On the State Complexity of Population Protocols

Michael Blondin

Joint work with Javier Esparza and Stefan Jaax

Population protocols: distributed computing model for massive networks of passively mobile finite-state agents

Overview

Can model *e.g.* networks of passively mobile sensors and chemical reaction networks

Overview

Population protocols: distributed computing model for massive networks of passively mobile finite-state agents

Can model *e.g.* networks of passively mobile sensors and chemical reaction networks

Protocols compute predicates of the form $\varphi \colon \mathbb{N}^d \to \{0, 1\}$ e.g. if φ is unary, then $\varphi(n)$ is computed by n agents

Overview

Population protocols: distributed computing model for massive networks of passively mobile finite-state agents

This talk: Study of the minimal size of protocols

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

More blue birds than red birds?

More blue birds than red birds?

- Two large birds of different colors become small
- Large birds convert small birds to their color

More blue birds than red birds?

- Two large birds of different colors become small
- Large birds convert small birds to their color

More blue birds than red birds?

- Two large birds of different colors become small
- Large birds convert small birds to their color

More blue birds than red birds?

- Two large birds of different colors become small
- Large birds convert small birds to their color

More blue birds than red birds?

- Two large birds of different colors become small
- Large birds convert small birds to their color

More blue birds than red birds?

- Two large birds of different colors become small
- Large birds convert small birds to their color

More blue birds than red birds?

- Two large birds of different colors become small
- Large birds convert small birds to their color

More blue birds than red birds?

Л

- Two large birds of different colors become small
- Large birds convert small birds to their color

Protocol:

 Two large birds of different colors become small

• Large birds convert small birds to their color

- Two large birds of different colors become small
- Large birds convert small birds to their color

Protocol:

 Two large birds of different colors become small

• Large birds convert small birds to their color

Protocol:

 Two large birds of different colors become small

Protocol:

 Two large birds of different colors become small

• Large birds convert small birds to their color

Are there at least 4 sick birds?

Are there at least 4 sick birds?

- Each bird is in a state of {0, 1, 2, 3, 4}
- Sick birds initially in state 1 and healthy birds in state 0
- $(m,n) \mapsto (m+n,0)$ if m+n < 4
- $(m,n) \mapsto (4,4)$ if $m+n \ge 4$

Are there at least 4 sick birds?

- Each bird is in a state of {0, 1, 2, 3, 4}
- Sick birds initially in state 1 and healthy birds in state 0
- $(m,n) \mapsto (m+n,0)$ if m+n < 4
- $(m,n) \mapsto (4,4)$ if $m+n \ge 4$

Are there at least 4 sick birds?

- Each bird is in a state of {0, 1, 2, 3, 4}
- Sick birds initially in state 1 and healthy birds in state 0
- $(m,n) \mapsto (m+n,0)$ if m+n < 4
- $(m,n) \mapsto (4,4)$ if $m+n \ge 4$

Are there at least 4 sick birds?

- Each bird is in a state of {0, 1, 2, 3, 4}
- Sick birds initially in state 1 and healthy birds in state 0
- $(m,n) \mapsto (m+n,0)$ if m+n < 4
- $(m,n) \mapsto (4,4)$ if $m+n \ge 4$

Are there at least 4 sick birds?

- Each bird is in a state of {0, 1, 2, 3, 4}
- Sick birds initially in state 1 and healthy birds in state 0
- $(m,n) \mapsto (m+n,0)$ if m+n < 4
- $(m,n) \mapsto (4,4)$ if $m+n \ge 4$

Are there at least 4 sick birds?

- Each bird is in a state of {0, 1, 2, 3, 4}
- Sick birds initially in state 1 and healthy birds in state 0
- $(m,n) \mapsto (m+n,0)$ if m+n < 4
- $(m,n) \mapsto (4,4)$ if $m+n \ge 4$

Are there at least 4 sick birds?

- Each bird is in a state of {0, 1, 2, 3, 4}
- Sick birds initially in state 1 and healthy birds in state 0
- $(m,n) \mapsto (m+n,0)$ if m+n < 4
- $(m,n) \mapsto (4,4)$ if $m+n \ge 4$

Are there at least 4 sick birds?

- Each bird is in a state of {0, 1, 2, 3, 4}
- Sick birds initially in state 1 and healthy birds in state 0
- $(m,n) \mapsto (m+n,0)$ if m+n < 4
- $(m,n) \mapsto (4,4)$ if $m+n \ge 4$

Are there at least 4 sick birds?

- Each bird is in a state of {0, 1, 2, 3, 4}
- Sick birds initially in state 1 and healthy birds in state 0
- $(m,n) \mapsto (m+n,0)$ if m+n < 4
- $(m,n) \mapsto (4,4)$ if $m+n \ge 4$

Are there at least 4 sick birds?

- Each bird is in a state of {0, 1, 2, 3, 4}
- Sick birds initially in state 1 and healthy birds in state 0
- $(m,n) \mapsto (m+n,0)$ if m+n < 4
- $(m,n) \mapsto (4,4)$ if $m+n \ge 4$

Are there at least 4 sick birds?

- Each bird is in a state of {0, 1, 2, 3, 4}
- Sick birds initially in state 1 and healthy birds in state 0
- $(m,n) \mapsto (m+n,0)$ if m+n < 4
- $(m,n) \mapsto (4,4)$ if $m+n \ge 4$

Are there at least 4 sick birds?

- Each bird is in a state of {0, 1, 2, 3, 4}
- Sick birds initially in state 1 and healthy birds in state 0
- $(m,n) \mapsto (m+n,0)$ if m+n < 4
- $(m,n) \mapsto (4,4)$ if $m+n \ge 4$

Are there at least 4 sick birds?

- Each bird is in a state of {0, 1, 2, 3, 4}
- Sick birds initially in state 1 and healthy birds in state 0
- $(m,n) \mapsto (m+n,0)$ if m+n < 4
- $(m,n) \mapsto (4,4)$ if $m+n \ge 4$

Are there at least 4 sick birds?

- Each bird is in a state of {0, 1, 2, 3, 4}
- Sick birds initially in state 1 and healthy birds in state 0
- $(m,n) \mapsto (m+n,0)$ if m+n < 4
- $(m,n) \mapsto (4,4)$ if $m+n \ge 4$

Are there at least 4 sick birds?

- Each bird is in a state of {0, 1, 2, 3, 4}
- Sick birds initially in state 1 and healthy birds in state 0
- $(m,n) \mapsto (m+n,0)$ if m+n < 4
- $(m,n) \mapsto (4,4)$ if $m+n \ge 4$

Are there at least 4 sick birds?

- Each bird is in a state of {0, 1, 2, 3, 4}
- Sick birds initially in state 1 and healthy birds in state 0
- $(m,n) \mapsto (m+n,0)$ if m+n < 4
- $(m,n) \mapsto (4,4)$ if $m+n \ge 4$

Demonstration

- States: finite set Q
- Opinions: $O: Q \rightarrow \{0, 1\}$

 $I \subset Q$

- Initial states:
- Transitions: $T \subseteq Q^2 \times Q^2$

- *States*: finite set *Q*
- Opinions:
- Initial states:

 $\mathsf{O}:\mathsf{Q}\to\{\mathsf{0},\mathsf{1}\}$

- $I \subseteq Q$
- Transitions: $T \subseteq Q^2 \times Q^2$

- *States*: finite set *Q*
- Opinions: $O: Q \rightarrow \{0, 1\}$
- Initial states:
 - $: I \subseteq Q$
- Transitions: $T \subseteq Q^2 \times Q^2$

- *States*: finite set *Q*
- Opinions: $O: Q \rightarrow \{0, 1\}$
- Initial states:
- $I \subseteq Q$
- Transitions:

 $T \subseteq Q^2 \times Q^2$

Protocols can be translated into Petri nets

Protocols can be translated into Petri nets conservative / bounded

Initial configurations $= L + \mathbb{N}^{l}$ for some $L \in \mathbb{N}^{Q}$

Leaders L

Arbitrary number of initial states

Initial configurations $= L + \mathbb{N}^{l}$ for some $L \in \mathbb{N}^{Q}$

Leaders L

Arbitrary number of initial states

Initial configurations $= L + \mathbb{N}^{l}$ for some $L \in \mathbb{N}^{Q}$

Leaders L

Arbitrary number of initial states

Initial configurations $= \mathbf{0} + \mathbb{N}^{l}$

No leaders in protocols seen so far

Reachability graph:

Executions must be fair:

Executions must be fair:

A protocol computes a predicate $f: \text{Init} \rightarrow \{0, 1\}$ if fair executions reach common consensus

A protocol computes a predicate $f: \text{Init} \rightarrow \{0, 1\}$ if fair executions reach common **consensus**

Expressive power

Angluin, Aspnes, Eisenstat PODC'06

Population protocols compute precisely predicates definable in Presburger arithmetic, *i.e.* $FO(\mathbb{N}, +, <)$

Number of states corresponds to amount of memory, so relevant to keep it small for embedded systems

Protocol size also crucial for verification

- B ≥ R requires at least 4 states (Mertzios et al. ICALP'14)
- X ≥ C requires at most c + 1 states

State complexity

- **Given:** Presburger-definable predicate φ
- Question:Smallest number of statesnecessary to compute φ ?

State complexity

Given: Presburger-definable predicate φ

Question:Smallest number of statesnecessary to compute φ ?

Difficult problem... What about basic predicates?

Given: $c \in \mathbb{N}$

Question: Smallest number of states necessary to compute $x \ge c$?

Given: $c \in \mathbb{N}$

Upper bound: c + 1

Question: Smallest number of states **Lower bound:** 2 necessary to compute $x \ge c$?

Given: $c \in \mathbb{N}$ Upper bound:c + 1Question:Smallest number of states
necessary to compute $x \ge c$?Lower bound:2

Theorem

STACS'18

 $x \ge c$ is computable with $O(\log c)$ states, if $c = 2^n$.

Proof sketch

States: $\{0, 2^0, 2^1, \dots, c\}$ Output: $O(m) = 1 \Leftrightarrow m = c$ Rules: $(1, 1) \mapsto (2, 0)$ $(2, 2) \mapsto (4, 0)$ $\vdots \qquad \vdots$ $(2^{n-1}, 2^{n-1}) \mapsto (2^n, 0)$ $(m, n) \mapsto (c, c) \text{ if } m + n \ge c$ 6/10 Given: $c \in \mathbb{N}$ Upper bound:c + 1Question:Smallest number of states
necessary to compute $x \ge c$?Lower bound:2TheoremSTACS'18 $x \ge c$ is computable with $O(\log c)$ states, if $e = 2^{r}$.Proof sketchmay fail if c is not

FIOUI SKELLII	may fail if c is it				
States:	Rules:		a po	wer of 2	
$\{0, 2^0, 2^1, \dots, c\}$	(1, 1)	\mapsto	(2,0)		
	(2,2)	\mapsto	(4, 0)		
Output:	:		:		
$O(m) = 1 \Leftrightarrow m = c$	$(2^{n-1}, 2^{n-1})$	\mapsto	$(2^{n}, 0)$		
	(<i>m</i> , <i>n</i>)	\mapsto	(C, C)	if $m + n \ge c$	6/10
	States: {0,2 ⁰ ,2 ¹ ,,c} Output:	States: $\{0, 2^0, 2^1, \dots, c\}$ Rules: $(1, 1)$ $(2, 2)$ Output: $O(m) = 1 \Leftrightarrow m = c$ \vdots $(2^{n-1}, 2^{n-1})$	States: $\{0, 2^0, 2^1, \dots, c\}$ Rules: $(1, 1) \mapsto$ $(2, 2) \mapsto$ Output: $O(m) = 1 \Leftrightarrow m = c$ $(1, 1) \mapsto$ $(2, 2) \mapsto$	States: Rules: $a p^{o}$ $\{0, 2^{0}, 2^{1}, \dots, c\}$ $(1, 1) \mapsto (2, 0)$ $(2, 2) \mapsto (4, 0)$ $(2, 2) \mapsto (4, 0)$ Output: \vdots \vdots $O(m) = 1 \Leftrightarrow m = c$ $(2^{n-1}, 2^{n-1}) \mapsto (2^{n}, 0)$	States: $\{0, 2^0, 2^1, \dots, c\}$ Rules: $(1, 1)$ $(2, 2)$ $e power of 2$ $(2, 2)$ Output: $O(m) = 1 \leftrightarrow m = c$ \vdots \vdots

Given: $c \in \mathbb{N}$

Question: Smallest number of states **Lower bound:** 2 necessary to compute $x \ge c$?

Theorem

 $x \ge c$ is computable with $O(\log c)$ states, if $c = 2^{n}$.

Proof sketch

Erroneous run for c = 7:

 $\{4, 0, 0, 0, 2, 0, 1\}$

Upper bound: c + 1

STACS'18

Given:		$c \in \mathbb{N}$		Upper bound:			c + 1
Question:		Smallest number of necessary to comp		Lowe	er bo	und:	2
	Theor	em					STACS'18
	$x \ge c$ is computable with $O(\log c)$ states, if $c = 2^n$.						
	Proof	sketch	Add a				states
	States	:	Rules:				
	{0,1,2	2, 4, <mark>6</mark> , 7}	(1	I, 1)	\mapsto	(2,0)	
			(2	2,2)	\mapsto	(4, 0)	
	Outpu	t:	(4	+, 2)	\mapsto	(6,0)	
	O(m) =	$=1 \Leftrightarrow m=7$	(4	ı, 4)	\mapsto	(7,7)	
			(6	, m)	\mapsto	(7,7)	

Given: $c \in \mathbb{N}$

Upper bound: $O(\log c)$

Question: Smallest number of states **Lower bound:** 2 necessary to compute $x \ge c$?

Given: $c \in \mathbb{N}$ Upper bound: $O(\log c)$ Question:Smallest number of states
necessary to compute $x \ge c$?Lower bound:2

Theorem

STACS'18

Let P_0, P_1, \ldots be protocols such that P_c computes $x \ge c$. There are infinitely many c s.t. P_c has $\ge (\log c)^{1/4}$ states.

Proof sketch

Counting argument on # states vs. # unary predicates

Given: $c \in \mathbb{N}$

Question: Smallest number of states **Lower bound:** $O(\log^{1/4} c)$ necessary to compute x > c?

Given: $c \in \mathbb{N}$ Upper bound: $O(\log c)$ Question:Smallest number of states
necessary to compute $x \ge c$?Lower bound: $O(\log^{1/4} c)$
for inf. many c

Given: $c \in \mathbb{N}$ Upper bound: $O(\log c)$ Question:Smallest number of states
necessary to compute $x \ge c$?Lower bound: $O(\log^{1/4} c)$
for inf. many c

Yes, with few leaders!

Theorem

STACS'18

There exist protocols P_0, P_1, \ldots and numbers $c_0 < c_1 < \cdots$ s.t. P_i computes $x \ge c_i$ and has $O(\log \log c_i)$ states and 2 leaders.

Theorem

STACS'18

There exist protocols P_0, P_1, \ldots and numbers $c_0 < c_1 < \cdots$ s.t. P_i computes $x \ge c_i$ and has $O(\log \log c_i)$ states and 2 leaders.

Lemma

Mayr and Meyer '82

For every $c \in \mathbb{N}$, there exists a reversible multiset rewriting system \mathcal{R}_c over alphabet $\Sigma \supseteq \{x, y, z, \bigstar\}$ of size O(c) with rewriting rules $T \subseteq \Sigma^{\leq 5} \times \Sigma^{\leq 5}$ such that

$$\{x,y\} \xrightarrow{*} M \text{ and } \bigstar \in M \iff M = \{y, z^{2^{2^{c}}}, \bigstar\}$$

Theorem

STACS'18

There exist protocols P_0, P_1, \ldots and numbers $c_0 < c_1 < \cdots$ s.t. P_i computes $x \ge c_i$ and has $O(\log \log c_i)$ states and 2 leaders.

Proof sketch

+ \mathcal{R}_c can be simulated by adding a padding symbol \perp

Theorem

STACS'18

There exist protocols P_0, P_1, \ldots and numbers $c_0 < c_1 < \cdots$ s.t. P_i computes $x \ge c_i$ and has $O(\log \log c_i)$ states and 2 leaders.

Proof sketch

+ \mathcal{R}_c can be simulated by adding a padding symbol \perp

Rewriting system \mathcal{R}_c 5-way population protocol $(e,f,g) \mapsto (h,i)$ $(e,f,g,\bot,\bot) \mapsto (h,i,\bot,\bot)$ $(e,f) \mapsto (g,h,i)$ $(e,f,\bot,\bot,\bot) \mapsto (g,h,i,\bot,\bot)$

Theorem

STACS'18

There exist protocols P_0, P_1, \ldots and numbers $c_0 < c_1 < \cdots$ s.t. P_i computes $x \ge c_i$ and has $O(\log \log c_i)$ states and 2 leaders.

Proof sketch

+ \mathcal{R}_c can be simulated by adding a padding symbol \perp

Each 5-way transition is converted to a "gadget" of 2-way transitions

Theorem

STACS'18

There exist protocols P_0, P_1, \ldots and numbers $c_0 < c_1 < \cdots$ s.t. P_i computes $x \ge c_i$ and has $O(\log \log c_i)$ states and 2 leaders.

- + \mathcal{R}_c can be simulated by adding a padding symbol \perp
- New rule: agents in state \star can convert others to \star

Theorem

STACS'18

There exist protocols P_0, P_1, \ldots and numbers $c_0 < c_1 < \cdots$ s.t. P_i computes $x \ge c_i$ and has $O(\log \log c_i)$ states and 2 leaders.

- + \mathcal{R}_c can be simulated by adding a padding symbol \perp
- New rule: agents in state \star can convert others to \star
- Simulate \mathcal{R}_c from $\{x, y, \bot, \bot, \ldots, \bot\}$

Theorem

STACS'18

There exist protocols P_0, P_1, \ldots and numbers $c_0 < c_1 < \cdots$ s.t. P_i computes $x \ge c_i$ and has $O(\log \log c_i)$ states and 2 leaders.

- + \mathcal{R}_c can be simulated by adding a padding symbol \perp
- New rule: agents in state \star can convert others to \star
- Simulate \mathcal{R}_c from $\{x, y, \bot, \bot, \bot, \bot\}$
- $\{\bigstar, \bigstar, \ldots, \bigstar\}$ reachable \iff initially $\ge 2^{2^c}$ agents in \bot

Theorem

STACS'18

There exist protocols P_0, P_1, \ldots and numbers $c_0 < c_1 < \cdots$ s.t. P_i computes $x \ge c_i$ and has $O(\log \log c_i)$ states and 2 leaders.

- + \mathcal{R}_c can be simulated by adding a padding symbol \perp
- New rule: agents in state \star can convert others to \star
- Simulate \mathcal{R}_c from $\{x, y, \bot, \bot, \bot, \bot\}$
- $\{\bigstar, \bigstar, \ldots, \bigstar\}$ reachable \iff initially $\geq 2^{2^c}$ agents in \bot
- By reversibility and fairness, cannot avoid $\{\bigstar,\bigstar,\ldots,\bigstar\}$

A protocol is *1-aware* if there is a subset of states Q_1 such that for every fair execution $\pi = C_0 C_1 \cdots$ A protocol is *1-aware* if there is a subset of states Q_1 such that for every fair execution $\pi = C_0C_1\cdots$

(a) if π stabilizes to 1, then there is some *i* such that $states(C_i) \subseteq Q_1$ for every $j \ge i$

A protocol is *1-aware* if there is a subset of states Q_1 such that for every fair execution $\pi = C_0 C_1 \cdots$

- (a) if π stabilizes to 1, then there is some *i* such that $states(C_j) \subseteq Q_1$ for every $j \ge i$
- (b) if π stabilizes to 0, then states $(C_j) \cap Q_1 = \emptyset$ for every j

A protocol is *1-aware* if there is a subset of states Q_1 such that for every fair execution $\pi = C_0C_1\cdots$

(a) if π stabilizes to 1, then there is some *i* such that $states(C_j) \subseteq Q_1$ for every $j \ge i$

(b) if π stabilizes to 0, then states $(C_j) \cap Q_1 = \emptyset$ for every j

Observation

1-aware protocols compute monotonic Presburger-definable protocols, including $x \ge c$

Threshold: lower bounds for 1-aware protocols

Theorem

STACS'18

Every 1-aware protocol \mathcal{P} computing $x \ge c$ has at least

(a) $\log_3 c$ states, if \mathcal{P} is leaderless

(b) $(\log \log(c)/151)^{1/9}$ states, otherwise

Theorem

STACS'18

Every 1-aware protocol \mathcal{P} computing $x \ge c$ has at least

(a) $\log_3 c$ states, if \mathcal{P} is leaderless

(b) $(\log \log(c)/151)^{1/9}$ states, otherwise

Proof sketch

- $\{c \cdot q_0\} \xrightarrow{*} D$ with states $(D) \cap Q_1 \neq \emptyset$
- there exists *m* and *D'* s.t.

 $\{m \cdot q_0\} \xrightarrow{*} D', m \leq 3^{|Q|} \text{ and } \operatorname{states}(D) \subseteq \operatorname{states}(D')$

• Thus, $\mathsf{c} \leq m \leq 3^{|Q|}$ and hence $\log_3 \mathsf{c} \leq |Q|$

```
Theorem
```

STACS'18

Every 1-aware protocol \mathcal{P} computing $x \ge c$ has at least

(a) $\log_3 c$ states, if \mathcal{P} is leaderless

(b) $(\log \log(c)/151)^{1/9}$ states, otherwise

Proof sketch

By Rackoff TCS'78:

If a state $q \in Q_1$ is coverable from $C \in$ Init, then q is coverable from C by an execution of length at most $2^{2^{poly(n)}}$ Let $A \in \mathbb{Z}^{m \times k}$, let $\mathbf{c} \in \mathbb{Z}^m$ and let n be the largest absolute value of numbers occurring in A and \mathbf{c} .

Observation

Classical protocol computing $A\mathbf{x} + \mathbf{c} > \mathbf{0}$ has $O(n^m)$ states.

Let $A \in \mathbb{Z}^{m \times k}$, let $\mathbf{c} \in \mathbb{Z}^m$ and let n be the largest absolute value of numbers occurring in A and \mathbf{c} .

Observation

Classical protocol computing $A\mathbf{x} + \mathbf{c} > \mathbf{0}$ has $O(n^m)$ states.

TheoremSTACS'18There exists a protocol that computes $A\mathbf{x} + \mathbf{c} > \mathbf{0}$ and has

- at most $O((m + k) \cdot \log mn)$ states
- at most $O(m \cdot \log mn)$ leaders

Protocol for 5x - 3y > 2 9/10

(X

Protocol for 5x - 3y > 2 9/10

(X)

 (\mathcal{V})

9/10

Protocol for 5x - 3y > 2 9/10

Protocol for 5x - 3y > 2

9/10

- Complexity of $x \ge c$ can be decreased from O(c) to $O(\log c)$ and sometimes $O(\log \log c)$
- Matching lower bounds for the class of 1-aware protocols
- Better upper bounds for systems of linear inequalities

- Is O(log log log c) states sometimes possible for computing x ≥ c ?
- State complexity of more general Presburger-definable predicates?
- Study of the trade-off between size and speed

Thank you!