On the State Complexity of Population Protocols

Michael Blondin

Joint work with Javier Esparza and Stefan Jaax

Technical
University
of Munich

Overview

Population protocols: distributed computing model for massive networks of passively mobile finite-state agents

Overview

Can model e.g. networks of passively mobile sensors and chemical reaction networks

Overview

Can model e.g. networks of passively mobile sensors and chemical reaction networks

Protocols compute predicates of the form $\varphi: \mathbb{N}^{d} \rightarrow\{0,1\}$
e.g. if φ is unary, then $\varphi(n)$ is computed by n agents

Overview

This talk: Study of the minimal size of protocols

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion
- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

Example: majority protocol

More blue birds than red birds?

Example: majority protocol

More blue birds than red birds?

Protocol:

- Two large birds of different colors become small

- Large birds convert small birds to their color

Example: majority protocol

More blue birds than red birds?

Protocol:

- Two large birds of different colors become small

Example: majority protocol

More blue birds than red birds?

Protocol:

- Two large birds of different colors become small

- Large birds convert small birds to their color

Example: majority protocol

More blue birds than red birds?

Protocol:

- Two large birds of different colors become small

- Large birds convert small birds to their color

Example: majority protocol

More blue birds than red birds?

Protocol:

- Two large birds of different colors become small

- Large birds convert small birds to their color

Example: majority protocol

More blue birds than red birds?

Protocol:

- Two large birds of different colors become small

- Large birds convert small birds to their color

Example: majority protocol

More blue birds than red birds?

Protocol:

- Two large birds of different colors become small

- Large birds convert small birds to their color

Example: majority protocol

More blue birds than red birds?

Protocol:

- Two large birds of different colors become small

- Large birds convert small birds to their color

Example: majority protocol

More blue birds than red birds?

Protocol:

- Two large birds of different colors become small

- Large birds convert small birds to their color

Example: majority protocol

More blue birds than red birds?

Protocol:

- Two large birds of different colors become small

- Large birds convert small birds to their color

Example: majority protocol

More blue birds than red birds?

Protocol:

- Two large birds of different colors become small

- Large birds convert small birds to their color

Example: majority protocol

More blue birds than red birds?

Protocol:

- Two large birds of different colors become small

- Large birds convert small birds to their color

Example: majority protocol

More blue birds than red birds?

Protocol:

- Two large birds of different colors become small

- Large birds convert small birds to their color

Example: majority protocol

More blue birds than red birds?

Protocol:

- Two large birds of different colors become small
- Large birds convert small birds to their color

Example: threshold protocol

Are there at least 4 sick birds?

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each bird is in a state of $\{0,1,2,3,4\}$
- Sick birds initially in state 1 and healthy birds in state 0
- $(m, n) \mapsto(m+n, 0)$

$$
\text { if } m+n<4
$$

- $(m, n) \mapsto(4,4)$

$$
\text { if } m+n \geq 4
$$

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each bird is in a state of $\{0,1,2,3,4\}$
- Sick birds initially in state 1 and healthy birds in state 0
- $(m, n) \mapsto(m+n, 0)$

$$
\text { if } m+n<4
$$

- $(m, n) \mapsto(4,4)$

$$
\text { if } m+n \geq 4
$$

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each bird is in a state of $\{0,1,2,3,4\}$
- Sick birds initially in state 1 and healthy birds in state 0
- $(m, n) \mapsto(m+n, 0)$

$$
\text { if } m+n<4
$$

- $(m, n) \mapsto(4,4)$

$$
\text { if } m+n \geq 4
$$

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each bird is in a state of $\{0,1,2,3,4\}$
- Sick birds initially in state 1 and healthy birds in state 0
- $(m, n) \mapsto(m+n, 0)$

$$
\text { if } m+n<4
$$

- $(m, n) \mapsto(4,4)$

$$
\text { if } m+n \geq 4
$$

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each bird is in a state of $\{0,1,2,3,4\}$
- Sick birds initially in state 1 and healthy birds in state 0
- $(m, n) \mapsto(m+n, 0)$

$$
\text { if } m+n<4
$$

- $(m, n) \mapsto(4,4)$

$$
\text { if } m+n \geq 4
$$

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each bird is in a state of $\{0,1,2,3,4\}$
- Sick birds initially in state 1 and healthy birds in state 0
- $(m, n) \mapsto(m+n, 0)$

$$
\text { if } m+n<4
$$

- $(m, n) \mapsto(4,4)$

$$
\text { if } m+n \geq 4
$$

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each bird is in a state of $\{0,1,2,3,4\}$
- Sick birds initially in state 1 and healthy birds in state 0
- $(m, n) \mapsto(m+n, 0)$

$$
\text { if } m+n<4
$$

- $(m, n) \mapsto(4,4)$

$$
\text { if } m+n \geq 4
$$

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each bird is in a state of $\{0,1,2,3,4\}$
- Sick birds initially in state 1 and healthy birds in state 0
- $(m, n) \mapsto(m+n, 0)$

$$
\text { if } m+n<4
$$

- $(m, n) \mapsto(4,4)$

$$
\text { if } m+n \geq 4
$$

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each bird is in a state of $\{0,1,2,3,4\}$
- Sick birds initially in state 1 and healthy birds in state 0
- $(m, n) \mapsto(m+n, 0)$

$$
\text { if } m+n<4
$$

- $(m, n) \mapsto(4,4)$

$$
\text { if } m+n \geq 4
$$

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each bird is in a state of $\{0,1,2,3,4\}$
- Sick birds initially in state 1 and healthy birds in state 0
- $(m, n) \mapsto(m+n, 0)$

$$
\text { if } m+n<4
$$

- $(m, n) \mapsto(4,4)$

$$
\text { if } m+n \geq 4
$$

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each bird is in a state of $\{0,1,2,3,4\}$
- Sick birds initially in state 1 and healthy birds in state 0
- $(m, n) \mapsto(m+n, 0)$

$$
\text { if } m+n<4
$$

- $(m, n) \mapsto(4,4)$

$$
\text { if } m+n \geq 4
$$

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each bird is in a state of $\{0,1,2,3,4\}$
- Sick birds initially in state 1 and healthy birds in state 0
- $(m, n) \mapsto(m+n, 0)$

$$
\text { if } m+n<4
$$

- $(m, n) \mapsto(4,4)$

$$
\text { if } m+n \geq 4
$$

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each bird is in a state of $\{0,1,2,3,4\}$
- Sick birds initially in state 1 and healthy birds in state 0
- $(m, n) \mapsto(m+n, 0)$

$$
\text { if } m+n<4
$$

- $(m, n) \mapsto(4,4)$

$$
\text { if } m+n \geq 4
$$

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each bird is in a state of $\{0,1,2,3,4\}$
- Sick birds initially in state 1 and healthy birds in state 0
- $(m, n) \mapsto(m+n, 0)$

$$
\text { if } m+n<4
$$

- $(m, n) \mapsto(4,4)$

$$
\text { if } m+n \geq 4
$$

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each bird is in a state of $\{0,1,2,3,4\}$
- Sick birds initially in state 1 and healthy birds in state 0
- $(m, n) \mapsto(m+n, 0)$

$$
\text { if } m+n<4
$$

- $(m, n) \mapsto(4,4)$

$$
\text { if } m+n \geq 4
$$

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each bird is in a state of $\{0,1,2,3,4\}$
- Sick birds initially in state 1 and healthy birds in state 0
- $(m, n) \mapsto(m+n, 0)$ if $m+n<4$
- $(m, n) \mapsto(4,4)$

$$
\text { if } m+n \geq 4
$$

Demonstration

Population protocols: formal model

- States:
- Opinions:
- Initial states:
-Transitions:
$T \subseteq Q^{2} \times Q^{2}$

Population protocols: formal model

- States:
- Opinions:
- Initial states: $I \subseteq Q$
- Transitions:

Population protocols: formal model

- States:
- Opinions:
- Initial states:
$I \subseteq Q$
- Transitions:
$T \subseteq Q^{2} \times Q^{2}$

Population protocols: formal model

- States:
- Opinions:
$O: Q \rightarrow\{0,1\}$
- Initial states: $I \subseteq Q$
-Transitions:
$T \subseteq Q^{2} \times Q^{2}$

+ \rightarrow -

Population protocols: formal model

Protocols can be translated into Petri nets

Population protocols: formal model

Protocols can be translated into Petri nets

conservative / bounded

Population protocols: initial configurations

Initial configurations $=L+\mathbb{N}^{\prime}$ for some $L \in \mathbb{N}^{Q}$

Leaders L
Arbitrary number of initial states

Population protocols: initial configurations

Initial configurations $=L+\mathbb{N}^{\prime}$ for some $L \in \mathbb{N}^{Q}$

Leaders L
Arbitrary number of initial states

Population protocols: initial configurations

Initial configurations $=L+\mathbb{N}^{\prime}$ for some $L \in \mathbb{N}^{Q}$

Leaders L
Arbitrary number of initial states

Population protocols: initial configurations

Initial configurations $=0+\mathbb{N}^{l}$

Population protocols: computations

Reachability graph:

Population protocols: computations

Executions must be fair:

Population protocols: computations

Executions must be fair:

Population protocols: computations

A protocol computes a predicate f : Init $\rightarrow\{0,1\}$ if fair executions reach common consensus

Population protocols: computations

A protocol computes a predicate f : Init $\rightarrow\{0,1\}$ if fair executions reach common consensus

Expressive power
Angluin, Aspnes, Eisenstat PODC'06
Population protocols compute precisely predicates definable in Presburger arithmetic, i.e. $\mathrm{FO}(\mathbb{N},+,<)$

State complexity

Number of states corresponds to amount of memory, so relevant to keep it small for embedded systems

Protocol size also crucial for verification

- $\mathbf{B} \geq \mathbf{R}$ requires at least 4 states (Mertzios et al. ICALP'14)
- $\mathbf{X} \geq \mathbf{C}$ requires at most $\mathrm{c}+1$ states

State complexity

Given: Presburger-definable predicate φ
Question: Smallest number of states
necessary to compute φ ?

State complexity

Given: Presburger-definable predicate φ
Question: Smallest number of states necessary to compute φ ?

Difficult problem... What about basic predicates?

State complexity: threshold

Given: $\quad c \in \mathbb{N}$
Question: Smallest number of states necessary to compute $x \geq c$?

State complexity: threshold

Given: $\quad c \in \mathbb{N}$
Question: Smallest number of states necessary to compute $x \geq c$?

Upper bound: c+1

Lower bound: 2

State complexity: threshold

Given: $\quad c \in \mathbb{N}$
Question: Smallest number of states necessary to compute $x \geq c$?

Upper bound: c+1
Lower bound: 2

Theorem
$x \geq c$ is computable with $O(\log c)$ states, if $c=2^{n}$.

Proof sketch

States:
$\left\{0,2^{0}, 2^{1}, \ldots, c\right\}$

Output:
$O(m)=1 \Leftrightarrow m=c$

Rules:

$$
\begin{array}{cll}
(1,1) & \mapsto & (2,0) \\
(2,2) & \mapsto & (4,0) \\
\vdots & & \vdots \\
\left(2^{n-1}, 2^{n-1}\right) & \mapsto & \left(2^{n}, 0\right) \\
(m, n) & \mapsto & (c, c) \quad \text { if } m+n \geq c \quad 6 / 10
\end{array}
$$

State complexity: threshold

Given: $\quad c \in \mathbb{N}$
Question: Smallest number of states necessary to compute $x \geq c$?

Upper bound: c+1
Lower bound: 2

Theorem
$x \geq c$ is computable with $O(\log c)$ states, if $=Z^{\prime \prime}$.
Proof sketch may fail if c is not
States:
$\left\{0,2^{0}, 2^{1}, \ldots, c\right\}$

Output:
$O(m)=1 \Leftrightarrow m=c$

Rules: a power of 2
$(1,1) \quad \mapsto \quad(2,0)$
$(2,2) \quad \mapsto \quad(4,0)$
$\left(2^{n-1}, 2^{n-1}\right) \mapsto\left(2^{n}, 0\right)$
$(m, n) \quad \mapsto \quad(c, c) \quad$ if $m+n \geq c \quad 6 / 10$

State complexity: threshold

Given: $\quad c \in \mathbb{N}$
Question: Smallest number of states necessary to compute $x \geq c$?

Upper bound: c+1
Lower bound: 2
$x \geq c$ is computable with $O(\log c)$ states, if $=\tau^{\prime \prime}$.

Proof sketch

Erroneous run for $c=7$:

$$
\begin{gathered}
\{1,1,1,1,1,1,1\} \\
* \downarrow \\
\{2,0,2,0,2,0,1\} \\
\downarrow \\
\{4,0,0,0,2,0,1\}
\end{gathered}
$$

State complexity: threshold

Given: $\quad c \in \mathbb{N}$
Question: Smallest number of states necessary to compute $x \geq c$?

Upper bound: c+1
Lower bound: 2

Theorem
STACS'18
$x \geq c$ is computable with $O(\log c)$ states, if $c=2^{n}$. Solution:

Proof sketch
States:
$\{0,1,2,4,6,7\}$

Output:
$O(m)=1 \Leftrightarrow m=7$
Add a few extra states Rules:

$$
\begin{array}{lll}
(1,1) & \mapsto & (2,0) \\
(2,2) & \mapsto & (4,0) \\
(4,2) & \mapsto & (6,0) \\
(4,4) & \mapsto & (7,7) \\
(6, m) & \mapsto & (7,7)
\end{array}
$$

State complexity: threshold

Given: $\quad c \in \mathbb{N}$
Question: Smallest number of states necessary to compute $x \geq c$?

Upper bound: $O(\log c)$

Lower bound: 2

State complexity: threshold

Given: $\quad c \in \mathbb{N}$
Question: Smallest number of states necessary to compute $x \geq c$?

Upper bound: $O(\log c)$
Lower bound: 2

Theorem
Let P_{0}, P_{1}, \ldots be protocols such that P_{c} computes $x \geq c$. There are infinitely many c s.t. P_{c} has $\geq(\log c)^{1 / 4}$ states.

Proof sketch

Counting argument on \# states vs. \# unary predicates

State complexity: threshold

Given: $\quad c \in \mathbb{N}$
Question: Smallest number of states necessary to compute $x \geq c$?

Upper bound: $O(\log c)$
Lower bound: $\underbrace{O\left(\log ^{1 / 4} c\right)}_{\text {for inf. many } c}$

State complexity: threshold

Given: $\quad c \in \mathbb{N}$
Question: Smallest number of states necessary to compute $x \geq c$?

Upper bound: $O(\log c)$
Lower bound: $\underbrace{O\left(\log ^{1 / 4} c\right)}$
for inf. many c

$$
\begin{aligned}
& \text { Possible to go below } \\
& \log \text { a for some c? }
\end{aligned}
$$

State complexity: threshold

Given: $\quad c \in \mathbb{N}$
Question: Smallest number of states necessary to compute $x \geq c$?

Upper bound: $O(\log c)$
Lower bound: $\underbrace{O\left(\log ^{1 / 4} c\right)}$
for inf. many c

Possible to go below $\log _{\text {c for some c? }}$
Yes, with few leaders!

Threshold: sublogarithmic upper bound

Theorem

There exist protocols P_{0}, P_{1}, \ldots and numbers $c_{0}<c_{1}<\cdots$ s.t. P_{i} computes $x \geq c_{i}$ and has $O\left(\log \log c_{i}\right)$ states and 2 leaders.

Threshold: sublogarithmic upper bound

Theorem

There exist protocols P_{0}, P_{1}, \ldots and numbers $c_{0}<c_{1}<\cdots$ s.t. P_{i} computes $x \geq c_{i}$ and has $O\left(\log \log c_{i}\right)$ states and 2 leaders.

Lemma

For every $c \in \mathbb{N}$, there exists a reversible multiset rewriting system \mathcal{R}_{c} over alphabet $\Sigma \supseteq\{x, y, z, \star\}$ of size $O(c)$ with rewriting rules $T \subseteq \Sigma^{\leq 5} \times \Sigma \leq 5$ such that

$$
\{x, y\} \xrightarrow{*} M \text { and } \star \in M \Longleftrightarrow M=\left\{y, z^{2^{2^{c}}}, \star\right\}
$$

Threshold: sublogarithmic upper bound

Theorem

There exist protocols P_{0}, P_{1}, \ldots and numbers $c_{0}<c_{1}<\cdots$ s.t. P_{i} computes $x \geq c_{i}$ and has $O\left(\log \log c_{i}\right)$ states and 2 leaders.

Proof sketch

- \mathcal{R}_{c} can be simulated by adding a padding symbol \perp

Threshold: sublogarithmic upper bound

Theorem

There exist protocols P_{0}, P_{1}, \ldots and numbers $c_{0}<c_{1}<\cdots$ s.t. P_{i} computes $x \geq c_{i}$ and has $O\left(\log \log c_{i}\right)$ states and 2 leaders.

Proof sketch

- \mathcal{R}_{c} can be simulated by adding a padding symbol \perp

Rewriting system $\mathcal{R}_{c} \quad 5$-way population protocol

$$
\begin{array}{l|l}
\hline(e, f, g) \mapsto(h, i) & (e, f, g, \perp, \perp) \mapsto(h, i, \perp, \perp, \perp) \\
(e, f) \mapsto(g, h, i) & (e, f, \perp, \perp, \perp) \mapsto(g, h, i, \perp, \perp)
\end{array}
$$

Threshold: sublogarithmic upper bound

Theorem
 There exist protocols P_{0}, P_{1}, \ldots and numbers $c_{0}<c_{1}<\cdots$ s.t. P_{i} computes $x \geq c_{i}$ and has $O\left(\log \log c_{i}\right)$ states and 2 leaders.

Proof sketch

- \mathcal{R}_{c} can be simulated by adding a padding symbol \perp

> Each 5-way transition is converted to a "gadget" of 2-way transitions

Threshold: sublogarithmic upper bound

Theorem

There exist protocols P_{0}, P_{1}, \ldots and numbers $c_{0}<c_{1}<\cdots$ s.t. P_{i} computes $x \geq c_{i}$ and has $O\left(\log \log c_{i}\right)$ states and 2 leaders.

Proof sketch

- \mathcal{R}_{c} can be simulated by adding a padding symbol \perp
- New rule: agents in state \star can convert others to \star

Threshold: sublogarithmic upper bound

Theorem

There exist protocols P_{0}, P_{1}, \ldots and numbers $c_{0}<c_{1}<\cdots$ s.t. P_{i} computes $x \geq c_{i}$ and has $O\left(\log \log c_{i}\right)$ states and 2 leaders.

Proof sketch

- \mathcal{R}_{c} can be simulated by adding a padding symbol \perp
- New rule: agents in state \star can convert others to \star
- Simulate \mathcal{R}_{C} from $\{x, y, \perp, \perp, \ldots, \perp\}$

Threshold: sublogarithmic upper bound

Theorem

There exist protocols P_{0}, P_{1}, \ldots and numbers $c_{0}<c_{1}<\cdots$ s.t. P_{i} computes $x \geq c_{i}$ and has $O\left(\log \log c_{i}\right)$ states and 2 leaders.

Proof sketch

- \mathcal{R}_{c} can be simulated by adding a padding symbol \perp
- New rule: agents in state \star can convert others to \star
- Simulate \mathcal{R}_{c} from $\{x, y, \perp, \perp, \ldots, \perp\}$
$\cdot\{\star, \star, \ldots, \star\}$ reachable \Longleftrightarrow initially $\geq 2^{2^{2}}$ agents in \perp

Threshold: sublogarithmic upper bound

Theorem
There exist protocols P_{0}, P_{1}, \ldots and numbers $c_{0}<c_{1}<\cdots$ s.t. P_{i} computes $x \geq c_{i}$ and has $O\left(\log \log c_{i}\right)$ states and 2 leaders.

Proof sketch

- \mathcal{R}_{c} can be simulated by adding a padding symbol \perp
- New rule: agents in state \star can convert others to \star
- Simulate \mathcal{R}_{c} from $\{x, y, \perp, \perp, \ldots, \perp\}$
$\cdot\{\star, \star, \ldots, \star\}$ reachable \Longleftrightarrow initially $\geq 2^{2^{c}}$ agents in \perp
- By reversibility and fairness, cannot avoid $\{\star, \star, \ldots, \star\}$

Threshold: lower bounds for 1-aware protocols

A protocol is 1-aware if there is a subset of states Q_{1} such that for every fair execution $\pi=C_{0} C_{1} \ldots$

Threshold: lower bounds for 1-aware protocols

A protocol is 1-aware if there is a subset of states Q_{1} such that for every fair execution $\pi=C_{0} C_{1} \ldots$
(a) if π stabilizes to 1 , then there is some i such that $\operatorname{states}\left(C_{j}\right) \subseteq Q_{1}$ for every $j \geq i$

Threshold: lower bounds for 1-aware protocols

A protocol is 1-aware if there is a subset of states Q_{1} such that for every fair execution $\pi=C_{0} C_{1} \ldots$
(a) if π stabilizes to 1 , then there is some i such that $\operatorname{states}\left(C_{j}\right) \subseteq Q_{1}$ for every $j \geq i$
(b) if π stabilizes to 0 , then $\operatorname{states}\left(C_{j}\right) \cap Q_{1}=\emptyset$ for every j

Threshold: lower bounds for 1-aware protocols

A protocol is 1-aware if there is a subset of states Q_{1} such that for every fair execution $\pi=C_{0} C_{1} \ldots$
(a) if π stabilizes to 1 , then there is some i such that $\operatorname{states}\left(C_{j}\right) \subseteq Q_{1}$ for every $j \geq i$
(b) if π stabilizes to 0 , then $\operatorname{states}\left(C_{j}\right) \cap Q_{1}=\emptyset$ for every j

Observation

1-aware protocols compute monotonic Presburger-definable protocols, including $x \geq c$

Threshold: lower bounds for 1-aware protocols

Theorem

Every 1-aware protocol \mathcal{P} computing $x \geq c$ has at least
(a) $\log _{3} c$ states, if \mathcal{P} is leaderless
(b) $(\log \log (c) / 151)^{1 / 9}$ states, otherwise

Threshold: lower bounds for 1-aware protocols

Theorem

Every 1-aware protocol \mathcal{P} computing $x \geq c$ has at least
(a) $\log _{3} c$ states, if \mathcal{P} is leaderless
(b) $(\log \log (c) / 151)^{1 / 9}$ states, otherwise

Proof sketch

- $\left\{c \cdot q_{0}\right\} \xrightarrow{*} D$ with states $(D) \cap Q_{1} \neq \emptyset$
- there exists m and D^{\prime} s.t.

$$
\left\{m \cdot q_{0}\right\} \xrightarrow{*} D^{\prime}, m \leq 3^{|Q|} \text { and } \operatorname{states}(D) \subseteq \operatorname{states}\left(D^{\prime}\right)
$$

- Thus, $c \leq m \leq 3^{|Q|}$ and hence $\log _{3} c \leq|Q|$

Threshold: lower bounds for 1-aware protocols

Theorem

Every 1-aware protocol \mathcal{P} computing $x \geq c$ has at least
(a) $\log _{3} c$ states, if \mathcal{P} is leaderless
(b) $(\log \log (c) / 151)^{1 / 9}$ states, otherwise

Proof sketch

By Rackoff TCS'78:
If a state $q \in Q_{1}$ is coverable from $C \in \operatorname{Init}$, then
q is coverable from C by an execution of length at most $2^{2^{\text {poly(n) }}}$

Linear inequalities

Let $A \in \mathbb{Z}^{m \times k}$, let $\boldsymbol{c} \in \mathbb{Z}^{m}$ and let n be the largest absolute value of numbers occurring in A and c.

Observation

Classical protocol computing $A \boldsymbol{x}+\mathbf{c}>\mathbf{0}$ has $O\left(n^{m}\right)$ states.

Linear inequalities

Let $A \in \mathbb{Z}^{m \times k}$, let $\boldsymbol{c} \in \mathbb{Z}^{m}$ and let n be the largest absolute value of numbers occurring in A and \boldsymbol{c}.

Observation

Classical protocol computing $A \mathbf{x}+\mathbf{c}>\mathbf{0}$ has $O\left(n^{m}\right)$ states.

Theorem

There exists a protocol that computes $A \boldsymbol{x}+\boldsymbol{c}>\mathbf{0}$ and has

- at most $O((m+k) \cdot \log m n)$ states
- at most $O(m \cdot \log m n)$ leaders

Linear inequalities: example

Protocol for $5 x-3 y>2$

Linear inequalities: example

Protocol for $5 x-3 y>2$

Linear inequalities: example

Protocol for $5 x-3 y>2$

Linear inequalities: example

Protocol for $5 x-3 y>2$

Linear inequalities: example

Protocol for $5 x-3 y>2$

Linear inequalities: example

Protocol for $5 x-3 y>2$

Linear inequalities: example

Protocol for $5 x-3 y>2$

Linear inequalities: example

(X)

\odot

Conclusion: summary

- Complexity of $x \geq c$ can be decreased from $O(c)$ to $O(\log c)$ and sometimes $O(\log \log c)$
- Matching lower bounds for the class of 1-aware protocols
- Better upper bounds for systems of linear inequalities

Conclusion: future work

- Is $O(\log \log \log c)$ states sometimes possible for computing $x \geq c$?
- State complexity of more general Presburger-definable predicates?
- Study of the trade-off between size and speed

Thank you!

