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Overview

Population protocols: distributed computing
model for massive networks of passively mobile
finite-state agents

Can model e.g. networks of passively mobile sensors and
chemical reaction networks

Protocols compute predicates of the form φ : Nd → {0, 1}

e.g. if φ is unary, then φ(n) is computed by n agents
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Overview

Population protocols: distributed computing
model for massive networks of passively mobile
finite-state agents

This talk: Study of the minimal size of protocols

Can model e.g. networks of passively mobile sensors and
chemical reaction networks

Protocols compute predicates of the form φ : Nd → {0, 1}

e.g. if φ is unary, then φ(n) is computed by n agents
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Population protocols Angluin et al. PODC’04

• anonymous mobile agents with very few resources

• agents change states via random pairwise interactions

• each agent has opinion true/false

• computes by stabilizing agents to some opinion
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Example: majority protocol

More blue birds than red birds?

Protocol:

• Two large birds of
different colors
become small

• Large birds convert
small birds to their
color
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Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

• Each bird is in a
state of {0, 1, 2, 3, 4}

• Sick birds initially in
state 1 and healthy
birds in state 0

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

1

1

1

0

1
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Demonstration
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Population protocols: formal model

• States: finite set Q

• Opinions: O : Q→ {0, 1}

• Initial states: I ⊆ Q

• Transitions: T ⊆ Q2 × Q2
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Population protocols: formal model

Protocols can be translated into Petri nets

2
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Population protocols: formal model

Protocols can be translated into Petri nets

2

conservative / bounded
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Population protocols: initial configurations

Initial configurations = L+ NI for some L ∈ NQ

Leaders L Arbitrary number of initial states
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Population protocols: initial configurations

Initial configurations = 0+NI

for some L ∈ NQ

· · ·

No leaders in
protocols seen so far 5/10



Population protocols: computations

Reachability graph:
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Population protocols: computations

A protocol computes a predicate f : Init → {0, 1}
if fair executions reach common consensus

Init0

0 0

Init1

1 1

Init2

1

. . .
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Population protocols: computations

A protocol computes a predicate f : Init → {0, 1}
if fair executions reach common consensus

Expressive power Angluin, Aspnes, Eisenstat PODC’06

Population protocols compute precisely predicates
definable in Presburger arithmetic, i.e. FO(N, +, <)
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State complexity

Number of states corresponds to amount of memory,
so relevant to keep it small for embedded systems

Protocol size also crucial for verification

• B ≥ R requires at least 4 states (Mertzios et al. ICALP’14)

• X ≥ c requires at most c + 1 states
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State complexity

Given: Presburger-definable predicateφ

Question: Smallest number of states
necessary to compute φ?
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State complexity

Given: Presburger-definable predicateφ

Question: Smallest number of states
necessary to compute φ?

Difficult problem...

What about basic predicates?
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State complexity: threshold

Given: c ∈ N

Question: Smallest number of states
necessary to compute x ≥ c?
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Given: c ∈ N Upper bound: c+ 1

Question: Smallest number of states
necessary to compute x ≥ c?

Lower bound: 2

Theorem STACS’18

x ≥ c is computable with O(log c) states, if c = 2n.

Proof sketch
States:
{0, 20, 21, . . . , c}

Output:
O(m) = 1⇔ m = c

Rules:
(1, 1) 7→ (2,0)
(2, 2) 7→ (4,0)
...

...
(2n−1, 2n−1) 7→ (2n,0)

(m,n) 7→ (c, c) if m+ n ≥ c 6/10
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Rules:
(1, 1) 7→ (2,0)
(2, 2) 7→ (4,0)
...

...
(2n−1, 2n−1) 7→ (2n,0)

(m,n) 7→ (c, c) if m+ n ≥ c

may fail if c is not

a power of 2
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State complexity: threshold

Given: c ∈ N Upper bound: c+ 1

Question: Smallest number of states
necessary to compute x ≥ c?

Lower bound: 2

Theorem STACS’18

x ≥ c is computable with O(log c) states, if c = 2n.

Proof sketch
Erroneous run for c = 7:

{1, 1, 1, 1, 1, 1, 1}
∗ ←−

{2,0, 2,0, 2,0, 1}

←−

{4,0,0,0, 2,0, 1} 6/10



State complexity: threshold

Given: c ∈ N Upper bound: c+ 1

Question: Smallest number of states
necessary to compute x ≥ c?

Lower bound: 2

Theorem STACS’18

x ≥ c is computable with O(log c) states, if c = 2n.

Proof sketch
States:
{0, 1, 2, 4, 6, 7}

Output:
O(m) = 1⇔ m = 7

Rules:
(1, 1) 7→ (2,0)
(2, 2) 7→ (4,0)
(4, 2) 7→ (6,0)
(4, 4) 7→ (7, 7)
(6,m) 7→ (7, 7)

Solution:
Add a few extra states

6/10
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Question: Smallest number of states
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State complexity: threshold

Given: c ∈ N Upper bound: O(log c)

Question: Smallest number of states
necessary to compute x ≥ c?

Lower bound: 2

Theorem STACS’18

Let P0,P1, . . . be protocols such that Pc computes x ≥ c.
There are infinitely many c s.t. Pc has ≥ (log c)1/4 states.

Proof sketch
Counting argument on # states vs. # unary predicates
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State complexity: threshold

Given: c ∈ N Upper bound: O(log c)

Question: Smallest number of states
necessary to compute x ≥ c?

Lower bound: O(log1/4 c)︸ ︷︷ ︸
for inf. many c
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State complexity: threshold

Given: c ∈ N Upper bound: O(log c)

Question: Smallest number of states
necessary to compute x ≥ c?

Lower bound: O(log1/4 c)︸ ︷︷ ︸
for inf. many c

Possible to go below
log c for some c?

6/10



State complexity: threshold

Given: c ∈ N Upper bound: O(log c)

Question: Smallest number of states
necessary to compute x ≥ c?

Lower bound: O(log1/4 c)︸ ︷︷ ︸
for inf. many c

Possible to go below
log c for some c?

Yes, with few leaders!
6/10



Threshold: sublogarithmic upper bound

Theorem STACS’18

There exist protocols P0,P1, . . . and numbers c0 < c1 < · · · s.t.
Pi computes x ≥ ci and has O(log log ci) states and 2 leaders.
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Threshold: sublogarithmic upper bound

Theorem STACS’18

There exist protocols P0,P1, . . . and numbers c0 < c1 < · · · s.t.
Pi computes x ≥ ci and has O(log log ci) states and 2 leaders.

Lemma Mayr and Meyer ’82

For every c ∈ N, there exists a reversible multiset rewriting
system Rc over alphabet Σ ⊇ {x, y, z,⋆} of size O(c) with
rewriting rules T ⊆ Σ≤5 × Σ≤5 such that

{x, y} ∗−→ M and ⋆ ∈ M ⇐⇒ M = {y, z22
c
,⋆}
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Threshold: sublogarithmic upper bound

Theorem STACS’18

There exist protocols P0,P1, . . . and numbers c0 < c1 < · · · s.t.
Pi computes x ≥ ci and has O(log log ci) states and 2 leaders.

Proof sketch

• Rc can be simulated by adding a padding symbol ⊥

• New rule: agents in state ⋆ can convert others to ⋆

• Simulate Rc from {x, y,⊥,⊥, . . . ,⊥}

• {⋆,⋆, . . . ,⋆} reachable ⇐⇒ initially ≥ 22c agents in ⊥

• By reversibility and fairness, cannot avoid {⋆,⋆, . . . ,⋆}
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• {⋆,⋆, . . . ,⋆} reachable ⇐⇒ initially ≥ 22c agents in ⊥

• By reversibility and fairness, cannot avoid {⋆,⋆, . . . ,⋆}

Rewriting system Rc 5-way population protocol
(e, f,g) 7→ (h, i) (e, f,g,⊥,⊥) 7→ (h, i,⊥,⊥,⊥)
(e, f) 7→ (g,h, i) (e, f,⊥,⊥,⊥) 7→ (g,h, i,⊥,⊥)
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Threshold: sublogarithmic upper bound

Theorem STACS’18

There exist protocols P0,P1, . . . and numbers c0 < c1 < · · · s.t.
Pi computes x ≥ ci and has O(log log ci) states and 2 leaders.

Proof sketch
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• New rule: agents in state ⋆ can convert others to ⋆

• Simulate Rc from {x, y,⊥,⊥, . . . ,⊥}

• {⋆,⋆, . . . ,⋆} reachable ⇐⇒ initially ≥ 22c agents in ⊥

• By reversibility and fairness, cannot avoid {⋆,⋆, . . . ,⋆}

Each 5-way transition is converted to
a “gadget” of 2-way transitions
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Threshold: lower bounds for 1-aware protocols

A protocol is 1-aware if there is a subset of states Q1 such that
for every fair execution π = C0C1 · · ·

(a) if π stabilizes to 1, then there is some i such that
states(Cj) ⊆ Q1 for every j ≥ i

(b) if π stabilizes to 0, then states(Cj) ∩ Q1 = ∅ for every j
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Threshold: lower bounds for 1-aware protocols

A protocol is 1-aware if there is a subset of states Q1 such that
for every fair execution π = C0C1 · · ·

(a) if π stabilizes to 1, then there is some i such that
states(Cj) ⊆ Q1 for every j ≥ i

(b) if π stabilizes to 0, then states(Cj) ∩ Q1 = ∅ for every j

Observation
1-aware protocols compute monotonic Presburger-definable
protocols, including x ≥ c
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Threshold: lower bounds for 1-aware protocols

Theorem STACS’18

Every 1-aware protocol P computing x ≥ c has at least

(a) log3 c states, if P is leaderless

(b) (log log(c)/151)1/9 states, otherwise

Proof sketch
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Threshold: lower bounds for 1-aware protocols

Theorem STACS’18

Every 1-aware protocol P computing x ≥ c has at least

(a) log3 c states, if P is leaderless

(b) (log log(c)/151)1/9 states, otherwise

Proof sketch

• {c · q0} ∗−→ D with states(D) ∩ Q1 ̸= ∅

• there exists m and D′ s.t.

{m · q0} ∗−→ D′, m ≤ 3|Q| and states(D) ⊆ states(D′)

• Thus, c ≤ m ≤ 3|Q| and hence log3 c ≤ |Q| 8/10



Threshold: lower bounds for 1-aware protocols

Theorem STACS’18

Every 1-aware protocol P computing x ≥ c has at least

(a) log3 c states, if P is leaderless

(b) (log log(c)/151)1/9 states, otherwise

Proof sketch

By Rackoff TCS’78:

If a state q ∈ Q1 is coverable from C ∈ Init, then
q is coverable from C by an execution of length at most 22poly(n)

8/10



Linear inequalities

Let A ∈ Zm×k, let c ∈ Zm and let n be the largest absolute
value of numbers occurring in A and c.

Observation
Classical protocol computing Ax+ c > 0 has O(nm) states.

Theorem STACS’18

There exists a protocol that computes Ax+ c > 0 and has

• at most O((m+ k) · logmn) states

• at most O(m · logmn) leaders
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Linear inequalities: example
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Conclusion: summary

• Complexity of x ≥ c can be decreased from
O(c) to O(log c) and sometimes O(log log c)

• Matching lower bounds for the class of
1-aware protocols

• Better upper bounds for systems of linear
inequalities
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Conclusion: future work

• Is O(log log log c) states sometimes possible
for computing x ≥ c ?

• State complexity of more general
Presburger-definable predicates?

• Study of the trade-off between size and
speed

10/10



Thank you!
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