#### The Logical View on Continuous Petri Nets

## Michael Blondin

Joint work with Alain Finkel, Christoph Haase, Serge Haddad







#### The Logical View on Continuous Petri Nets

### Michael Blondin

Joint work with Alain Finkel, Christoph Haase, Serge Haddad



























#### Process 2





#### critical section

while true: x = true while y: pass # critical section x = false while true:
 y = true
 if x then:
 y = false
 while x: pass
 goto ♠
 # critical section
 y = false

Lamport mutual exclusion algorithm



while true:
 y = true
 if x then:
 y = false
 while x: pass
 goto ★
 # critical section
 y = false



•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•<

while true: y = true if x then: y = false while x: pass goto ♠ # critical section y = false

 $\odot$ 

Ο

0

0

 $\bullet$ 

 $\bigcirc$ 

igodol

•

igodot

 $\bigcirc$ 

| while true:        |  |
|--------------------|--|
| x = true           |  |
| while y: pass      |  |
| # critical section |  |
| x = false          |  |





 $\odot$ 

 $\bigcirc$ 

 $\bigcirc$ 

Ο

Ο

0

 $\bigcirc$ 

 $\odot$ 

Ο

Ο

Ο

Ο

while true:
 y = true
 if x then:
 y = false
 while x: pass
 goto ★
 # critical section
 y = false

while true: x = true while y: pass # critical section x = false

() () () () () ()

 $\odot$ 

Ο

Ο

Ο

 $\bigcirc$ 

 $\odot$ 

 $\bigcirc$ 

 $\bigcirc$ 

Ο

Ο

0

 $\bigcirc$ 



while true: x = true while y: pass # critical section x = false





while true: x = true while y: pass # critical section

 $\mathbf{x} = \mathsf{false}$ 







# Processes at both



critical sections



critical sections

2/10

Cheroux & Schmitz '15) Reachability problem Processes at both critical sections



 $\leftarrow$ 

Processes at both

critical sections

$$\Rightarrow \bigcirc 21 \\ \bigcirc 20$$

EXPSPACE-complete! (Lipton '76, Rackoff '78) Coverability problem Processes at both  $\ge 1$  > 0

critical sections






































## $m_{target}$ reachable from $m_{init}$ $\downarrow$ $m_{target}$ Q-reachable from $m_{init}$



# $m_{target}$ not reachable from $m_{init}$ $rac{}{}^{Safety}$ $m_{target}$ not Q-reachable from $m_{init}$

# **m**<sub>target</sub> not reachable from **m**<sub>init</sub> Safety 个 $\boldsymbol{m}_{target}$ not $\mathbb{Q}$ -reachable from $\boldsymbol{m}_{init}$ Q-reachability E PTIME! (Fraca & Haddad '13)

 $m_{\text{init}}$  is  $\mathbb{Q}$ -reachable from  $m_{\text{target}}$  iff...

Fraca & Haddad '13

| $m_{\text{init}}$ is Q-read             | hable from                           | m <sub>target</sub> iff | Fraca & Haddad '13 |
|-----------------------------------------|--------------------------------------|-------------------------|--------------------|
| there exists                            | $\bm{v} \in \mathbb{Q}_{\geq 0}^{T}$ | such that               |                    |
| • <b>m</b> <sub>target</sub> = <b>n</b> | n <sub>init</sub> + (Pos             | t — Pre) · v            |                    |

| $m_{init}$ is Q-read                             | hable from                           | m <sub>target</sub> iff |  | Fraca & Ha | addad '13 |
|--------------------------------------------------|--------------------------------------|-------------------------|--|------------|-----------|
| there exists                                     | $\bm{v} \in \mathbb{Q}_{\geq 0}^{T}$ | such that               |  |            |           |
| • $m_{target} = m_{init} + (Post - Pre) \cdot v$ |                                      |                         |  |            |           |

• an execution from  $\boldsymbol{m}_{\text{init}}$  fires exactly  $\{t \in T : \boldsymbol{v}_t > 0\}$ 

| $m_{\text{init}}$ is Q-read                      | chable from                          | m <sub>target</sub> iff | Fraca & Haddad '13               |  |
|--------------------------------------------------|--------------------------------------|-------------------------|----------------------------------|--|
| there exists                                     | $\bm{v} \in \mathbb{Q}_{\geq 0}^{T}$ | such that               |                                  |  |
| • $m_{target} = m_{init} + (Post - Pre) \cdot v$ |                                      |                         |                                  |  |
| • an execut                                      | ion from <b>m</b> i                  | nit fires exactly       | $\{t \in T : \mathbf{v}_t > 0\}$ |  |

• an execution to  $\boldsymbol{m}_{target}$  fires exactly  $\{t \in T : \boldsymbol{v}_t > 0\}$ 



$$m{m}_{ ext{init}} = (2,0)$$
  
 $m{m}_{ ext{target}} = (0,2)$ 

 $m_{init}$  is Q-reachable from  $m_{target}$  iff...Fraca & Haddad '13there exists  $v_a, v_b \in \mathbb{Q}_{\geq 0}$  such that•  $m_{target} = m_{init} + (Post - Pre) \cdot v$ 

- an execution from  $\boldsymbol{m}_{\text{init}}$  fires exactly  $\{t \in \{a, b\} : \boldsymbol{v}_t > 0\}$
- an execution to  $m_{\text{target}}$  fires exactly  $\{t \in \{a, b\} : v_t > 0\}$



$$\mathbf{m}_{init} = (2,0)$$
  
 $\mathbf{m}_{target} = (0,2)$ 

 $m_{init}$  is Q-reachable from  $m_{target}$  iff...Fraca & Haddad '13there exists  $v_a, v_b \in \mathbb{Q}_{\geq 0}$  such that.  $2 - v_a - v_b = 0$ <br/> $v_b = 2$ • an execution from  $m_{init}$  fires exactly  $\{t \in \{a, b\} : v_t > 0\}$ 

• an execution to  $\boldsymbol{m}_{\text{target}}$  fires exactly  $\{t \in \{a, b\} : \boldsymbol{v}_t > 0\}$ 



$$\mathbf{m}_{init} = (2,0)$$
  
 $\mathbf{m}_{target} = (0,2)$ 

 $m_{init}$  is Q-reachable from  $m_{target}$  iff...Fraca & Haddad '13there exists  $\mathbf{v}_a, \mathbf{v}_b \in \mathbb{Q}_{\geq 0}$  such that $2 - \mathbf{v}_a - \mathbf{v}_b = 0$  $\mathbf{v}_a = 0, \ \mathbf{v}_b = 2$  $\mathbf{v}_b = 2$  $\mathbf{v}_b = 2$  $\mathbf{v}_b = 2$ • an execution from  $m_{init}$  fires exactly  $\{t \in \{a, b\} : \mathbf{v}_t > 0\}$ 

• an execution to  $\boldsymbol{m}_{target}$  fires exactly  $\{t \in \{a, b\} : \boldsymbol{v}_t > 0\}$ 



$$\mathbf{m}_{init} = (2,0)$$
  
 $\mathbf{m}_{target} = (0,2)$ 

 $m_{init}$  is Q-reachable from  $m_{target}$  iff...Fraca & Haddad '13there exists  $\mathbf{v}_a, \mathbf{v}_b \in \mathbb{Q}_{\geq 0}$  such that $2 - \mathbf{v}_a - \mathbf{v}_b = 0$  $\mathbf{v}_a = 0, \ \mathbf{v}_b = 2$  $\mathbf{v}_b = 2$  $\mathbf{v}_b = 2$  $\mathbf{v}_b = 2$ • an execution from  $m_{init}$  fires exactly  $\{t \in \{a, b\} : \mathbf{v}_t > 0\}$ 

• an execution to  $\boldsymbol{m}_{\text{target}}$  fires exactly  $\{t \in \{a, b\} : \boldsymbol{v}_t > 0\}$ 



$$m{m}_{ ext{init}} = (2,0)$$
  
 $m{m}_{ ext{target}} = (0,2)$ 

 $m_{init}$  is Q-reachable from  $m_{target}$  iff...Fraca & Haddad '13there exists  $\mathbf{v}_a, \mathbf{v}_b \in \mathbb{Q}_{\geq 0}$  such that $2 - \mathbf{v}_a - \mathbf{v}_b = 0$  $\mathbf{v}_a = 0, \ \mathbf{v}_b = 2$  $\mathbf{v}_b = 2$  $\mathbf{v}_b = 2$  $\mathbf{v}_b = 2$ • an execution from  $m_{init}$  fires exactly  $\{t \in \{a, b\} : \mathbf{v}_t > 0\}$ 

• an execution to  $\boldsymbol{m}_{\text{target}}$  fires exactly  $\{t \in \{a, b\} : \boldsymbol{v}_t > 0\}$ 



$$\mathbf{m}_{init} = (2,0)$$
  
 $\mathbf{m}_{target} = (0,2)$ 

 $m_{init}$  is Q-reachable from  $m_{target}$  iff...Fraca & Haddad '13there exists  $\mathbf{v}_a, \mathbf{v}_b \in \mathbb{Q}_{\geq 0}$  such that $2 - \mathbf{v}_a - \mathbf{v}_b = 0$  $\mathbf{v}_a = 0, \ \mathbf{v}_b = 2$  $\mathbf{v}_b = 2$  $\mathbf{v}_a = 0, \ \mathbf{v}_b = 2$  $\mathbf{v}_b = 2$ • an execution from  $m_{init}$  fires exactly  $\{b\}$ 

• an execution to  $m_{\text{target}}$  fires exactly  $\{b\}$ 



$$\mathbf{m}_{init} = (2,0)$$
  
 $\mathbf{m}_{target} = (0,2)$ 

 $m_{init}$  is Q-reachable from  $m_{target}$  iff...Fraca & Haddad '13there exists  $\mathbf{v}_a, \mathbf{v}_b \in \mathbb{Q}_{\geq 0}$  such that $2 - \mathbf{v}_a - \mathbf{v}_b = 0$  $\mathbf{v}_a = 0, \ \mathbf{v}_b = 2$  $\mathbf{v}_b = 2$  $\mathbf{v}_a = 0, \ \mathbf{v}_b = 2$  $\mathbf{v}_b$ • an execution from  $m_{init}$  fires exactly  $\{b\}$ 



$$\mathbf{m}_{init} = (2,0)$$
  
 $\mathbf{m}_{target} = (0,2)$ 

 $m_{init}$  is Q-reachable from  $m_{target}$  iff...Fraca & Haddad '13there exists  $\mathbf{v}_a, \mathbf{v}_b \in \mathbb{Q}_{\geq 0}$  such that $2 - \mathbf{v}_a - \mathbf{v}_b = 0$ <br/> $\mathbf{v}_b = 2$  $\mathbf{v}_a = 0, \ \mathbf{v}_b = 2$ • an execution from  $m_{init}$  fires exactly  $\{b\}$  $\checkmark$ 



$$m_{init} = (2,0)$$
  
 $m_{target} = (0,2)$ 

 $m_{init}$  is Q-reachable from  $m_{target}$  iff...Fraca & Haddad '13there exists  $\mathbf{v}_a, \mathbf{v}_b \in \mathbb{Q}_{\geq 0}$  such that $2 - \mathbf{v}_a - \mathbf{v}_b = 0$ <br/> $\mathbf{v}_b = 2$  $\mathbf{v}_a = 0, \ \mathbf{v}_b = 2$ • an execution from  $m_{init}$  fires exactly  $\{b\}$  $\checkmark$ 



 $m{m}_{ ext{init}} = (2,0)$  $m{m}_{ ext{target}} = (0,2)$ 

| $m_{\text{init}}$ is $\mathbb{Q}$ -reachable from $m_{\text{target}}$ iff                                                   | Fraca & Haddad '13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| there exists $\ oldsymbol{v}_a, oldsymbol{v}_b \in \mathbb{Q}_{\geq 0}$ such that                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\begin{array}{ccc} 2-{\pmb v}_a-{\pmb v}_b=0\\ {\pmb v}_b=2 \end{array} \implies {\pmb v}_a=0, \ {\pmb v}_b=2 \end{array}$ | <ul> <li>Image: A start of the start of</li></ul> |
| • an execution from $\boldsymbol{m}_{	ext{init}}$ fires exactly $\{b\}$                                                     | $\checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |



$$\mathbf{m}_{init} = (2,0)$$
  
 $\mathbf{m}_{target} = (0,2)$ 

| $m_{\text{init}}$ is $\mathbb{Q}$ -reachable from $m_{\text{target}}$ iff                 | Fraca & Haddad '13 |
|-------------------------------------------------------------------------------------------|--------------------|
| there exists $\ oldsymbol{v}_a,oldsymbol{v}_b\in\mathbb{Q}_{\geq 0}$ such that            |                    |
| • $2 - \mathbf{v}_a - \mathbf{v}_b = 0$ $\implies$ $\mathbf{v}_a = 0, \ \mathbf{v}_b = 2$ | <b>√</b>           |
| • an execution from $\boldsymbol{m}_{\text{init}}$ fires exactly $\{b\}$                  | $\checkmark$       |
| • an execution to <b>m</b> <sub>target</sub> fires exactly {b}                            | X                  |



 $m_{init}$  is Q-reachable from  $m_{target}$  iff...Fraca & Haddad '13there exists  $\mathbf{v}_a, \mathbf{v}_b \in \mathbb{Q}_{\geq 0}$  such that $2 - \mathbf{v}_a - \mathbf{v}_b = 0$ <br/> $\mathbf{v}_b = 2$  $\mathbf{v}_a = 0, \ \mathbf{v}_b = 2$ • an execution from  $m_{init}$  fires exactly  $\{b\}$  $\checkmark$ • an execution to  $m_{target}$  fires exactly  $\{b\}$  $\checkmark$ 

Theorem

B., Finkel, Haase & Haddad '16

 $\mathbb Q\text{-}\mathsf{reachability}$  definable by linear size formula of

 $\exists \ \mathsf{FO}(\mathbb{Q},+,<)$ 

 $m_{\text{init}}$  is Q-reachable from  $m_{\text{target}}$  iff...Fraca & Haddad '13there exists $\mathbf{v} \in \mathbb{Q}_{\geq 0}^T$  such that

- $m_{target} = m_{init} + (Post Pre) \cdot v$
- an execution from  $\boldsymbol{m}_{init}$  fires exactly  $\{t \in T : \boldsymbol{v}_t > 0\}$
- an execution to  $\boldsymbol{m}_{\text{target}}$  fires exactly  $\{t \in T : \boldsymbol{v}_t > 0\}$





Theorem

B., Finkel, Haase & Haddad '16

 $\mathbb Q\text{-}\mathsf{reachability}$  definable by linear size formula of

 $\exists \ \mathsf{FO}(\mathbb{Q},+,<)$ 

 $m_{\text{init}}$  is Q-reachable from  $m_{\text{target}}$  iff...Fraca & Haddad '13there exists  $\mathbf{v} \in \mathbb{Q}_{\geq 0}^T$  such that•  $m_{\text{target}} = m_{\text{init}} + (\text{Post} - \text{Pre}) \cdot \mathbf{v}$ Straightforward

- an execution from  $\boldsymbol{m}_{init}$  fires exactly  $\{t \in T : \boldsymbol{v}_t > 0\}$
- an execution to  $\boldsymbol{m}_{target}$  fires exactly  $\{t \in T : \boldsymbol{v}_t > 0\}$

Theorem

B., Finkel, Haase & Haddad '16

 $\mathbb Q\text{-}\mathsf{reachability}$  definable by linear size formula of

 $\exists \ \mathsf{FO}(\mathbb{Q},+,<)$ 





# Testing whether some transitions can be fired from initial marking



# Testing whether some transitions can be fired from initial marking



# Testing whether some transitions can be fired from initial marking



## Simulate a "breadth-first" transitions firing
























 $arphi({m{x}}) = \exists {m{y}} : igwedge_{p \in P} {m{y}}(p) > 0 o igwedge_{t \in {}^{m{\bullet}} p} {m{y}}(t) < {m{y}}(p) \cdots$ 





# Can (0,2) be covered from *m*<sub>init</sub>?



Backward algorithm (Arnold & Latteux '78, Abdulla et al. '96)



















# Basis size may become doubly exponential (Bozzelli & Ganty '11)



# We only care about **m**<sub>init</sub>



# We only care about **m**<sub>init</sub> Prune basis with Q-reachability!

#### Backward coverability modulo Q-reachability

if **m**<sub>target</sub> is not Q-coverable: return false





#### Backward coverability modulo $\mathbb{Q}$ -reachability

if m<sub>target</sub> is not Q-coverable:
return false

 $X = \{ \boldsymbol{m}_{target} \}$ 

while (**m**<sub>init</sub> not covered by X):

B = markings obtained from X one step backward

$$B = B \setminus \{ \boldsymbol{b} \in B : \neg \varphi(\boldsymbol{b}) \}$$

if  $B = \emptyset$ : return false

$$arphi(\mathbf{x}) = arphi(\mathbf{x}) \land \bigwedge_{\mathsf{pruned } \mathbf{b}} \mathbf{x} \not\geq \mathbf{b}$$
  
 $X = X \cup B$ 



#### Backward coverability modulo $\mathbb{Q}$ -reachability

if m<sub>target</sub> is not Q-coverable:
return false

 $X = \{ m_{target} \}$ 

while (**m**<sub>init</sub> not covered by X):

B = markings obtained from X one step backward

$$B = B \setminus \{ \boldsymbol{b} \in B : \neg \varphi(\boldsymbol{b}) \}$$

if  $B = \emptyset$ : return false

$$arphi(\mathbf{x}) = arphi(\mathbf{x}) \land \bigwedge_{\mathsf{pruned } \mathbf{b}} \mathbf{x} \not\geq \mathbf{b}$$
  
 $X = X \cup B$ 



#### Backward coverability modulo Q-reachability

if m<sub>target</sub> is not Q-coverable:
return false

 $X = \{ \boldsymbol{m}_{target} \}$ 

while (**m**<sub>init</sub> not covered by X):

B = markings obtained from X one step backward  $B = B \setminus \{ \boldsymbol{b} \in B : \neg \varphi(\boldsymbol{b}) \}$ if  $B = \emptyset$ : return false  $\varphi(\boldsymbol{x}) = \varphi(\boldsymbol{x}) \land \bigwedge_{\text{pruned } \boldsymbol{b}} \boldsymbol{x} \succeq \boldsymbol{b}$  $X = X \cup B$ 



#### Backward coverability modulo $\mathbb{Q}$ -reachability

if m<sub>target</sub> is not Q-coverable:
return false

 $X = \{ \textbf{\textit{m}}_{target} \}$ 

while (**m**<sub>init</sub> not covered by X):

B = markings obtained from X one step backward

$$\mathsf{B} = \mathsf{B} \setminus \{ \boldsymbol{b} \in \mathsf{B} : \neg \varphi(\boldsymbol{b}) \}$$

if  $B = \emptyset$ : return false

$$\varphi(\mathbf{x}) = \varphi(\mathbf{x}) \land \bigwedge_{\text{pruned } \mathbf{b}} \mathbf{x} \not\geq \mathbf{b}$$
  
 $X = X \cup B$ 



if m<sub>target</sub> is not Q-coverable:
return false

 $X = \{ \textbf{\textit{m}}_{target} \}$ 

while (*m*<sub>init</sub> not covered by *X*):

B = markings obtained from X one step backward  $B = B \setminus \{ \mathbf{b} \in B : \neg \varphi(\mathbf{b}) \}$   $if B = \emptyset: \text{ return false}$   $\varphi(\mathbf{x}) = \varphi(\mathbf{x}) \land \bigwedge_{\text{pruned } \mathbf{b}} \mathbf{x} \not\geq \mathbf{b}$   $X = X \cup B$ 

#### Backward coverability modulo Q-reachability

if m<sub>target</sub> is not Q-coverable:
return false

 $X = \{ \textbf{\textit{m}}_{target} \}$ 

while (**m**<sub>init</sub> not covered by X):

B = markings obtained from X one step backward

 $B = B \setminus \{ \boldsymbol{b} \in B : \neg \varphi(\boldsymbol{b}) \}$ 

if  $B = \emptyset$ : return false

 $\varphi(\mathbf{x}) = \varphi(\mathbf{x}) \land \bigwedge_{\text{pruned } \mathbf{b}} \mathbf{x} \not\geq \mathbf{b}$  $X = X \cup B$ 



#### Backward coverability modulo Q-reachability

if m<sub>target</sub> is not Q-coverable:
return false

 $X = \{ \textbf{\textit{m}}_{target} \}$ 

while (**m**<sub>init</sub> not covered by X):

B = markings obtained from X one step backward

SMT solver guidance

 $B = B \setminus \{ \boldsymbol{b} \in B : \neg \varphi(\boldsymbol{b}) \}$ 

if  $B = \emptyset$ : return false

 $\varphi(\mathbf{x}) = \varphi(\mathbf{x}) \land \bigwedge_{\text{pruned } \mathbf{b}} \mathbf{x} \not\geq \mathbf{b}$  $\mathbf{x} = \mathbf{x} \cup \mathbf{B}$ 

#### Backward coverability modulo $\mathbb{Q}$ -reachability

if m<sub>target</sub> is not Q-coverable:
return false

 $X = \{ \boldsymbol{m}_{target} \}$ 

while (**m**<sub>init</sub> not covered by X):

B = markings obtained from X one step backward

$$B = B \setminus \{ \boldsymbol{b} \in B : \neg \varphi(\boldsymbol{b}) \}$$

if  $B = \emptyset$ : return false

$$\varphi(\mathbf{x}) = \varphi(\mathbf{x}) \land \bigwedge_{\text{pruned } \mathbf{b}} \mathbf{x} \not\geq \mathbf{b}$$
$$\mathbf{X} = \mathbf{X} \cup \mathbf{B}$$



#### Backward coverability modulo $\mathbb{Q}$ -reachability

if m<sub>target</sub> is not Q-coverable:
return false

 $X = \{ \boldsymbol{m}_{target} \}$ 

while (**m**<sub>init</sub> not covered by X):

B = markings obtained from X one step backward

$$B = B \setminus \{ \boldsymbol{b} \in B : \neg \varphi(\boldsymbol{b}) \}$$

if 
$$B = \emptyset$$
: return false

$$\varphi(\mathbf{x}) = \varphi(\mathbf{x}) \land \bigwedge_{\text{pruned } \mathbf{b}} \mathbf{x} \not\geq \mathbf{b}$$
  
 $X = X \cup B$ 





#### https://github.com/blondimi/qcover

#### Benchmarked on...

- 176 Petri nets (avg. 1054 places, 8458 trans.)
- multi-threaded C programs with shared-memory
- Erlang concurrent programs
- Protocols : mutual exclusion, communication, etc.
- Messages provenance analysis : medical and bug-tracking sys.

#### Our implementation : QCover

#### Instances proven safe





#### Our implementation : QCover

#### Instances proven safe



#### Our implementation : QCover





Petrinizer

(Esparza et al. '14)

**OCOVER** 

#### Instances proven safe or unsafe



(Ganty et al. '07)

8/10

(Kaiser et al. '12)

#### Markings pruning efficiency across all iterations





## Another application : from logic to complexity

#### Continuous



# Another application : from logic to complexity

### Continuous



# Another application : from logic to complexity

#### Continuous


## Another application : from logic to complexity



## Another application : from logic to complexity



- Support Petri net extensions : transfers/resets
- Combine our approach with a forward algorithm
- Use upward closed sets data stuctures (e.g. sharing trees Delzanno *et al.* '04)
- · Continuous vector addition systems with states (VASS)

- Support Petri net extensions : transfers/resets
- Combine our approach with a forward algorithm
- Use upward closed sets data stuctures (e.g. sharing trees Delzanno *et al.* '04)
- · Continuous vector addition systems with states (VASS)



- Support Petri net extensions : transfers/resets
- Combine our approach with a forward algorithm
- Use upward closed sets data stuctures (e.g. sharing trees Delzanno *et al.* '04)
- · Continuous vector addition systems with states (VASS)



- Support Petri net extensions : transfers/resets
- Combine our approach with a forward algorithm
- Use upward closed sets data stuctures (e.g. sharing trees Delzanno *et al.* '04)
- · Continuous vector addition systems with states (VASS)



- Support Petri net extensions : transfers/resets
- Combine our approach with a forward algorithm
- Use upward closed sets data stuctures (e.g. sharing trees Delzanno *et al.* '04)
- · Continuous vector addition systems with states (VASS)



- Support Petri net extensions : transfers/resets
- Combine our approach with a forward algorithm
- Use upward closed sets data stuctures (e.g. sharing trees Delzanno *et al.* '04)
- · Continuous vector addition systems with states (VASS)



- Support Petri net extensions : transfers/resets
- Combine our approach with a forward algorithm
- Use upward closed sets data stuctures (e.g. sharing trees Delzanno *et al.* '04)
- · Continuous vector addition systems with states (VASS)



## **Future work**

- Support Petri net extensions : transfers/resets
- Combine our approach with a forward algorithm
- Use upward closed sets data stuctures (e.g. sharing trees Delzanno *et al.* '04)
- Continuous vector addition systems with states (VASS)



- Support Petri net extensions : transfers/resets
- Combine our approach with a forward algorithm
- Use upward closed sets data stuctures (e.g. sharing trees Delzanno *et al.* '04)
- · Continuous vector addition systems with states (VASS)



- Support Petri net extensions : transfers/resets
- Combine our approach with a forward algorithm
- Use upward closed sets data stuctures (e.g. sharing trees Delzanno *et al.* '04)
- · Continuous vector addition systems with states (VASS)



Thank you! Vielen Dank!