Handling Infinite Branching WSTS

Michael Blondin^{1 2}, Alain Finkel¹ & Pierre McKenzie ^{1 2}

¹LSV, ENS Cachan

²DIRO, Université de Montréal

January 6, 2014

 Well-structured transition systems (WSTS) are known to encompass a large number of infinite state systems.

- Well-structured transition systems (WSTS) are known to encompass a large number of infinite state systems.
- Moreover, multiple decidability results are known on WSTS.

- Well-structured transition systems (WSTS) are known to encompass a large number of infinite state systems.
- Moreover, multiple decidability results are known on WSTS.
- However, most results and techniques known suppose finite branching.

- Well-structured transition systems (WSTS) are known to encompass a large number of infinite state systems.
- Moreover, multiple decidability results are known on WSTS.
- However, most results and techniques known suppose finite branching.
- Developing from a theory elaborated by Finkel and Goubault-Larrecq, we introduce a way to work with infinitely branching WSTS.

Definitions Decidability in Infinitely Branching WSTS

Ordered transition systems

- $S = (X, \rightarrow_S, \leq)$ where
 - X set,
 - $\bullet \to_S \subseteq X \times X$,
 - \leq quasi-ordering X.

Definitions Decidability in Infinitely Branching WSTS

Ordered transition systems

 $S = (X, \rightarrow_S, \leq)$ where

- X set: recursively enumerable,
- $\blacksquare \rightarrow_{\mathcal{S}} \subseteq X \times X: \text{ decidable,}$
- \leq quasi-ordering X: decidable.

Definitions Decidability in Infinitely Branching WSTS

Well-ordered transition system (WSTS)

A WSTS is an ordered transition system (X, $\rightarrow, \leq)$ with

- well-quasi-ordering: $\forall x_0, x_1, \dots \exists i < j \text{ s.t. } x_i \leq x_j$,
- monotony:

$$\begin{array}{cccc} x & \rightarrow & y \\ & & & \\ x' & \xrightarrow{*} & y' \\ \end{array} \equiv$$

Definitions Decidability in Infinitely Branching WSTS

(Some) types of monotony

A

Standard monotony:

$$\begin{array}{cccc} x & \rightarrow & y \\ & & & & \\ & & & & \\ x' & \xrightarrow{*} & y' \end{array} \end{array}$$

Definitions Decidability in Infinitely Branching WSTS

(Some) types of monotony

β

Strong monotony:

$$\begin{array}{cccc} & x & \to & y \\ & & & & \\ & & & \\ & x' & & \to & y' \\ \end{array}$$

Definitions Decidability in Infinitely Branching WSTS

(Some) types of monotony

A

Transitive monotony:

$$\begin{array}{cccc} x & \rightarrow & y \\ & & & & \\ & & & \\ x' & & & & \\ & & & & y' \end{array}$$

Definitions Decidability in Infinitely Branching WSTS

(Some) types of monotony

Strict monotony:

$$\begin{array}{cccc} \forall x & \rightarrow & y \\ & & & \\ & & & \\ x' & \stackrel{\bullet}{\rightarrow} & y' \end{array} \\ \end{array}$$

Definitions Decidability in Infinitely Branching WSTS

Branching

A WSTS (X, \rightarrow, \leq) is finitely branching if Post(x) is finite for every $x \in X$.

Definitions Decidability in Infinitely Branching WSTS

Branching

A WSTS (X, \rightarrow, \leq) is finitely branching if Post(x) is finite for every $x \in X$.

Some infinitely branching WSTS

Inserting FIFO automata (Cécé, Finkel, Iyer 1996)

Definitions Decidability in Infinitely Branching WSTS

Branching

A WSTS (X, \rightarrow, \leq) is finitely branching if Post(x) is finite for every $x \in X$.

- Inserting FIFO automata (Cécé, Finkel, Iyer 1996)
- Inserting automata (Bouyer, Markey, Ouaknine, Schnoebelen, Worrell 2012)

Definitions Decidability in Infinitely Branching WSTS

Branching

A WSTS (X, \rightarrow, \leq) is finitely branching if Post(x) is finite for every $x \in X$.

- Inserting FIFO automata (Cécé, Finkel, Iyer 1996)
- Inserting automata (Bouyer, Markey, Ouaknine, Schnoebelen, Worrell 2012)
- ω-Petri nets (Geeraerts, Heussner, Praveen & Raskin 2013),

Definitions Decidability in Infinitely Branching WSTS

Branching

A WSTS (X, \rightarrow, \leq) is finitely branching if Post(x) is finite for every $x \in X$.

- Inserting FIFO automata (Cécé, Finkel, Iyer 1996)
- Inserting automata (Bouyer, Markey, Ouaknine, Schnoebelen, Worrell 2012)
- ω-Petri nets (Geeraerts, Heussner, Praveen & Raskin 2013),
- Parameterized WSTS,

Definitions Decidability in Infinitely Branching WSTS

Branching

A WSTS (X, \rightarrow, \leq) is finitely branching if Post(x) is finite for every $x \in X$.

- Inserting FIFO automata (Cécé, Finkel, Iyer 1996)
- Inserting automata (Bouyer, Markey, Ouaknine, Schnoebelen, Worrell 2012)
- ω-Petri nets (Geeraerts, Heussner, Praveen & Raskin 2013),
- Parameterized WSTS,
- etc.

Definitions Decidability in Infinitely Branching WSTS

Effectiveness

A WSTS (X, \rightarrow, \leq) is post-effective if it is possible to compute |Post(x)| for every $x \in X$.

Definitions Decidability in Infinitely Branching WSTS

Effectiveness

A WSTS (X, \rightarrow, \leq) is post-effective if it is possible to compute |Post(x)| for every $x \in X$.

Remark

If Post(x) is finite, then it is computable by minimal hypotheses. Therefore, our definition generalizes post-effectiveness for finitely branching WSTS.

Definitions Decidability in Infinitely Branching WSTS

-	-						
	er	m	In	1a	tι	or	1
	<u> </u>			-	•	<u> </u>	۰.

Input: (X, \rightarrow, \leq) a WSTS, $x_0 \in X$.

Question: $\exists x_0 \rightarrow x_1 \rightarrow x_2 \rightarrow \ldots$?

Theorem (Finkel & Schnoebelen 2001)

Decidable for finitely branching post-effective WSTS with transitive monotony.

Definitions Decidability in Infinitely Branching WSTS

-					
6	rm	าเท	ati	ion	
	- 11		au		

Input: (X, \rightarrow, \leq) a WSTS, $x_0 \in X$.

Question: $\exists x_0 \rightarrow x_1 \rightarrow x_2 \rightarrow \ldots$?

Theorem (Blondin, Finkel & McKenzie in progress)

Undecidable for infinitely branching post-effective WSTS with transitive monotony.

Definitions Decidability in Infinitely Branching WSTS

Boundedness				
Input:	$(X, ightarrow,\leq)$ a WSTS, $x_0\in X$.			
Question:	$Post^*(x_0)$ finite?			

Theorem (Finkel & Schnoebelen 2001)

Decidable for finitely branching post-effective WSTS with strict monotony.

Definitions Decidability in Infinitely Branching WSTS

Boundednes	S
Input:	$(X, ightarrow,\leq)$ a WSTS, $x_0\in X.$
Question:	$Post^*(x_0)$ finite?

Theorem (Blondin, Finkel & McKenzie in progress)

Decidable for infinitely branching post-effective WSTS with strict monotony.

Definitions Decidability in Infinitely Branching WSTS

Coverability

Input: (X, \rightarrow, \leq) a WSTS, $x_0, x \in X$.

Question: $x_0 \xrightarrow{*} x' \ge x$?

Theorem (Abdulla, Cerans, Jonsson & Tsay 2000; Finkel & Schnoebelen 2001)

Decidable for some classes of infinitely branching WSTS.

Definitions Decidability in Infinitely Branching WSTS

	Covera	abili	ty
--	--------	-------	----

Input: (X, \rightarrow, \leq) a WSTS, $x_0, x \in X$.

Question: $x_0 \xrightarrow{*} x' \ge x$?

Theorem (Blondin, Finkel & McKenzie in progress)

Decidable for some classes of infinitely branching WSTS.

Definitions Decidability in Infinitely Branching WSTS

Control-state maintainability

Input: (X, \rightarrow, \leq) a WSTS, $x_0 \in X$ and $\{t_1, \ldots, t_n\} \subseteq X$.

Question: \exists maximal execution $x_0 \rightarrow x_1 \rightarrow x_2 \rightarrow \dots$ such that $\forall i \ x_i \in \uparrow \{t_1, \dots, t_n\}$?

Theorem (Finkel & Schnoebelen 2001)

Decidable for finitely branching post-effective WSTS with stuttering monotony.

Definitions Decidability in Infinitely Branching WSTS

Control-state maintainability

Input: (X, \rightarrow, \leq) a WSTS, $x_0 \in X$ and $\{t_1, \ldots, t_n\} \subseteq X$.

Question: \exists maximal execution $x_0 \rightarrow x_1 \rightarrow x_2 \rightarrow \dots$ such that $\forall i \ x_i \in \uparrow \{t_1, \dots, t_n\}$?

Theorem (Blondin, Finkel & McKenzie in progress)

Undecidable for infinitely branching post-effective WSTS with stuttering monotony.

Ideals and completion Examples

Downward closure

$$\downarrow D = \{ x \in X : \exists d \in D \ x \le d \}.$$

Ideals

- $I \subseteq X$ is an *ideal* if it is
 - downward closed: $I = \downarrow I$,
 - directed: $a, b \in I \implies \exists c \in I \text{ s.t. } a \leq c \text{ and } b \leq c$.

Ideals and completion Examples

Theorem (Finkel & Goubault-Larrecq 2009)

Every downward closed set in X is a finite union of ideals of X.

Ideals and completion Examples

Theorem (Finkel & Goubault-Larrecq 2009)

Every downward closed set in X is a finite union of ideals of X.

Corollary (FGL 2009; Blondin, Finkel & McKenzie in progress)

Every downward closed subset decomposes canonically as the union of its maximal ideals.

Ideals and completion Examples

Completion (FGL 2009; Blondin, Finkel & McKenzie in progress)

The completion of $S = (X, \rightarrow_S, \leq)$ is $\widehat{S} = (\widehat{X}, \rightarrow_{\widehat{S}}, \subseteq)$ such that

$$\widehat{X} = \mathsf{Ideals}(X),$$

■ $I \rightarrow_{\widehat{S}} J$ if J appears in the canonical decomposition of $\downarrow Post(I)$.

Ideals and completion Examples

Theorem (FGL 2009; Blondin, Finkel & McKenzie in progress)

Let $S = (X, ightarrow_{\mathcal{S}}, \leq)$ be a WSTS, then

• \hat{S} is finitely branching.

Ideals and completion Examples

Theorem (FGL 2009; Blondin, Finkel & McKenzie in progress)

Let $S = (X, \rightarrow_{\mathcal{S}}, \leq)$ be a WSTS, then

- \widehat{S} is finitely branching.
- \widehat{S} has strong monotony.

Theorem (FGL 2009; Blondin, Finkel & McKenzie in progress)

Let $S = (X, \rightarrow_{\mathcal{S}}, \leq)$ be a WSTS, then

- \widehat{S} is finitely branching.
- \widehat{S} has strong monotony.
- \widehat{S} is a WSTS iff S is a ω^2 -WSTS iff $A \leq \# B \Leftrightarrow \uparrow A \subseteq \uparrow B$ is a wqo (by Jančar 1999).

Ideals and completion Examples

Ideals in \mathbb{N}^d

$I \subseteq \mathbb{N}^d$ is an ideal iff $I = \downarrow x_1 \times \cdots \times \downarrow x_d$ with $x_i \in \mathbb{N}$ or $x_i = \mathbb{N}$.

Ideals and completion Examples

Ideals in \mathbb{N}^d

 $I \subseteq \mathbb{N}^d$ is an ideal iff $I = \downarrow x_1 \times \cdots \times \downarrow x_d$ with $x_i \in \mathbb{N}$ or $x_i = \mathbb{N}$.

Representation

• \downarrow 5 \times \mathbb{N} \times \downarrow 10 can be represented by (5, ω , 10),

Ideals and completion Examples

Ideals in \mathbb{N}^d

 $I \subseteq \mathbb{N}^d$ is an ideal iff $I = \downarrow x_1 \times \cdots \times \downarrow x_d$ with $x_i \in \mathbb{N}$ or $x_i = \mathbb{N}$.

Representation

- \downarrow 5 \times \mathbb{N} \times \downarrow 10 can be represented by (5, ω , 10),
- $\downarrow 5 \times \mathbb{N} \times \downarrow 10 \subseteq \mathbb{N} \times \mathbb{N} \times \downarrow 20$ can be tested by $(5, \omega, 10) \leq (\omega, \omega, 20)$.

Ideals and completion Examples

VAS completions are post-effective

• Transitions can be carried in \mathbb{N}^d_{ω} ,

Ideals and completion Examples

VAS completions are post-effective

- Transitions can be carried in \mathbb{N}^d_{ω} ,
- The maximal elements obtained are the ideals of $Post_{\widehat{S}}(I)$.

Ideals and completion Examples

VAS completions are post-effective

- Transitions can be carried in \mathbb{N}^d_{ω} ,
- The maximal elements obtained are the ideals of $Post_{\widehat{S}}(I)$.

Example

VAS $A = \{(2, -3, -5), (4, 5, -1), (-6, -2, 5)\}$ and ideal $I = \downarrow 5 \times \mathbb{N} \times \downarrow 10$:

Ideals and completion Examples

VAS completions are post-effective

- Transitions can be carried in \mathbb{N}^d_{ω} ,
- The maximal elements obtained are the ideals of $Post_{\widehat{S}}(I)$.

Example

VAS
$$A = \{(2, -3, -5), (4, 5, -1), (-6, -2, 5)\}$$
 and ideal $I = \downarrow 5 \times \mathbb{N} \times \downarrow 10$:

$$(5, \omega, 10) + (2, -3, -5) = (7, \omega, 5)$$

 $\downarrow \mathsf{Post}(I) = \downarrow 7 \times \mathbb{N} \times \downarrow 5$

Ideals and completion Examples

VAS completions are post-effective

- Transitions can be carried in \mathbb{N}^d_{ω} ,
- The maximal elements obtained are the ideals of $Post_{\widehat{S}}(I)$.

Example

VAS
$$A = \{(2, -3, -5), (4, 5, -1), (-6, -2, 5)\}$$
 and ideal $I = \downarrow 5 \times \mathbb{N} \times \downarrow 10$:

$$(5, \omega, 10) + (4, 5, -1) = (9, \omega, 9)$$

 $\downarrow \mathsf{Post}(I) = \downarrow 7 \times \mathbb{N} \times \downarrow 5 \cup \downarrow 9 \times \mathbb{N} \times \downarrow 9$

Ideals and completion Examples

VAS completions are post-effective

- Transitions can be carried in \mathbb{N}^d_{ω} ,
- The maximal elements obtained are the ideals of $Post_{\widehat{S}}(I)$.

Example

VAS
$$A = \{(2, -3, -5), (4, 5, -1), (-6, -2, 5)\}$$
 and ideal $I = \downarrow 5 \times \mathbb{N} \times \downarrow 10$:

$$(5, \omega, 10) + (-6, -2, 5) = \emptyset$$

 $\downarrow \mathsf{Post}(I) = \downarrow 7 \times \mathbb{N} \times \downarrow 5 \cup \downarrow 9 \times \mathbb{N} \times \downarrow 9$

Ideals and completion Examples

VAS completions are post-effective

- Transitions can be carried in \mathbb{N}^d_{ω} ,
- The maximal elements obtained are the ideals of $Post_{\widehat{S}}(I)$.

Example

VAS
$$A = \{(2, -3, -5), (4, 5, -1), (-6, -2, 5)\}$$
 and ideal $I = \downarrow 5 \times \mathbb{N} \times \downarrow 10$:

$$\downarrow \mathsf{Post}(I) = \downarrow 7 \times \mathbb{N} \times \downarrow 5 \cup \downarrow 9 \times \mathbb{N} \times \downarrow 9$$

Ideals and completion Examples

VAS completions are post-effective

- Transitions can be carried in \mathbb{N}^d_{ω} ,
- The maximal elements obtained are the ideals of $Post_{\widehat{S}}(I)$.

Example

VAS
$$A = \{(2, -3, -5), (4, 5, -1), (-6, -2, 5)\}$$
 and ideal $I = \downarrow 5 \times \mathbb{N} \times \downarrow 10$:

$$\mathsf{Post}_{\widehat{S}}(I) = \{\downarrow 9 \times \mathbb{N} \times \downarrow 9\}$$

Introduction Coverability Handling Infinite Branching Termination Decidability Control-state maintainability Conclusion Boundedness

Coverability

Input: (X, \rightarrow, \leq) a WSTS, $x_0, x \in X$.

Question: $x_0 \xrightarrow{*} x' \ge x$?

Introduction Coverability Handling Infinite Branching Decidability Control-state maintainability Conclusion Boundedness

Coverability

Input: (X, \rightarrow, \leq) a WSTS, $x_0, x \in X$.

Question: $x_0 \in \uparrow \operatorname{Pre}^*(\uparrow x)$?

Introduction Coverability Handling Infinite Branching Decidability Conclusion Boundedness

Coverability

Input:
$$(X, \rightarrow, \leq)$$
 a WSTS, $x_0, x \in X$.
Question: $x_0 \in \uparrow \operatorname{Pre}^*(\uparrow x)$?

Backward method (Abdulla, Cerans, Jonsson & Tsay 2000)

Compute sequence converging to $\uparrow \operatorname{Pre}^*(\uparrow x)$:

$$\begin{array}{rcl} Y_0 &=& \uparrow x \\ Y_1 &=& Y_0 & \cup & \uparrow \operatorname{Pre}(Y_0) \\ \vdots & & \vdots & & \vdots \\ Y_n &=& Y_{n-1} & \cup & \uparrow \operatorname{Pre}(Y_{n-1}) \end{array}$$

and verify if $x_0 \in Y_n$.

Introduction Coverability Handling Infinite Branching Decidability Conclusion Boundedness

Coverability

Input:
$$(X, \rightarrow, \leq)$$
 a WSTS, $x_0, x \in X$.
Question: $x_0 \in \uparrow \operatorname{Pre}^*(\uparrow x)$?

Backward method (Abdulla, Cerans, Jonsson & Tsay 2000)

Compute sequence converging to $\uparrow \operatorname{Pre}^*(\uparrow x)$:

$$\begin{array}{rcl}
Y_0 &=& \uparrow x \\
Y_1 &=& Y_0 & \cup & \uparrow \operatorname{Pre}(Y_0) \\
\vdots & & \vdots & & \vdots \\
Y_n &=& Y_{n-1} & \cup & \uparrow \operatorname{Pre}(Y_{n-1})
\end{array}$$

and verify if $x_0 \in Y_n$. Computing Pre not always effecient!

Coverability Termination Control-state maintainability Boundedness

Coverability

Input: (X, \rightarrow, \leq) a WSTS, $x_0, x \in X$.

Question: $x_0 \xrightarrow{*} x' \ge x$?

Coverability Termination Control-state maintainability Boundedness

Coverability

Input: (X, \rightarrow, \leq) a WSTS, $x_0, x \in X$.

Question: $x \in \bigcup \text{Post}^*(x_0)$?

Coverability	
Input:	$(X, ightarrow,\leq)$ a WSTS, $x_0,x\in X.$
Question:	$x \in \downarrow Post^*(x_0)$?

Theorem (Blondin, Finkel & McKenzie in progress)

Coverability is decidable for WSTS with post-effective completion.

Coverability Termination Control-state maintainability Boundedness

Proof: two semi-algorithms to decide coverability

Coverability:

- Enumerate execution $\downarrow x_0 \xrightarrow{*}_{\widehat{S}} I$,
- Accept if $x \in I$.

Coverability Termination Control-state maintainability Boundedness

Proof: two semi-algorithms to decide coverability

Coverability:

- Enumerate execution $\downarrow x_0 \xrightarrow{*}_{\widehat{S}} I$,
- Accept if $x \in I$.

Non coverability:

• Enumerate $D \subseteq X$ downward closed

Coverability Termination Control-state maintainability Boundedness

Proof: two semi-algorithms to decide coverability

Coverability:

- Enumerate execution $\downarrow x_0 \xrightarrow{*}_{\widehat{S}} I$,
- Accept if $x \in I$.

Non coverability:

• Enumerate $D = I_1 \cup \ldots \cup I_k$

Coverability Termination Control-state maintainability Boundedness

Proof: two semi-algorithms to decide coverability

Coverability:

- Enumerate execution $\downarrow x_0 \xrightarrow{*}_{\widehat{S}} I$,
- Accept if $x \in I$.

Non coverability:

• Enumerate $D \subseteq X$ downward closed

Coverability Termination Control-state maintainability Boundedness

Proof: two semi-algorithms to decide coverability

Coverability:

- Enumerate execution $\downarrow x_0 \xrightarrow{*}_{\widehat{S}} I$,
- Accept if $x \in I$.

Non coverability:

• Enumerate $D \subseteq X$ downward closed, $x_0 \in D$

Coverability Termination Control-state maintainability Boundedness

Proof: two semi-algorithms to decide coverability

Coverability:

- Enumerate execution $\downarrow x_0 \xrightarrow{*}_{\widehat{S}} I$,
- Accept if $x \in I$.

Non coverability:

• Enumerate $D \subseteq X$ downward closed, $\downarrow x_0 \subseteq D$

Coverability Termination Control-state maintainability Boundedness

Proof: two semi-algorithms to decide coverability

Coverability:

- Enumerate execution $\downarrow x_0 \xrightarrow{*}_{\widehat{S}} I$,
- Accept if $x \in I$.

Non coverability:

• Enumerate $D \subseteq X$ downward closed, $\downarrow x_0 \subseteq I_1 \cup \ldots \cup I_k$

Coverability Termination Control-state maintainability Boundedness

Proof: two semi-algorithms to decide coverability

Coverability:

- Enumerate execution $\downarrow x_0 \xrightarrow{*}_{\widehat{S}} I$,
- Accept if $x \in I$.

Non coverability:

• Enumerate $D \subseteq X$ downward closed, $\exists i \text{ t.q. } \downarrow x_0 \subseteq I_i$

Coverability Termination Control-state maintainability Boundedness

Proof: two semi-algorithms to decide coverability

Coverability:

- Enumerate execution $\downarrow x_0 \xrightarrow{*}_{\widehat{S}} I$,
- Accept if $x \in I$.

Non coverability:

• Enumerate $D \subseteq X$ downward closed, $x_0 \in D$

Coverability Termination Control-state maintainability Boundedness

Proof: two semi-algorithms to decide coverability

Coverability:

- Enumerate execution $\downarrow x_0 \xrightarrow{*}_{\widehat{S}} I$,
- Accept if $x \in I$.

Non coverability:

• Enumerate $D \subseteq X$ downward closed, $x_0 \in D$ and $\downarrow \text{Post}_S(D) \subseteq D$

Coverability Termination Control-state maintainability Boundedness

Proof: two semi-algorithms to decide coverability

Coverability:

- Enumerate execution $\downarrow x_0 \xrightarrow{*}_{\widehat{S}} I$,
- Accept if $x \in I$.

Non coverability:

■ Enumerate $D \subseteq X$ downward closed, $x_0 \in D$ and $\downarrow \text{Post}_S(I_1 \cup \ldots \cup I_k) \subseteq I_1 \cup \ldots \cup I_k$

Coverability Termination Control-state maintainability Boundedness

Proof: two semi-algorithms to decide coverability

Coverability:

- Enumerate execution $\downarrow x_0 \xrightarrow{*}_{\widehat{S}} I$,
- Accept if $x \in I$.

Non coverability:

■ Enumerate $D \subseteq X$ downward closed, $x_0 \in D$ and $\downarrow \text{Post}_S(I_1) \cup \ldots \cup \downarrow \text{Post}_S(I_k) \subseteq I_1 \cup \ldots \cup I_k$ Introduction Coverability Handling Infinite Branching Termination Decidability Control-state maintainabilit Conclusion Boundedness

Proof: two semi-algorithms to decide coverability

Coverability:

- Enumerate execution $\downarrow x_0 \xrightarrow{*}_{\widehat{S}} I$,
- Accept if $x \in I$.

Non coverability:

 $\begin{array}{c} \blacksquare \quad \text{Enumerate } D \subseteq X \text{ downward closed, } x_0 \in D \text{ and} \\ \underbrace{(J_{1,1} \cup \ldots \cup J_{1,n_1})}_{\text{Post}_{\widehat{S}}(I_1) = \{J_{1,1}, \ldots, J_{1,n_1}\}} \cup \ldots \cup \underbrace{(J_{k,1} \cup \ldots \cup J_{k,n_k})}_{\text{Post}_{\widehat{S}}(I_k) = \{J_{k,1}, \ldots, J_{k,n_k}\}} \subseteq I_1 \cup \ldots \cup I_k \end{array}$

Coverability Termination Control-state maintainability Boundedness

Proof: two semi-algorithms to decide coverability

Coverability:

- Enumerate execution $\downarrow x_0 \xrightarrow{*}_{\widehat{S}} I$,
- Accept if $x \in I$.

Non coverability:

• Enumerate $D \subseteq X$ downward closed, $x_0 \in D$ and $\exists i, j, i'$ t.q. $J_{i,j} \subseteq I_{i'}$

Coverability Termination Control-state maintainability Boundedness

Proof: two semi-algorithms to decide coverability

Coverability:

- Enumerate execution $\downarrow x_0 \xrightarrow{*}_{\widehat{S}} I$,
- Accept if $x \in I$.

Non coverability:

• Enumerate $D \subseteq X$ downward closed, $x_0 \in D$ and $\downarrow \text{Post}_S(D) \subseteq D$,

Coverability Termination Control-state maintainability Boundedness

Proof: two semi-algorithms to decide coverability

Coverability:

- Enumerate execution $\downarrow x_0 \xrightarrow{*}_{\widehat{S}} I$,
- Accept if $x \in I$.

- Enumerate $D \subseteq X$ downward closed, $x_0 \in D$ and $\downarrow \text{Post}_S(D) \subseteq D$,
- Reject if $x \notin D$.

Coverability Termination Control-state maintainability Boundedness

Proof: two semi-algorithms to decide coverability

Coverability:

- Enumerate execution $\downarrow x_0 \xrightarrow{*}_{\widehat{S}} I$,
- Accept if $x \in I$.

- Enumerate $D \subseteq X$ downward closed, $x_0 \in D$ and $\downarrow \text{Post}_S(D) \subseteq D$,
- Reject if $\downarrow x \not\subseteq I_1 \cup \ldots \cup I_k$.

Coverability Termination Control-state maintainability Boundedness

Proof: two semi-algorithms to decide coverability

Coverability:

- Enumerate execution $\downarrow x_0 \xrightarrow{*}_{\widehat{S}} I$,
- Accept if $x \in I$.

- Enumerate $D \subseteq X$ downward closed, $x_0 \in D$ and $\downarrow \text{Post}_S(D) \subseteq D$,
- Reject if $\forall i \downarrow x \not\subseteq I_i$.

Coverability Termination Control-state maintainability Boundedness

Proof: two semi-algorithms to decide coverability

Coverability:

- Enumerate execution $\downarrow x_0 \xrightarrow{*}_{\widehat{S}} I$,
- Accept if $x \in I$.

- Enumerate $D \subseteq X$ downward closed, $x_0 \in D$ and $\downarrow \text{Post}_S(D) \subseteq D$,
- Reject if $x \notin D$. Witness: $D = \downarrow \mathsf{Post}^*_S(x_0)$

Introduction Coverability Handling Infinite Branching Decidability Conclusion Boundedness

Termination

Input: (X, \rightarrow, \leq) a WSTS, $x_0 \in X$.

Question: $\exists x_0 \rightarrow x_1 \rightarrow x_2 \rightarrow \ldots$?

Termination	
Input:	$(X, ightarrow,\leq)$ a WSTS, $x_0\in X.$
Question:	$\exists x_0 \rightarrow x_1 \rightarrow x_2 \rightarrow \ldots ?$

Theorem (Blondin, Finkel & McKenzie in progress)

Termination is undecidable, even for post-effective ω^2 -WSTS with strong and strict monotony, and with post-effective completion.

Termination

Input:	(X, \rightarrow, \leq) a WSTS, x_0	$\in X$.
--------	--	-----------

Question: $\exists x_0 \rightarrow x_1 \rightarrow x_2 \rightarrow \ldots$?

Proof

Structural termination is undecidable for Transfer Petri nets (Dufourd, Jančar & Schnoebelen 1999). Structural termination reduces to termination by adding a new element that branches on every other elements.

Execution boundedness

Input: (X, \rightarrow, \leq) a WSTS, $x_0 \in X$.

Question: $\exists k$ bounding length of executions?

Introduction	Coverability
Handling Infinite Branching	Termination
Decidability	Control-state maintainability
Conclusion	Boundedness

Execution	bound	ledness	

Input: (X, \rightarrow, \leq) a WSTS, $x_0 \in X$.

Question: $\exists k$ bounding length of executions?

Remark

Termination and execution boundedness are the same in finitely branching WSTS.

Relating executions of S and \widehat{S}

Let
$$S = (X, \rightarrow_{\mathcal{S}}, \leq)$$
 be a WSTS, then

• if $x \xrightarrow{k} g$, then for every ideal $I \supseteq \downarrow x$ there exists an ideal $J \supseteq \downarrow y$ such that $I \xrightarrow{k} g$,

if
$$I \xrightarrow{k} J$$
, then for every $y \in J$ there exists $x \in I$ such that $x \xrightarrow{*} S y' \ge y$.

Relating executions of S and \widehat{S}

Let $S = (X, \rightarrow_S, \leq)$ be a WSTS with transitive monotony, then

- if $x \xrightarrow{k} g$, then for every ideal $I \supseteq \downarrow x$ there exists an ideal $J \supseteq \downarrow y$ such that $I \xrightarrow{k} g$,
- if $I \xrightarrow{k} \hat{S} J$, then for every $y \in J$ there exists $x \in I$ such that $x \xrightarrow{\geq k} S y' \geq y$.

Relating executions of S and \hat{S}

Let $S = (X, \rightarrow_S, \leq)$ be a WSTS with strong monotony, then

- if $x \xrightarrow{k} S y$, then for every ideal $I \supseteq \downarrow x$ there exists an ideal $J \supseteq \downarrow y$ such that $I \xrightarrow{k} \hat{S} J$,
- if $I \xrightarrow{k} \hat{S} J$, then for every $y \in J$ there exists $x \in I$ such that $x \xrightarrow{k} S y' \ge y$.

Coverability Termination Control-state maintainability Boundedness

Theorem (Blondin, Finkel & McKenzie in progress)

Execution boundedness is decidable for ω^2 -WSTS with transitive monotony, and with post-effective completion.

Coverability **Termination** Control-state maintainability Boundedness

Theorem (Blondin, Finkel & McKenzie in progress)

Execution boundedness is decidable for ω^2 -WSTS with transitive monotony, and with post-effective completion.

Proof

Executions are bounded in S iff bounded in \hat{S} . Since \hat{S} is finitely branching, it suffices to solve termination in \hat{S} .

Control-state maintainability

Input: (X, \rightarrow, \leq) a WSTS, $x_0 \in X$ and $\{t_1, \ldots, t_n\} \subseteq X$.

Question: \exists maximal execution $x_0 \rightarrow x_1 \rightarrow x_2 \rightarrow \dots$ such that $\forall i \ x_i \in \uparrow \{t_1, \dots, t_n\}$?

Introduction Coverability Handling Infinite Branching Decidability Conclusion Boundedness

Control-state maintainability

Input: (X, \rightarrow, \leq) a WSTS, $x_0 \in X$ and $\{t_1, \ldots, t_n\} \subseteq X$. *Question*: \exists maximal execution $x_0 \rightarrow x_1 \rightarrow x_2 \rightarrow \ldots$ such that $\forall i \ x_i \in \uparrow \{t_1, \ldots, t_n\}$?

Theorem (Blondin, Finkel & McKenzie in progress)

Control-state maintainability is undecidable, even for post-effective $\omega^2\text{-WSTS}$ with strong and strict monotony, and with post-effective completion.

Control-state maintainability boundedness

Input:	(X, \rightarrow, \leq) a WSTS, $x_0 \in X$ and $\{t_1, \ldots, t_n\} \subseteq X$.
Question:	$\exists k$ bounding lengths of executions $x_0 \rightarrow x_1 \rightarrow$
	$x_2 \rightarrow \ldots$ such that $\forall i \ x_i \in \uparrow \{t_1, \ldots, t_n\}$?

Control-state maintainability boundedness

Input:	(X, \rightarrow, \leq) a WSTS, $x_0 \in X$ and $\{t_1, \ldots, t_n\} \subseteq X$.
Question:	$\exists k$ bounding lengths of executions $x_0 \rightarrow x_1 \rightarrow$
	$x_2 \rightarrow \ldots$ such that $\forall i \; x_i \in \uparrow \{t_1, \ldots, t_n\}$?

Remark

Control-state maintainability and control-state maintainability boundedness are (almost) the same in finitely branching WSTS.

Coverability Termination Control-state maintainability Boundedness

Theorem (Blondin, Finkel & McKenzie in progress)

Control-state maintainability boundedness is decidable for $\omega^2\text{-WSTS}$ with transitive monotony, and with post-effective completion.

Coverability Termination Control-state maintainability Boundedness

Theorem (Blondin, Finkel & McKenzie in progress)

Control-state maintainability boundedness is decidable for $\omega^2\text{-WSTS}$ with transitive monotony, and with post-effective completion.

Proof

"Good" executions are bounded in S iff "good" executions are bounded in \hat{S} . Since \hat{S} is finitely branching, it suffices to solve control-state maintainability in \hat{S} .

Introduction Coverability Handling Infinite Branching Decidability Conclusion Boundedness

Boundedness

Input: (X, \rightarrow, \leq) a WSTS, $x_0 \in X$.

Question: Post^{*}(x_0) finite?

Introduction	
Handling Infinite Branching	
Decidability	Control-state maintainability
Conclusion	Boundedness

Boundednes	s
Input:	$(X, ightarrow,\leq)$ a WSTS, $x_0\in X.$
Question:	$Post^*(x_0)$ finite?

Theorem (Blondin, Finkel & McKenzie in progress)

Boundedness is decidable for post-effective WSTS with strict monotony.

Introduction	
Handling Infinite Branching	
Decidability	Control-state maintainability
Conclusion	Boundedness

Boundednes	S
Input:	$(X, ightarrow,\leq)$ a WSTS, $x_0\in X.$
Question:	$Post^*(x_0)$ finite?

Proof

Build a finite reachability tree as in (Finkel & Schnoebelen 2001) returning "unbounded" if some infinite Post(x) is encountered.

Open questions

What hypotheses make termination and control-state maintainability decidable?

Open questions

- What hypotheses make termination and control-state maintainability decidable?
- Other problems can be solved for infinitely branching WSTS?

Open questions

- What hypotheses make termination and control-state maintainability decidable?
- Other problems can be solved for infinitely branching WSTS?
- What other applications has the completion?

Thank you! Merci!