
Introduction
Handling Infinite Branching

Decidability
Conclusion

Handling Infinite Branching WSTS

Michael Blondin1 2, Alain Finkel1 & Pierre McKenzie 1 2

1LSV, ENS Cachan

2DIRO, Université de Montréal

January 6, 2014

1 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Definitions
Decidability in Infinitely Branching WSTS

Well-structured transition systems (WSTS) are known to
encompass a large number of infinite state systems.

Moreover, multiple decidability results are known on WSTS.
However, most results and techniques known suppose finite
branching.
Developing from a theory elaborated by Finkel and
Goubault-Larrecq, we introduce a way to work with infinitely
branching WSTS.

2 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Definitions
Decidability in Infinitely Branching WSTS

Well-structured transition systems (WSTS) are known to
encompass a large number of infinite state systems.
Moreover, multiple decidability results are known on WSTS.

However, most results and techniques known suppose finite
branching.
Developing from a theory elaborated by Finkel and
Goubault-Larrecq, we introduce a way to work with infinitely
branching WSTS.

3 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Definitions
Decidability in Infinitely Branching WSTS

Well-structured transition systems (WSTS) are known to
encompass a large number of infinite state systems.
Moreover, multiple decidability results are known on WSTS.
However, most results and techniques known suppose finite
branching.

Developing from a theory elaborated by Finkel and
Goubault-Larrecq, we introduce a way to work with infinitely
branching WSTS.

4 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Definitions
Decidability in Infinitely Branching WSTS

Well-structured transition systems (WSTS) are known to
encompass a large number of infinite state systems.
Moreover, multiple decidability results are known on WSTS.
However, most results and techniques known suppose finite
branching.
Developing from a theory elaborated by Finkel and
Goubault-Larrecq, we introduce a way to work with infinitely
branching WSTS.

5 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Definitions
Decidability in Infinitely Branching WSTS

Ordered transition systems
S = (X ,−→S ,≤) where

X set,
−→S ⊆ X × X ,
≤ quasi-ordering X .

6 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Definitions
Decidability in Infinitely Branching WSTS

Ordered transition systems
S = (X ,−→S ,≤) where

X set: recursively enumerable,
−→S ⊆ X × X : decidable,
≤ quasi-ordering X : decidable.

7 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Definitions
Decidability in Infinitely Branching WSTS

Well-ordered transition system (WSTS)

A WSTS is an ordered transition system (X ,−→,≤) with

well-quasi-ordering: ∀x0, x1, . . . ∃i < j s.t. xi ≤ xj ,
monotony:

∀ x −→ y

> >
x ′ ∗−→ y ′ ∃

8 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Definitions
Decidability in Infinitely Branching WSTS

(Some) types of monotony

Standard monotony:

∀ x −→ y

> >
x ′ ∗−→ y ′ ∃

9 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Definitions
Decidability in Infinitely Branching WSTS

(Some) types of monotony

Strong monotony:

∀ x −→ y
> >

x ′ −→ y ′ ∃

10 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Definitions
Decidability in Infinitely Branching WSTS

(Some) types of monotony

Transitive monotony:

∀ x −→ y
> >

x ′ +−→ y ′ ∃

11 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Definitions
Decidability in Infinitely Branching WSTS

(Some) types of monotony

Strict monotony:

∀ x −→ y

> >
x ′ ∗−→ y ′ ∃

12 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Definitions
Decidability in Infinitely Branching WSTS

Branching
A WSTS (X ,−→,≤) is finitely branching if Post(x) is finite for
every x ∈ X .

Some infinitely branching WSTS

Inserting FIFO automata (Cécé, Finkel, Iyer 1996)
Inserting automata (Bouyer, Markey, Ouaknine, Schnoebelen,
Worrell 2012)
ω-Petri nets (Geeraerts, Heussner, Praveen & Raskin 2013),
Parameterized WSTS,
etc.

13 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Definitions
Decidability in Infinitely Branching WSTS

Branching
A WSTS (X ,−→,≤) is finitely branching if Post(x) is finite for
every x ∈ X .

Some infinitely branching WSTS

Inserting FIFO automata (Cécé, Finkel, Iyer 1996)

Inserting automata (Bouyer, Markey, Ouaknine, Schnoebelen,
Worrell 2012)
ω-Petri nets (Geeraerts, Heussner, Praveen & Raskin 2013),
Parameterized WSTS,
etc.

14 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Definitions
Decidability in Infinitely Branching WSTS

Branching
A WSTS (X ,−→,≤) is finitely branching if Post(x) is finite for
every x ∈ X .

Some infinitely branching WSTS

Inserting FIFO automata (Cécé, Finkel, Iyer 1996)
Inserting automata (Bouyer, Markey, Ouaknine, Schnoebelen,
Worrell 2012)

ω-Petri nets (Geeraerts, Heussner, Praveen & Raskin 2013),
Parameterized WSTS,
etc.

15 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Definitions
Decidability in Infinitely Branching WSTS

Branching
A WSTS (X ,−→,≤) is finitely branching if Post(x) is finite for
every x ∈ X .

Some infinitely branching WSTS

Inserting FIFO automata (Cécé, Finkel, Iyer 1996)
Inserting automata (Bouyer, Markey, Ouaknine, Schnoebelen,
Worrell 2012)
ω-Petri nets (Geeraerts, Heussner, Praveen & Raskin 2013),

Parameterized WSTS,
etc.

16 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Definitions
Decidability in Infinitely Branching WSTS

Branching
A WSTS (X ,−→,≤) is finitely branching if Post(x) is finite for
every x ∈ X .

Some infinitely branching WSTS

Inserting FIFO automata (Cécé, Finkel, Iyer 1996)
Inserting automata (Bouyer, Markey, Ouaknine, Schnoebelen,
Worrell 2012)
ω-Petri nets (Geeraerts, Heussner, Praveen & Raskin 2013),
Parameterized WSTS,

etc.

17 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Definitions
Decidability in Infinitely Branching WSTS

Branching
A WSTS (X ,−→,≤) is finitely branching if Post(x) is finite for
every x ∈ X .

Some infinitely branching WSTS

Inserting FIFO automata (Cécé, Finkel, Iyer 1996)
Inserting automata (Bouyer, Markey, Ouaknine, Schnoebelen,
Worrell 2012)
ω-Petri nets (Geeraerts, Heussner, Praveen & Raskin 2013),
Parameterized WSTS,
etc.

18 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Definitions
Decidability in Infinitely Branching WSTS

Effectiveness
A WSTS (X ,−→,≤) is post-effective if it is possible to compute
|Post(x)| for every x ∈ X .

Remark
If Post(x) is finite, then it is computable by minimal hypotheses.
Therefore, our definition generalizes post-effectiveness for finitely
branching WSTS.

19 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Definitions
Decidability in Infinitely Branching WSTS

Effectiveness
A WSTS (X ,−→,≤) is post-effective if it is possible to compute
|Post(x)| for every x ∈ X .

Remark
If Post(x) is finite, then it is computable by minimal hypotheses.
Therefore, our definition generalizes post-effectiveness for finitely
branching WSTS.

20 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Definitions
Decidability in Infinitely Branching WSTS

Termination
Input: (X ,−→,≤) a WSTS, x0 ∈ X .
Question: ∃x0 −→ x1 −→ x2 −→ . . .?

Theorem (Finkel & Schnoebelen 2001)

Decidable for finitely branching post-effective WSTS with
transitive monotony.

21 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Definitions
Decidability in Infinitely Branching WSTS

Termination
Input: (X ,−→,≤) a WSTS, x0 ∈ X .
Question: ∃x0 −→ x1 −→ x2 −→ . . .?

Theorem (Blondin, Finkel & McKenzie in progress)

Undecidable for infinitely branching post-effective WSTS with
transitive monotony.

22 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Definitions
Decidability in Infinitely Branching WSTS

Boundedness
Input: (X ,−→,≤) a WSTS, x0 ∈ X .
Question: Post∗(x0) finite?

Theorem (Finkel & Schnoebelen 2001)

Decidable for finitely branching post-effective WSTS with strict
monotony.

23 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Definitions
Decidability in Infinitely Branching WSTS

Boundedness
Input: (X ,−→,≤) a WSTS, x0 ∈ X .
Question: Post∗(x0) finite?

Theorem (Blondin, Finkel & McKenzie in progress)

Decidable for infinitely branching post-effective WSTS with strict
monotony.

24 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Definitions
Decidability in Infinitely Branching WSTS

Coverability
Input: (X ,−→,≤) a WSTS, x0, x ∈ X .
Question: x0

∗−→ x ′ ≥ x?

Theorem (Abdulla, Cerans, Jonsson & Tsay 2000; Finkel &
Schnoebelen 2001)

Decidable for some classes of infinitely branching WSTS.

25 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Definitions
Decidability in Infinitely Branching WSTS

Coverability
Input: (X ,−→,≤) a WSTS, x0, x ∈ X .
Question: x0

∗−→ x ′ ≥ x?

Theorem (Blondin, Finkel & McKenzie in progress)

Decidable for some classes of infinitely branching WSTS.

26 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Definitions
Decidability in Infinitely Branching WSTS

Control-state maintainability
Input: (X ,−→,≤) a WSTS, x0 ∈ X and {t1, . . . , tn} ⊆ X .
Question: ∃ maximal execution x0 −→ x1 −→ x2 −→ . . . such

that ∀i xi ∈ ↑ {t1, . . . , tn}?

Theorem (Finkel & Schnoebelen 2001)

Decidable for finitely branching post-effective WSTS with
stuttering monotony.

27 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Definitions
Decidability in Infinitely Branching WSTS

Control-state maintainability
Input: (X ,−→,≤) a WSTS, x0 ∈ X and {t1, . . . , tn} ⊆ X .
Question: ∃ maximal execution x0 −→ x1 −→ x2 −→ . . . such

that ∀i xi ∈ ↑ {t1, . . . , tn}?

Theorem (Blondin, Finkel & McKenzie in progress)

Undecidable for infinitely branching post-effective WSTS with
stuttering monotony.

28 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Ideals and completion
Examples

Downward closure

↓D = {x ∈ X : ∃d ∈ D x ≤ d}.

Ideals
I ⊆ X is an ideal if it is

downward closed: I = ↓ I,
directed: a, b ∈ I =⇒ ∃c ∈ I s.t. a ≤ c and b ≤ c.

29 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Ideals and completion
Examples

Theorem (Finkel & Goubault-Larrecq 2009)

Every downward closed set in X is a finite union of ideals of X .

Corollary (FGL 2009; Blondin, Finkel & McKenzie in progress)

Every downward closed subset decomposes canonically as the
union of its maximal ideals.

30 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Ideals and completion
Examples

Theorem (Finkel & Goubault-Larrecq 2009)

Every downward closed set in X is a finite union of ideals of X .

Corollary (FGL 2009; Blondin, Finkel & McKenzie in progress)

Every downward closed subset decomposes canonically as the
union of its maximal ideals.

31 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Ideals and completion
Examples

Completion (FGL 2009; Blondin, Finkel & McKenzie in progress)

The completion of S = (X ,−→S ,≤) is Ŝ = (X̂ ,−→Ŝ ,⊆) such that

X̂ = Ideals(X),
I −→Ŝ J if J appears in the canonical decomposition of
↓Post(I).

32 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Ideals and completion
Examples

Theorem (FGL 2009; Blondin, Finkel & McKenzie in progress)

Let S = (X ,−→S ,≤) be a WSTS, then
Ŝ is finitely branching.

Ŝ has strong monotony.
Ŝ is a WSTS iff S is a ω2-WSTS iff A ≤# B ⇔ ↑A ⊆ ↑B is a
wqo (by Jančar 1999).

33 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Ideals and completion
Examples

Theorem (FGL 2009; Blondin, Finkel & McKenzie in progress)

Let S = (X ,−→S ,≤) be a WSTS, then
Ŝ is finitely branching.
Ŝ has strong monotony.

Ŝ is a WSTS iff S is a ω2-WSTS iff A ≤# B ⇔ ↑A ⊆ ↑B is a
wqo (by Jančar 1999).

34 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Ideals and completion
Examples

Theorem (FGL 2009; Blondin, Finkel & McKenzie in progress)

Let S = (X ,−→S ,≤) be a WSTS, then
Ŝ is finitely branching.
Ŝ has strong monotony.
Ŝ is a WSTS iff S is a ω2-WSTS iff A ≤# B ⇔ ↑A ⊆ ↑B is a
wqo (by Jančar 1999).

35 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Ideals and completion
Examples

Ideals in Nd

I ⊆ Nd is an ideal iff I = ↓ x1 × · · · × ↓ xd with xi ∈ N or xi = N.

Representation

↓ 5× N× ↓ 10 can be represented by (5, ω, 10),
↓ 5× N× ↓ 10 ⊆ N× N× ↓ 20 can be tested by
(5, ω, 10) ≤ (ω, ω, 20).

36 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Ideals and completion
Examples

Ideals in Nd

I ⊆ Nd is an ideal iff I = ↓ x1 × · · · × ↓ xd with xi ∈ N or xi = N.

Representation

↓ 5× N× ↓ 10 can be represented by (5, ω, 10),

↓ 5× N× ↓ 10 ⊆ N× N× ↓ 20 can be tested by
(5, ω, 10) ≤ (ω, ω, 20).

37 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Ideals and completion
Examples

Ideals in Nd

I ⊆ Nd is an ideal iff I = ↓ x1 × · · · × ↓ xd with xi ∈ N or xi = N.

Representation

↓ 5× N× ↓ 10 can be represented by (5, ω, 10),
↓ 5× N× ↓ 10 ⊆ N× N× ↓ 20 can be tested by
(5, ω, 10) ≤ (ω, ω, 20).

38 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Ideals and completion
Examples

VAS completions are post-effective

Transitions can be carried in Nd
ω,

The maximal elements obtained are the ideals of PostŜ(I).

Example
VAS A = {(2,−3,−5), (4, 5,−1), (−6,−2, 5)} and ideal
I = ↓ 5× N× ↓ 10:

(5, ω, 10) + (2,−3,−5) = (7, ω, 5)

↓Post(I) =

39 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Ideals and completion
Examples

VAS completions are post-effective

Transitions can be carried in Nd
ω,

The maximal elements obtained are the ideals of PostŜ(I).

Example
VAS A = {(2,−3,−5), (4, 5,−1), (−6,−2, 5)} and ideal
I = ↓ 5× N× ↓ 10:

(5, ω, 10) + (2,−3,−5) = (7, ω, 5)

↓Post(I) =

40 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Ideals and completion
Examples

VAS completions are post-effective

Transitions can be carried in Nd
ω,

The maximal elements obtained are the ideals of PostŜ(I).

Example
VAS A = {(2,−3,−5), (4, 5,−1), (−6,−2, 5)} and ideal
I = ↓ 5× N× ↓ 10:

(5, ω, 10) + (2,−3,−5) = (7, ω, 5)

↓Post(I) =

41 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Ideals and completion
Examples

VAS completions are post-effective

Transitions can be carried in Nd
ω,

The maximal elements obtained are the ideals of PostŜ(I).

Example
VAS A = {(2,−3,−5), (4, 5,−1), (−6,−2, 5)} and ideal
I = ↓ 5× N× ↓ 10:

(5, ω, 10) + (2,−3,−5) = (7, ω, 5)

↓Post(I) = ↓ 7× N× ↓ 5

42 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Ideals and completion
Examples

VAS completions are post-effective

Transitions can be carried in Nd
ω,

The maximal elements obtained are the ideals of PostŜ(I).

Example
VAS A = {(2,−3,−5), (4, 5,−1), (−6,−2, 5)} and ideal
I = ↓ 5× N× ↓ 10:

(5, ω, 10) + (4, 5,−1) = (9, ω, 9)

↓Post(I) = ↓ 7× N× ↓ 5 ∪ ↓ 9× N× ↓ 9

43 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Ideals and completion
Examples

VAS completions are post-effective

Transitions can be carried in Nd
ω,

The maximal elements obtained are the ideals of PostŜ(I).

Example
VAS A = {(2,−3,−5), (4, 5,−1), (−6,−2, 5)} and ideal
I = ↓ 5× N× ↓ 10:

(5, ω, 10) + (−6,−2, 5) = ∅

↓Post(I) = ↓ 7× N× ↓ 5 ∪ ↓ 9× N× ↓ 9

44 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Ideals and completion
Examples

VAS completions are post-effective

Transitions can be carried in Nd
ω,

The maximal elements obtained are the ideals of PostŜ(I).

Example
VAS A = {(2,−3,−5), (4, 5,−1), (−6,−2, 5)} and ideal
I = ↓ 5× N× ↓ 10:

↓Post(I) = ↓ 7× N× ↓ 5 ∪ ↓ 9× N× ↓ 9

45 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Ideals and completion
Examples

VAS completions are post-effective

Transitions can be carried in Nd
ω,

The maximal elements obtained are the ideals of PostŜ(I).

Example
VAS A = {(2,−3,−5), (4, 5,−1), (−6,−2, 5)} and ideal
I = ↓ 5× N× ↓ 10:

PostŜ(I) = {↓ 9× N× ↓ 9}

46 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Coverability
Termination
Control-state maintainability
Boundedness

Coverability
Input: (X ,−→,≤) a WSTS, x0, x ∈ X .
Question: x0

∗−→ x ′ ≥ x?

Backward method (Abdulla, Cerans, Jonsson & Tsay 2000)

Compute sequence converging to ↑Pre∗(↑ x):

Y0 = ↑ x
Y1 = Y0 ∪ ↑Pre(Y0)
...

...
...

Yn = Yn−1 ∪ ↑Pre(Yn−1)

and verify if x0 ∈ Yn.

47 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Coverability
Termination
Control-state maintainability
Boundedness

Coverability
Input: (X ,−→,≤) a WSTS, x0, x ∈ X .
Question: x0 ∈ ↑Pre∗(↑ x)?

Backward method (Abdulla, Cerans, Jonsson & Tsay 2000)

Compute sequence converging to ↑Pre∗(↑ x):

Y0 = ↑ x
Y1 = Y0 ∪ ↑Pre(Y0)
...

...
...

Yn = Yn−1 ∪ ↑Pre(Yn−1)

and verify if x0 ∈ Yn.

48 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Coverability
Termination
Control-state maintainability
Boundedness

Coverability
Input: (X ,−→,≤) a WSTS, x0, x ∈ X .
Question: x0 ∈ ↑Pre∗(↑ x)?

Backward method (Abdulla, Cerans, Jonsson & Tsay 2000)

Compute sequence converging to ↑Pre∗(↑ x):

Y0 = ↑ x
Y1 = Y0 ∪ ↑Pre(Y0)
...

...
...

Yn = Yn−1 ∪ ↑Pre(Yn−1)

and verify if x0 ∈ Yn.

49 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Coverability
Termination
Control-state maintainability
Boundedness

Coverability
Input: (X ,−→,≤) a WSTS, x0, x ∈ X .
Question: x0 ∈ ↑Pre∗(↑ x)?

Backward method (Abdulla, Cerans, Jonsson & Tsay 2000)

Compute sequence converging to ↑Pre∗(↑ x):

Y0 = ↑ x
Y1 = Y0 ∪ ↑Pre(Y0)
...

...
...

Yn = Yn−1 ∪ ↑Pre(Yn−1)

and verify if x0 ∈ Yn. Computing Pre not always effecient!

50 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Coverability
Termination
Control-state maintainability
Boundedness

Coverability
Input: (X ,−→,≤) a WSTS, x0, x ∈ X .
Question: x0

∗−→ x ′ ≥ x?

Theorem (Blondin, Finkel & McKenzie in progress)

Coverability is decidable for WSTS with post-effective completion.

51 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Coverability
Termination
Control-state maintainability
Boundedness

Coverability
Input: (X ,−→,≤) a WSTS, x0, x ∈ X .
Question: x ∈ ↓Post∗(x0)?

Theorem (Blondin, Finkel & McKenzie in progress)

Coverability is decidable for WSTS with post-effective completion.

52 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Coverability
Termination
Control-state maintainability
Boundedness

Coverability
Input: (X ,−→,≤) a WSTS, x0, x ∈ X .
Question: x ∈ ↓Post∗(x0)?

Theorem (Blondin, Finkel & McKenzie in progress)

Coverability is decidable for WSTS with post-effective completion.

53 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Coverability
Termination
Control-state maintainability
Boundedness

Proof: two semi-algorithms to decide coverability
Coverability:

Enumerate execution ↓ x0
∗−→Ŝ I,

Accept if x ∈ I.

Non coverability:
Enumerate

,

Reject if

54 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Coverability
Termination
Control-state maintainability
Boundedness

Proof: two semi-algorithms to decide coverability
Coverability:

Enumerate execution ↓ x0
∗−→Ŝ I,

Accept if x ∈ I.
Non coverability:

Enumerate D ⊆ X downward closed

,

Reject if

55 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Coverability
Termination
Control-state maintainability
Boundedness

Proof: two semi-algorithms to decide coverability
Coverability:

Enumerate execution ↓ x0
∗−→Ŝ I,

Accept if x ∈ I.
Non coverability:

Enumerate D = I1 ∪ . . . ∪ Ik

,

Reject if

56 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Coverability
Termination
Control-state maintainability
Boundedness

Proof: two semi-algorithms to decide coverability
Coverability:

Enumerate execution ↓ x0
∗−→Ŝ I,

Accept if x ∈ I.
Non coverability:

Enumerate D ⊆ X downward closed

,

Reject if

57 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Coverability
Termination
Control-state maintainability
Boundedness

Proof: two semi-algorithms to decide coverability
Coverability:

Enumerate execution ↓ x0
∗−→Ŝ I,

Accept if x ∈ I.
Non coverability:

Enumerate D ⊆ X downward closed, x0 ∈ D

Reject if

58 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Coverability
Termination
Control-state maintainability
Boundedness

Proof: two semi-algorithms to decide coverability
Coverability:

Enumerate execution ↓ x0
∗−→Ŝ I,

Accept if x ∈ I.
Non coverability:

Enumerate D ⊆ X downward closed, ↓ x0 ⊆D

Reject if

59 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Coverability
Termination
Control-state maintainability
Boundedness

Proof: two semi-algorithms to decide coverability
Coverability:

Enumerate execution ↓ x0
∗−→Ŝ I,

Accept if x ∈ I.
Non coverability:

Enumerate D ⊆ X downward closed, ↓ x0 ⊆ I1 ∪ . . . ∪ Ik

Reject if

60 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Coverability
Termination
Control-state maintainability
Boundedness

Proof: two semi-algorithms to decide coverability
Coverability:

Enumerate execution ↓ x0
∗−→Ŝ I,

Accept if x ∈ I.
Non coverability:

Enumerate D ⊆ X downward closed, ∃i t.q. ↓ x0 ⊆ Ii

Reject if

61 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Coverability
Termination
Control-state maintainability
Boundedness

Proof: two semi-algorithms to decide coverability
Coverability:

Enumerate execution ↓ x0
∗−→Ŝ I,

Accept if x ∈ I.
Non coverability:

Enumerate D ⊆ X downward closed, x0 ∈ D

Reject if

62 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Coverability
Termination
Control-state maintainability
Boundedness

Proof: two semi-algorithms to decide coverability
Coverability:

Enumerate execution ↓ x0
∗−→Ŝ I,

Accept if x ∈ I.
Non coverability:

Enumerate D ⊆ X downward closed, x0 ∈ D and
↓PostS(D) ⊆ D

Reject if

63 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Coverability
Termination
Control-state maintainability
Boundedness

Proof: two semi-algorithms to decide coverability
Coverability:

Enumerate execution ↓ x0
∗−→Ŝ I,

Accept if x ∈ I.
Non coverability:

Enumerate D ⊆ X downward closed, x0 ∈ D and
↓PostS(I1 ∪ . . . ∪ Ik) ⊆ I1 ∪ . . . ∪ Ik

Reject if

64 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Coverability
Termination
Control-state maintainability
Boundedness

Proof: two semi-algorithms to decide coverability
Coverability:

Enumerate execution ↓ x0
∗−→Ŝ I,

Accept if x ∈ I.
Non coverability:

Enumerate D ⊆ X downward closed, x0 ∈ D and
↓PostS(I1) ∪ . . . ∪ ↓PostS(Ik) ⊆ I1 ∪ . . . ∪ Ik

Reject if

65 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Coverability
Termination
Control-state maintainability
Boundedness

Proof: two semi-algorithms to decide coverability
Coverability:

Enumerate execution ↓ x0
∗−→Ŝ I,

Accept if x ∈ I.
Non coverability:

Enumerate D ⊆ X downward closed, x0 ∈ D and
(J1,1 ∪ . . . ∪ J1,n1)︸ ︷︷ ︸
Post̂

S
(I1)={J1,1,...,J1,n1}

∪ . . . ∪ (Jk,1 ∪ . . . ∪ Jk,nk)︸ ︷︷ ︸
Post̂

S
(Ik)={Jk,1,...,Jk,nk }

⊆ I1 ∪ . . . ∪ Ik

Reject if

66 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Coverability
Termination
Control-state maintainability
Boundedness

Proof: two semi-algorithms to decide coverability
Coverability:

Enumerate execution ↓ x0
∗−→Ŝ I,

Accept if x ∈ I.
Non coverability:

Enumerate D ⊆ X downward closed, x0 ∈ D and
∃i , j , i ′ t.q. Ji ,j ⊆ Ii ′

Reject if

67 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Coverability
Termination
Control-state maintainability
Boundedness

Proof: two semi-algorithms to decide coverability
Coverability:

Enumerate execution ↓ x0
∗−→Ŝ I,

Accept if x ∈ I.
Non coverability:

Enumerate D ⊆ X downward closed, x0 ∈ D and
↓PostS(D) ⊆ D,

Reject if

68 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Coverability
Termination
Control-state maintainability
Boundedness

Proof: two semi-algorithms to decide coverability
Coverability:

Enumerate execution ↓ x0
∗−→Ŝ I,

Accept if x ∈ I.
Non coverability:

Enumerate D ⊆ X downward closed, x0 ∈ D and
↓PostS(D) ⊆ D,
Reject if x 6∈ D.

69 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Coverability
Termination
Control-state maintainability
Boundedness

Proof: two semi-algorithms to decide coverability
Coverability:

Enumerate execution ↓ x0
∗−→Ŝ I,

Accept if x ∈ I.
Non coverability:

Enumerate D ⊆ X downward closed, x0 ∈ D and
↓PostS(D) ⊆ D,
Reject if ↓ x 6⊆ I1 ∪ . . . ∪ Ik .

70 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Coverability
Termination
Control-state maintainability
Boundedness

Proof: two semi-algorithms to decide coverability
Coverability:

Enumerate execution ↓ x0
∗−→Ŝ I,

Accept if x ∈ I.
Non coverability:

Enumerate D ⊆ X downward closed, x0 ∈ D and
↓PostS(D) ⊆ D,
Reject if ∀i ↓ x 6⊆ Ii .

71 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Coverability
Termination
Control-state maintainability
Boundedness

Proof: two semi-algorithms to decide coverability
Coverability:

Enumerate execution ↓ x0
∗−→Ŝ I,

Accept if x ∈ I.
Non coverability:

Enumerate D ⊆ X downward closed, x0 ∈ D and
↓PostS(D) ⊆ D,
Reject if x 6∈ D. Witness: D = ↓Post∗S(x0)

72 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Coverability
Termination
Control-state maintainability
Boundedness

Termination
Input: (X ,−→,≤) a WSTS, x0 ∈ X .
Question: ∃x0 −→ x1 −→ x2 −→ . . .?

Theorem (Blondin, Finkel & McKenzie in progress)

Termination is undecidable, even for post-effective ω2-WSTS with
strong and strict monotony, and with post-effective completion.

73 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Coverability
Termination
Control-state maintainability
Boundedness

Termination
Input: (X ,−→,≤) a WSTS, x0 ∈ X .
Question: ∃x0 −→ x1 −→ x2 −→ . . .?

Theorem (Blondin, Finkel & McKenzie in progress)

Termination is undecidable, even for post-effective ω2-WSTS with
strong and strict monotony, and with post-effective completion.

74 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Coverability
Termination
Control-state maintainability
Boundedness

Termination
Input: (X ,−→,≤) a WSTS, x0 ∈ X .
Question: ∃x0 −→ x1 −→ x2 −→ . . .?

Proof
Structural termination is undecidable for Transfer Petri nets
(Dufourd, Jančar & Schnoebelen 1999). Structural termination
reduces to termination by adding a new element that branches on
every other elements.

75 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Coverability
Termination
Control-state maintainability
Boundedness

Execution boundedness
Input: (X ,−→,≤) a WSTS, x0 ∈ X .
Question: ∃k bounding length of executions?

Remark
Termination and execution boundedness are the same in finitely
branching WSTS.

76 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Coverability
Termination
Control-state maintainability
Boundedness

Execution boundedness
Input: (X ,−→,≤) a WSTS, x0 ∈ X .
Question: ∃k bounding length of executions?

Remark
Termination and execution boundedness are the same in finitely
branching WSTS.

77 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Coverability
Termination
Control-state maintainability
Boundedness

Relating executions of S and Ŝ
Let S = (X ,−→S ,≤) be a WSTS, then

if x k−→S y , then for every ideal I ⊇ ↓ x there exists an ideal
J ⊇ ↓ y such that I k−→Ŝ J ,

if I k−→Ŝ J , then for every y ∈ J there exists x ∈ I such that
x ∗−→S y ′ ≥ y .

78 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Coverability
Termination
Control-state maintainability
Boundedness

Relating executions of S and Ŝ
Let S = (X ,−→S ,≤) be a WSTS with transitive monotony, then

if x k−→S y , then for every ideal I ⊇ ↓ x there exists an ideal
J ⊇ ↓ y such that I k−→Ŝ J ,

if I k−→Ŝ J , then for every y ∈ J there exists x ∈ I such that
x ≥k−−→S y ′ ≥ y .

79 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Coverability
Termination
Control-state maintainability
Boundedness

Relating executions of S and Ŝ
Let S = (X ,−→S ,≤) be a WSTS with strong monotony, then

if x k−→S y , then for every ideal I ⊇ ↓ x there exists an ideal
J ⊇ ↓ y such that I k−→Ŝ J ,

if I k−→Ŝ J , then for every y ∈ J there exists x ∈ I such that
x k−→S y ′ ≥ y .

80 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Coverability
Termination
Control-state maintainability
Boundedness

Theorem (Blondin, Finkel & McKenzie in progress)

Execution boundedness is decidable for ω2-WSTS with transitive
monotony, and with post-effective completion.

Proof
Executions are bounded in S iff bounded in Ŝ. Since Ŝ is finitely
branching, it suffices to solve termination in Ŝ.

81 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Coverability
Termination
Control-state maintainability
Boundedness

Theorem (Blondin, Finkel & McKenzie in progress)

Execution boundedness is decidable for ω2-WSTS with transitive
monotony, and with post-effective completion.

Proof
Executions are bounded in S iff bounded in Ŝ. Since Ŝ is finitely
branching, it suffices to solve termination in Ŝ.

82 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Coverability
Termination
Control-state maintainability
Boundedness

Control-state maintainability
Input: (X ,−→,≤) a WSTS, x0 ∈ X and {t1, . . . , tn} ⊆ X .
Question: ∃ maximal execution x0 −→ x1 −→ x2 −→ . . . such

that ∀i xi ∈ ↑ {t1, . . . , tn}?

Theorem (Blondin, Finkel & McKenzie in progress)

Control-state maintainability is undecidable, even for post-effective
ω2-WSTS with strong and strict monotony, and with post-effective
completion.

83 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Coverability
Termination
Control-state maintainability
Boundedness

Control-state maintainability
Input: (X ,−→,≤) a WSTS, x0 ∈ X and {t1, . . . , tn} ⊆ X .
Question: ∃ maximal execution x0 −→ x1 −→ x2 −→ . . . such

that ∀i xi ∈ ↑ {t1, . . . , tn}?

Theorem (Blondin, Finkel & McKenzie in progress)

Control-state maintainability is undecidable, even for post-effective
ω2-WSTS with strong and strict monotony, and with post-effective
completion.

84 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Coverability
Termination
Control-state maintainability
Boundedness

Control-state maintainability boundedness
Input: (X ,−→,≤) a WSTS, x0 ∈ X and {t1, . . . , tn} ⊆ X .
Question: ∃k bounding lengths of executions x0 −→ x1 −→

x2 −→ . . . such that ∀i xi ∈ ↑ {t1, . . . , tn}?

Remark
Control-state maintainability and control-state maintainability
boundedness are (almost) the same in finitely branching WSTS.

85 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Coverability
Termination
Control-state maintainability
Boundedness

Control-state maintainability boundedness
Input: (X ,−→,≤) a WSTS, x0 ∈ X and {t1, . . . , tn} ⊆ X .
Question: ∃k bounding lengths of executions x0 −→ x1 −→

x2 −→ . . . such that ∀i xi ∈ ↑ {t1, . . . , tn}?

Remark
Control-state maintainability and control-state maintainability
boundedness are (almost) the same in finitely branching WSTS.

86 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Coverability
Termination
Control-state maintainability
Boundedness

Theorem (Blondin, Finkel & McKenzie in progress)

Control-state maintainability boundedness is decidable for
ω2-WSTS with transitive monotony, and with post-effective
completion.

Proof
“Good” executions are bounded in S iff “good” executions are
bounded in Ŝ. Since Ŝ is finitely branching, it suffices to solve
control-state maintainability in Ŝ.

87 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Coverability
Termination
Control-state maintainability
Boundedness

Theorem (Blondin, Finkel & McKenzie in progress)

Control-state maintainability boundedness is decidable for
ω2-WSTS with transitive monotony, and with post-effective
completion.

Proof
“Good” executions are bounded in S iff “good” executions are
bounded in Ŝ. Since Ŝ is finitely branching, it suffices to solve
control-state maintainability in Ŝ.

88 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Coverability
Termination
Control-state maintainability
Boundedness

Boundedness
Input: (X ,−→,≤) a WSTS, x0 ∈ X .
Question: Post∗(x0) finite?

Theorem (Blondin, Finkel & McKenzie in progress)

Boundedness is decidable for post-effective WSTS with strict
monotony.

89 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Coverability
Termination
Control-state maintainability
Boundedness

Boundedness
Input: (X ,−→,≤) a WSTS, x0 ∈ X .
Question: Post∗(x0) finite?

Theorem (Blondin, Finkel & McKenzie in progress)

Boundedness is decidable for post-effective WSTS with strict
monotony.

90 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Coverability
Termination
Control-state maintainability
Boundedness

Boundedness
Input: (X ,−→,≤) a WSTS, x0 ∈ X .
Question: Post∗(x0) finite?

Proof
Build a finite reachability tree as in (Finkel & Schnoebelen 2001)
returning “unbounded” if some infinite Post(x) is encountered.

91 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Open questions

What hypotheses make termination and control-state
maintainability decidable?

Other problems can be solved for infinitely branching WSTS?
What other applications has the completion?

92 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Open questions

What hypotheses make termination and control-state
maintainability decidable?
Other problems can be solved for infinitely branching WSTS?

What other applications has the completion?

93 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Open questions

What hypotheses make termination and control-state
maintainability decidable?
Other problems can be solved for infinitely branching WSTS?
What other applications has the completion?

94 / 95

Introduction
Handling Infinite Branching

Decidability
Conclusion

Thank you! Merci!

95 / 95

	Introduction
	Definitions
	Decidability in Infinitely Branching WSTS

	Handling Infinite Branching
	Ideals and completion
	Examples

	Decidability
	Coverability
	Termination
	Control-state maintainability
	Boundedness

	Conclusion

