convert small birds to their color

- Two large birds of different colors become small
- Large birds convert small birds to their color

- Two large birds of different colors become small
- Large birds convert small birds to their color

- Two large birds of different colors become small
- Large birds convert small birds to their color

- Two large birds of different colors become small
- Large birds convert small birds to their color

- Two large birds of different colors become small
- Large birds convert small birds to their color

- Two large birds of different colors become small
- Large birds convert small birds to their color

- Two large birds of different colors become small
- Large birds convert small birds to their color

- Two large birds of different colors become small
- Large birds convert small birds to their color
- **To break ties:** small blue birds convert small red birds

Are there at least 4 sick birds?

Are there at least 4 sick birds?

- Each bird is in a state of {0, 1, 2, 3, 4}
- Sick birds initially in state 1 and healthy birds in state 0
- $(m,n) \mapsto (m+n,0)$ if m+n < 4
- $(m,n) \mapsto (4,4)$ if $m+n \ge 4$

Are there at least 4 sick birds?

- Each bird is in a state of {0, 1, 2, 3, 4}
- Sick birds initially in state 1 and healthy birds in state 0
- $(m,n) \mapsto (m+n,0)$ if m+n < 4
- $(m,n) \mapsto (4,4)$ if $m+n \ge 4$

Are there at least 4 sick birds?

- Each bird is in a state of {0, 1, 2, 3, 4}
- Sick birds initially in state 1 and healthy birds in state 0
- $(m,n) \mapsto (m+n,0)$ if m+n < 4
- $(m,n) \mapsto (4,4)$ if $m+n \ge 4$

Are there at least 4 sick birds?

- Each bird is in a state of {0, 1, 2, 3, 4}
- Sick birds initially in state 1 and healthy birds in state 0
- $(m,n) \mapsto (m+n,0)$ if m+n < 4
- $(m,n) \mapsto (4,4)$ if $m+n \ge 4$

Are there at least 4 sick birds?

- Each bird is in a state of {0, 1, 2, 3, 4}
- Sick birds initially in state 1 and healthy birds in state 0
- $(m,n) \mapsto (m+n,0)$ if m+n < 4
- $(m,n) \mapsto (4,4)$ if $m+n \ge 4$

Are there at least 4 sick birds?

- Each bird is in a state of {0, 1, 2, 3, 4}
- Sick birds initially in state 1 and healthy birds in state 0
- $(m,n) \mapsto (m+n,0)$ if m+n < 4
- $(m,n) \mapsto (4,4)$ if $m+n \ge 4$

Are there at least 4 sick birds?

- Each bird is in a state of {0, 1, 2, 3, 4}
- Sick birds initially in state 1 and healthy birds in state 0
- $(m,n) \mapsto (m+n,0)$ if m+n < 4
- $(m,n) \mapsto (4,4)$ if $m+n \ge 4$

Are there at least 4 sick birds?

- Each bird is in a state of {0, 1, 2, 3, 4}
- Sick birds initially in state 1 and healthy birds in state 0
- $(m,n) \mapsto (m+n,0)$ if m+n < 4
- $(m,n) \mapsto (4,4)$ if $m+n \ge 4$

Are there at least 4 sick birds?

- Each bird is in a state of {0, 1, 2, 3, 4}
- Sick birds initially in state 1 and healthy birds in state 0
- $(m,n) \mapsto (m+n,0)$ if m+n < 4
- $(m,n) \mapsto (4,4)$ if $m+n \ge 4$

Are there at least 4 sick birds?

- Each bird is in a state of {0, 1, 2, 3, 4}
- Sick birds initially in state 1 and healthy birds in state 0
- $(m,n) \mapsto (m+n,0)$ if m+n < 4
- $(m,n) \mapsto (4,4)$ if $m+n \ge 4$

Are there at least 4 sick birds?

- Each bird is in a state of {0, 1, 2, 3, 4}
- Sick birds initially in state 1 and healthy birds in state 0
- $(m,n) \mapsto (m+n,0)$ if m+n < 4
- $(m,n) \mapsto (4,4)$ if $m+n \ge 4$

Are there at least 4 sick birds?

- Each bird is in a state of {0, 1, 2, 3, 4}
- Sick birds initially in state 1 and healthy birds in state 0
- $(m,n) \mapsto (m+n,0)$ if m+n < 4
- $(m,n) \mapsto (4,4)$ if $m+n \ge 4$

Are there at least 4 sick birds?

- Each bird is in a state of {0, 1, 2, 3, 4}
- Sick birds initially in state 1 and healthy birds in state 0
- $(m,n) \mapsto (m+n,0)$ if m+n < 4
- $(m,n) \mapsto (4,4)$ if $m+n \ge 4$

Are there at least 4 sick birds?

- Each bird is in a state of {0, 1, 2, 3, 4}
- Sick birds initially in state 1 and healthy birds in state 0
- $(m,n) \mapsto (m+n,0)$ if m+n < 4
- $(m,n) \mapsto (4,4)$ if $m+n \ge 4$

Are there at least 4 sick birds?

- Each bird is in a state of {0, 1, 2, 3, 4}
- Sick birds initially in state 1 and healthy birds in state 0
- $(m,n) \mapsto (m+n,0)$ if m+n < 4
- $(m,n) \mapsto (4,4)$ if $m+n \ge 4$

Are there at least 4 sick birds?

- Each bird is in a state of {0, 1, 2, 3, 4}
- Sick birds initially in state 1 and healthy birds in state 0
- $(m,n) \mapsto (m+n,0)$ if m+n < 4
- $(m,n) \mapsto (4,4)$ if $m+n \ge 4$

Demonstration

- States: finite set Q
- Opinions: $O: Q \rightarrow \{0, 1\}$

 $I \subset Q$

- Initial states:
- Transitions: $T \subseteq Q^2 \times Q^2$

- States: finite set Q
- Opinions:
- Initial states:

 $\mathsf{O}:\mathsf{Q}\to\{\mathsf{0},\mathsf{1}\}$

- $I \subseteq Q$
- Transitions: $T \subseteq Q^2 \times Q^2$

- *States*: finite set *Q*
- Opinions: $O: Q \rightarrow \{0, 1\}$
- Initial states:
- $0 : Q \rightarrow 10,$ $I \subset Q$
- Transitions: $T \subseteq Q^2 \times Q^2$

- *States*: finite set *Q*
- Opinions: $O: Q \rightarrow \{0, 1\}$
- Initial states:
- Transitions:
- $T \subseteq Q^2 \times Q^2$

 $I \subset Q$

Protocols can be translated into Petri nets

Protocols can be translated into Petri nets conservative / bounded

Reachability graph:

A run is an infinite path:

(pairs of agents are picked uniformly at random)

A protocol computes a predicate $\varphi \colon \mathbb{N}^{\prime} \to \{0, 1\}$ if runs reach common stable consensus with probability 1

A protocol computes a predicate $\varphi \colon \mathbb{N}^{I} \to \{0, 1\}$ if runs reach common stable **consensus** with probability 1

Expressive powerAngluin, Aspnes, Eisenstat PODC'06Population protocols compute precisely predicates
definable in Presburger arithmetic, *i.e.* $FO(\mathbb{N}, +, <)$

 $\mathbf{B}, \mathbf{R} \mapsto \mathbf{b}, \mathbf{r}$

- $\mathbf{B}, \mathbf{r} \mapsto \mathbf{B}, \mathbf{b}$
- $\mathbf{R}, \mathbf{b} \mapsto \mathbf{R}, \mathbf{r}$

 $\bm{b},\bm{r} \ \mapsto \ \bm{b},\bm{b}$

Computes correctly predicate #B ≥ #R ...but how fast?

 $\mathbf{B}, \mathbf{R} \mapsto \mathbf{b}, \mathbf{r}$

- $\mathbf{B}, \mathbf{r} \mapsto \mathbf{B}, \mathbf{b}$
- $\mathbf{R}, \mathbf{b} \mapsto \mathbf{R}, \mathbf{r}$

 $\mathbf{b}, \mathbf{r} \mapsto \mathbf{b}, \mathbf{b}$

Computes correctly predicate #B 2 #R ...but how fast?

- Natural to want protocols to be fast
- Upper bounds on speed useful since generally not possible to know whether a protocol has stabilized

 $\begin{array}{rrrr} \textbf{B}, \textbf{R} & \mapsto & \textbf{b}, \textbf{r} \\ \textbf{B}, \textbf{r} & \mapsto & \textbf{B}, \textbf{b} \\ \textbf{R}, \textbf{b} & \mapsto & \textbf{R}, \textbf{r} \\ \textbf{b}, \textbf{r} & \mapsto & \textbf{b}, \textbf{b} \end{array}$

Simulations show that it is slow when R has slight majority:

Steps	Initial configuration
100000	{B: 7, R: 8}
7	{B: 3, R: 12}
27	{B: 4, R: 11}
100000	{B: 7, R: 8}
3	{B: 13, R: 2}

B, **R** \mapsto **T**, **t** $X, y \mapsto X, x$ for $x, y \in \{\mathbf{b}, \mathbf{r}, \mathbf{t}\}$ $\mathbf{B}, \mathbf{T} \mapsto \mathbf{B}, \mathbf{b}$ $\mathbf{R}, \mathbf{T} \mapsto \mathbf{R}, \mathbf{r}$ $T, T \mapsto T, t$ $O(\mathbf{B}) = O(\mathbf{b}) = O(\mathbf{T}) = O(\mathbf{t}) = 1$ $O(\mathbf{R}) = O(\mathbf{r}) = 0$ Alternative protocol

B, **R** \mapsto **T**, **t** $X, y \mapsto X, x$ for $x, y \in \{\mathbf{b}, \mathbf{r}, \mathbf{t}\}$ **B**, **T** \mapsto **B**, **b**

 $\begin{array}{rccc} \mathbf{R},\mathbf{T} & \mapsto & \mathbf{R},\mathbf{r} \\ \mathbf{T},\mathbf{T} & \mapsto & \mathbf{T},\mathbf{t} \end{array}$

Is it faster? Yes, for size 15 ...

expected number of steps to stable consensus

- Any Presburger-definable predicate is computable in time $\mathcal{O}(n^2 \log n)$ Angluin *et al.* (PODC'04)
- Upper/lower bounds for majority and leader election
- Study of trade-offs between speed and number of states

e.g.

- Alistarh, Aspnes, Eisenstat, Gelashvili and Rivest (SODA'17)
- Belleville, Doty and Soloveichik (ICALP'17)
- Doty and Soloveichik (DISC'15), etc.

Definitions: probabilities

$$\mathbb{P}[\text{fire } p, q \mapsto p', q' \text{ in } C] = \begin{cases} \frac{2 \cdot C(p) \cdot C(q)}{n^2 - n} & \text{if } p \neq q \\ \frac{C(p) \cdot (C(p) - 1)}{n^2 - n} & \text{if } p = q \end{cases}$$

Definitions: probabilities

$$\mathbb{P}[\text{fire } p, q \mapsto p', q' \text{ in } C] = \begin{cases} \frac{2 \cdot C(p) \cdot C(q)}{n^2 - n} & \text{if } p \neq q \\ \frac{C(p) \cdot (C(p) - 1)}{n^2 - n} & \text{if } p = q \end{cases}$$

Definitions: probabilities

$$\mathbb{P}[\text{fire } p, q \mapsto p', q' \text{ in } C] = \begin{cases} \frac{2 \cdot C(p) \cdot C(q)}{n^2 - n} & \text{if } p \neq q \\ \frac{C(p) \cdot (C(p) - 1)}{n^2 - n} & \text{if } p = q \end{cases}$$

Definitions: probabilities

$$\mathbb{P}[\text{fire } p, q \mapsto p', q' \text{ in } C] = \begin{cases} \frac{2 \cdot C(p) \cdot C(q)}{n^2 - n} & \text{if } p \neq q \\ \frac{C(p) \cdot (C(p) - 1)}{n^2 - n} & \text{if } p = q \end{cases}$$

Definitions: probabilities

$$\mathbb{P}[\text{fire } p, q \mapsto p', q' \text{ in } C] = \begin{cases} \frac{2 \cdot C(p) \cdot C(q)}{n^2 - n} & \text{if } p \neq q \\ \frac{C(p) \cdot (C(p) - 1)}{n^2 - n} & \text{if } p = q \end{cases}$$

$$\mathbb{P}[C \to C'] = \sum_{t \text{ s.t. } C^{\frac{t}{T}} \subset C'} \mathbb{P}[\text{fire } t \text{ in } C]$$

 $(Runs(C), \mathcal{F}, \mathbb{P}_{C})$ is the probability space such that

+ ${\mathcal F}$ is the $\sigma\text{-algebra generated by all}$

$$Runs(C_0, C_1, \ldots, C_k) = \{C = C_0 \rightarrow \cdots \rightarrow C_k \rightarrow \cdots\}$$

• \mathbb{P}_{C} is the probability measure satisfying

$$\mathbb{P}_{C}(Runs(C_{0},\ldots,C_{k}))=\prod_{i=0}^{k-1}\mathbb{P}[C_{i}\rightarrow C_{i+1}]$$

- $C \models q \qquad \iff \quad C(q) \ge 1$
- $C \models q! \iff C(q) = 1$
- $C \models Out_b \iff O(q) = b$ for every $q \models C$
- $\mathsf{C}\models\neg\varphi\qquad\iff\quad\mathsf{C}\not\models\varphi$
- $\mathsf{C}\models\varphi\wedge\psi\quad\iff\quad\mathsf{C}\models\varphi\wedge\psi$
- $\mathsf{C} \models \Box \varphi \qquad \Longleftrightarrow \quad \mathbb{P}_{\mathsf{C}}(\{\sigma \in \mathsf{Runs}(\mathsf{C}) : \sigma_i \models \varphi \text{ for every } i\} = 1$
- $\mathsf{C} \models \Diamond \varphi \qquad \Longleftrightarrow \quad \mathbb{P}_{\mathsf{C}}(\{\sigma \in \mathsf{Runs}(\mathsf{C}) : \sigma_i \models \varphi \text{ for some } i\} = 1$

- $C \models q \qquad \iff \quad C(q) \ge 1$
- $C \models q! \iff C(q) = 1$
- $C \models Out_b \quad \iff \quad O(q) = b \text{ for every } q \models C$
- $\mathsf{C}\models\neg\varphi\qquad\iff\quad\mathsf{C}\not\models\varphi$
- $\mathsf{C}\models\varphi\wedge\psi\quad\iff\quad\mathsf{C}\models\varphi\wedge\psi$
- $\mathsf{C} \models \Box \varphi \qquad \Longleftrightarrow \quad \mathbb{P}_{\mathsf{C}}(\{\sigma \in \mathsf{Runs}(\mathsf{C}) : \sigma_i \models \varphi \text{ for every } i\} = 1$
- $\mathsf{C} \models \Diamond \varphi \qquad \iff \quad \mathbb{P}_{\mathsf{C}}(\{\sigma \in \mathsf{Runs}(\mathsf{C}) : \sigma_i \models \varphi \text{ for some } i\} = 1$

- $C \models q \qquad \iff \quad C(q) \ge 1$
- $C \models q! \iff C(q) = 1$
- $C \models Out_b \quad \iff \quad O(q) = b \text{ for every } q \models C$
- $\mathsf{C}\models\neg\varphi\qquad\iff\quad\mathsf{C}\not\models\varphi$
- $\mathsf{C}\models\varphi\wedge\psi\quad\iff\quad\mathsf{C}\models\varphi\wedge\psi$
- $\mathsf{C} \models \Box \varphi \qquad \Longleftrightarrow \quad \mathbb{P}_{\mathsf{C}}(\{\sigma \in \mathsf{Runs}(\mathsf{C}) : \sigma_i \models \varphi \text{ for every } i\} = 1$
- $C \models \Diamond \varphi \qquad \iff \quad \mathbb{P}_{\mathsf{C}}(\{\sigma \in \mathsf{Runs}(\mathsf{C}) : \sigma_i \models \varphi \text{ for some } i\} = 1$

assigns to each run σ the smallest k s.t. $\sigma_k \models \varphi$, otherwise ∞

assigns to each run σ the smallest k s.t. $\sigma_k \models \varphi$, otherwise ∞

Maximal expected termination time

We are interested in $\mathit{time} \colon \mathbb{N} \to \mathbb{N}$ where

assigns to each run σ the smallest k s.t. $\sigma_k \models \varphi$, otherwise ∞

Maximal expected termination time

We are interested in $\mathit{time} \colon \mathbb{N} \to \mathbb{N}$ where

assigns to each run σ the smallest k s.t. $\sigma_k \models \varphi$, otherwise ∞

Maximal expected termination time

We are interested in $\mathit{time} \colon \mathbb{N} \to \mathbb{N}$ where

assigns to each run σ the smallest k s.t. $\sigma_k \models \varphi$, otherwise ∞

Maximal expected termination time

We are interested in $time : \mathbb{N} \to \mathbb{N}$ where

Our approach:

- Most protocols are naturally designed in stages
- Construct these stages automatically
- Derive bounds on expected running time from stages structure

- every node S \in S is associated to a formula φ_{S}

- every node S \in S is associated to a formula φ_{S}
- for every $C \in$ Init, there exists $S \in \mathbb{S}$ such that $C \models \varphi_S$

- every node $S \in \mathbb{S}$ is associated to a formula φ_S
- for every $C \in$ Init, there exists $S \in \mathbb{S}$ such that $C \models \varphi_S$
- $C \models \Diamond \bigvee_{S \to S'} \varphi_{S'}$ for every $S \in \mathbb{S}$ and $C \models \varphi_S$

- every node $S \in \mathbb{S}$ is associated to a formula φ_S
- for every $C \in \operatorname{Init}$, there exists $S \in \mathbb{S}$ such that $C \models \varphi_S$
- $C \models \Diamond \bigvee_{S \to S'} \varphi_{S'}$ for every $S \in \mathbb{S}$ and $C \models \varphi_S$
- $C \models \varphi_S$ implies $C \models \Box Out_0 \lor \Box Out_1$ for every bottom $S \in S$

time(n) is bounded by the maximal expected number of steps to move from a stage to a successor

time(n) is bounded by the maximal expected number of steps to move from a stage to a successor

For example, $time(n) \in O(n^2 \log n)$ if:

- $\mathbf{B}, \mathbf{R} \mapsto \mathbf{T}, \mathbf{t} \qquad S_0: (\mathbf{B} \vee \mathbf{R}) \wedge \bigwedge_{q \notin \{\mathbf{B}, \mathbf{R}\}} \neg q$
- $\mathbf{B}, \mathbf{T} \mapsto \mathbf{B}, \mathbf{b}$
- $\textbf{R},\textbf{T} \ \mapsto \ \textbf{R},\textbf{r}$
- $\textbf{T},\textbf{T} \hspace{.1in} \mapsto \hspace{.1in} \textbf{T},\textbf{t}$
- $X, y \mapsto X, x$

 $\begin{array}{rcl} \mathbf{B}, \mathbf{R} & \mapsto & \mathbf{T}, \mathbf{t} \\ \mathbf{B}, \mathbf{T} & \mapsto & \mathbf{B}, \mathbf{b} \\ \mathbf{R}, \mathbf{T} & \mapsto & \mathbf{R}, \mathbf{r} \\ \mathbf{T}, \mathbf{T} & \mapsto & \mathbf{T}, \mathbf{t} \\ \mathbf{X}, \mathbf{y} & \mapsto & \mathbf{X}, \mathbf{x} \end{array} \xrightarrow{\mathcal{O}(1)} \begin{array}{c} S_0: (\mathbf{B} \lor \mathbf{R}) \land \bigwedge \neg q \\ \mathcal{O}(1) \checkmark \\ S_2: \Box \left(\mathbf{R} \land \bigwedge \neg q \right) \\ S_2: \Box \left(\mathbf{R} \land \bigwedge \neg q \right) \\ \mathbf{X}, \mathbf{y} & \mapsto & \mathbf{X}, \mathbf{x} \end{array}$

 $\begin{array}{c} \textbf{B} & (\textbf{T}) & (\textbf{R}) \\ \hline \textbf{b} & (\textbf{t}) & (\textbf{r}) \\ \end{array}$

Will become permanently disabled $\rightarrow T$ almost surely $\rightarrow (t)$ (r)

 $S_3: \Box [(\neg \mathbf{B} \lor \neg \mathbf{R}) \land (\neg \mathbf{B} \lor \neg \mathbf{T}) \land (\neg \mathbf{R} \lor \neg \mathbf{T}) \land (\neg \mathbf{T} \lor \mathbf{T}!)] \land \\ ((\mathbf{B} \land \mathbf{b}) \lor (\mathbf{R} \land \mathbf{r}) \lor (\mathbf{T} \land \mathbf{t}))$

 $S_3: \Box [(\neg \mathbf{B} \lor \neg \mathbf{R}) \land (\neg \mathbf{B} \lor \neg \mathbf{T}) \land (\neg \mathbf{R} \lor \neg \mathbf{T}) \land (\neg \mathbf{T} \lor \mathbf{T}!)] \land \\ ((\mathbf{B} \land \mathbf{b}) \lor (\mathbf{R} \land \mathbf{r}) \lor (\mathbf{T} \land \mathbf{t}))$

 $S_3: \Box [(\neg \mathbf{B} \lor \neg \mathbf{R}) \land (\neg \mathbf{B} \lor \neg \mathbf{T}) \land (\neg \mathbf{R} \lor \neg \mathbf{T}) \land (\neg \mathbf{T} \lor \mathbf{T}!)] \land$

$$\mathbb{E}_{C}[Steps_{\neg \mathbf{b} \land \neg \mathbf{r}}] \leq \sum_{i=1}^{C(\mathbf{b})+C(\mathbf{r})} \frac{n^{2}}{2 \cdot C(\mathbf{T}) \cdot i}$$

$$\leq \sum_{i=1}^{n} \frac{n^{2}}{i}$$

$$\leq \alpha \cdot n^{2} \cdot \log n$$

$$((\mathbf{B} \land \mathbf{b}) \lor (\mathbf{R} \land \mathbf{r}) \lor (\mathbf{T} \land \mathbf{t}))$$

$$S_{6} : \Box \left(\mathbf{T}! \land \mathbf{t} \land \bigwedge_{q \notin \{\mathbf{T}, \mathbf{t}\}} \neg q\right)$$

$$9/11$$

$$\begin{array}{rcl}
\textbf{B}, \textbf{R} & \mapsto & \textbf{T}, \textbf{t} \\
\textbf{B}, \textbf{T} & \mapsto & \textbf{B}, \textbf{b} \\
\textbf{R}, \textbf{T} & \mapsto & \textbf{R}, \textbf{r} \\
\textbf{T}, \textbf{T} & \mapsto & \textbf{T}, \textbf{t} \\
\textbf{X}, \textbf{y} & \mapsto & \textbf{X}, \textbf{x}
\end{array}$$

$$\begin{array}{rcl}
\mathcal{O}(1) & \mathcal{O}(1) \\
\mathcal{O}(1) & \mathcal{O}($$

- Φ: propositional formula describing current configurations
- π : set of permanently present/absent states
- \mathcal{T} : set of permanently disabled transitions

Successors computed by enriching π through trap/siphon-like analysis and \mathcal{T} and Φ from transformation graph
A procedure for computing stage graphs

- Φ: propositional formula describing current configurations
- π : set of permanently present/absent states
- \mathcal{T} : set of permanently disabled transitions

Successors computed by enriching π through trap/siphon-like analysis and \mathcal{T} and Φ from transformation graph

- Prototype implemented in
 Python[®] + Microsoft Z3
- Can report: $\mathcal{O}(1), \mathcal{O}(n^2), \mathcal{O}(n^2 \log n), \mathcal{O}(n^3), \mathcal{O}(\text{poly}(n)) \text{ or } \mathcal{O}(\exp(n))$
- Tested on various protocols from the literature

Experimental results

Protoc	Stages	Pound	Timo						
arphi / params.	Q	T	Jlages	bound	Time				
$x_1 \vee \ldots \vee x_n [b]$	2	1	5	n² log n	0.1				
$x \ge y [a]$	6	10	23	$n^2 \log n$	0.9				
$x \ge y[c]$	4	3	9	n² log n	0.2				
$x \ge y[c]$	4	4	11	$\exp(n)$	0.3				
Threshold [a]: $x \ge c$									
c = 5	6	21	26	n ³	0.8				
c = 15	16	136	66	n ³	12.1				
c = 25	26	351	106	n ³	58.0				
c = 35	36	666	146	n ³	222.3				
c = 45	46	1081	186	n ³	495.3				
c = 55	56	1596	-	—	T/O				
Logarithmic threshold: $x \ge c$									
c = 7	6	14	34	n ³	1.9				
c = 31	10	34	130	n ³	6.1				
c = 127	14	62	514	n ³	39.4				
c = 1023	20	119	4098	n ³	395.7				
c = 4095	24	167	-	-	T/O				

[a]	Angluin	et a	ıl.	2006
[c]	Draief e	t al.	2	012

[b] Clément *et al.* 2011 [d] Alistarh *et al.* 2015

Protocol			Stages	Round	Time				
arphi / params.	Q	T	Slages	Douliu	Time				
Threshold [b]: $x \ge c$									
c = 5	6	9	54	n ³	2.5				
c = 7	8	13	198	n ³	11.3				
c = 10	11	19	1542	n ³	83.9				
c = 13	14	25	12294	n ³	816.4				
c = 15	16	29	-	-	T/O				
Average-and-conquer [d]: $x \ge y$ (param. m, d)									
<i>m</i> = 3, <i>d</i> = 1	6	21	41	$n^2 \log n$	2.0				
m = 3, d = 2	8	36	1948	$n^2 \log n$	98.7				
m = 5, d = 1	8	36	1870	n ³	80.1				
m = 5, d = 2	10	55	-	-	T/O				
Remainder [a]: $\sum_{1 \le i \le m} i \cdot x_i \equiv 0 \pmod{c}$									
c = 5	7	25	225	$n^2 \log n$	12.5				
c = 7	9	42	1351	$n^2 \log n$	88.9				
c = 9	11	63	7035	$n^2 \log n$	544.0				
c = 10	12	75	-	—	T/O				
Linear inequalities [a]									
$-x_1 + x_2 < 0$	12	57	21	n ³	3.0				
$-x_1 + x_2 < 1$	20	155	131	n ³	30.3				
$-x_1 + x_2 < 2$	28	301	-	_	T/O				

• First procedure providing *asymptotic* upper bounds on expected termination time

• Approach promising in practice

 New crucial notions: stage graphs and transformation graphs • Is our procedure "weakly complete"? *i.e.* for every *φ*, is there a protocol for *φ* analyzable by our procedure?

• Approach can be used for verification?

• How to compute lower bounds?

Thank you! Merci!