
Parameterized Verification
Keeping Crowds Safe

Javier Esparza
Technical University of Munich

„Program Verification? Why don´t you give up?“

Theorem (Alan Turing, 1936)
Program termination is undecidable.

Theorem (Henry G. Rice, 1961)
Every non-trivial property of programs
is undecidable.

Theorem (Marvin Minsky, 1969)
Every non-trivial property of while-
programs with two counter variables is
undecidable.

„Program Verification? Why don´t you give up?“

Theorem (Alan Turing, 1936)
Program termination is undecidable.

Theorem (Henry G. Rice, 1961)
Every non-trivial property of programs
is undecidable.

Theorem (Marvin Minsky, 1969)
Every non-trivial property of while-
programs with two counter variables is
undecidable.

„Program Verification? Why don´t you give up?“

Theorem (Alan Turing, 1936)
Program termination is undecidable.

Theorem (Henry G. Rice, 1961)
Every non-trivial property of programs
is undecidable.

Theorem (Marvin Minsky, 1969)
Every non-trivial property of while-
programs with two counter variables is
undecidable.

Because …

• Undecidability requires some source of
„infinity“:
– Variables with an infinite range
– Dynamic data structures (lists, trees)
– Unbounded recursion

• Concurrent systems
– are difficult to get right, and
– often have a finite state space.

Dijkstra´s Mutual Exclusion Algorithm

CC

CACM 8:9, 1965

Concurrent programs are often finite-state

CC

Concurrent programs are often finite-state

CC

A Leader Election Algorithm (90s)

A Cache-Coherence Protocol (00s)

Source: Wikipedia

A Model of a Bluetooth Driver (10s)

A Model of a Biochemical System (10s)

Source: Shangai Institutes for Biological Sciences

Robot swarms, flocks of birds, vehicular
networks … (into the 20s?)

Source: Iridia-CoDE

Source: Wikipedia

Source: Upenn

Parameterized Verification

• Model-checking tools can only check instances of
these systems for particular values of the number N
of processes.

Can we prove correctness for every N ?

• Amounts to checking an infinite family of finite-
state systems.

Parameterized Verification

• Model-checking tools can only check instances of
these systems for particular values of the number N
of processes.

Can we prove correctness for every N ?

• Amounts to checking an infinite family of finite-
state systems.

Keeping a Crowd Safe

• The safety /coverability problem:

– Given: a program template ܶ[݅] with finite-range variables,

a „dangerous“ control point ℓ of ܶ[݅].

– Decide: Is there a number ܰ such that the crowd

ܶ 1 ∥ ܶ[2] ∥ ⋯ ∥ ܶ[ܰ]
can reach a global state in which at least one of
ܶ 1 ,ܶ 2 , … ,ܶ[ܰ] is at ℓ („covers“ℓ) ?

Parameterized Verification: Give up?

Theorem (folklore): The Halting Problem can be
reduced to the parameterized coverability problem.

Reduction:
 The template models the behaviour of one tape cell.

TM terminates
→ it uses a finite number N of cells
→ N copies of the template reach the dangerous

control point

Parameterized Verification: Give up?
Reduction:
 The template models the behaviour of one tape cell.

global var: :݁ݐܽݐݏ ,଴ݍ}		 … , {௡ݍ

var: ݈݈ܿ݁௜: 					 ܽଵ, … ܽ௠
var: ܖ܉܍ܔܗܗ܊:௜݁ݒ݅ݐܿܽ
if ܽܿ݁ݒ݅ݐ௜ then

…
if ݁ݐܽݐݏ = ݍ and ݈݈ܿ݁௜ = ܽ then
݁ݐܽݐݏ ≔ ;ᇱݍ ݈݈ܿ݁௜ ≔ ܽ′	;
௜݁ݒ݅ݐܿܽ ≔ ௜ାଵ݁ݒ݅ݐܿܽ	;܍ܛܔ܉܎ ≔ ;܍ܝܚܜ

endif
…

endif

ܽ,ݍ → (ܴ,ᇱ,ܽᇱݍ)

Parameterized Verification: Give up?
Reduction:
 The template models the behaviour of one tape cell.

global var: :݁ݐܽݐݏ ,଴ݍ}		 … , {௡ݍ

var: ݈݈ܿ݁௜: 					 ܽଵ, … ܽ௠
var: ܖ܉܍ܔܗܗ܊:௜݁ݒ݅ݐܿܽ
if ܽܿ݁ݒ݅ݐ௜ then

…
if ݁ݐܽݐݏ = ݍ and ݈݈ܿ݁௜ = ܽ then
݁ݐܽݐݏ ≔ ;ᇱݍ ݈݈ܿ݁௜ ≔ ܽ′	;
௜݁ݒ݅ݐܿܽ ≔ ௜ାଵ݁ݒ݅ݐܿܽ	;܍ܛܔ܉܎ ≔ ;܍ܝܚܜ

endif
…

endif

ܽ,ݍ → (ܴ,ᇱ,ܽᇱݍ)

Hey, what happens at the
right border?

Parameterized Verification: Give up?
Reduction:
 The template models the behaviour of one tape cell.

global var: :݁ݐܽݐݏ ,଴ݍ}		 … , {௡ݍ

var: ݈݈ܿ݁௜: 					 ܽଵ, … ܽ௠
var: ܖ܉܍ܔܗܗ܊:௜݁ݒ݅ݐܿܽ
if ܽܿ݁ݒ݅ݐ௜ then

…
if ݁ݐܽݐݏ = ݍ and ݈݈ܿ݁௜ = ܽ then
݁ݐܽݐݏ ≔ ;ᇱݍ ݈݈ܿ݁௜ ≔ ܽ′	;
௜݁ݒ݅ݐܿܽ ≔ ௜ାଵ݁ݒ݅ݐܿܽ	;܍ܛܔ܉܎ ≔ ;܍ܝܚܜ

endif
…

endif

ܽ,ݍ → (ܴ,ᇱ,ܽᇱݍ)

Hey, what happens at the
right border? OK, just substitute

݅ + ܰ	݀݋݉	1 for ݅ + 1!

Parameterized Verification: Give up?

Theorem (folklore): The Halting Problem can be
reduced to the parameterized coverability problem.

Parameterized Verification: Give up?

Theorem (folklore): The Halting Problem can be
reduced to the parameterized coverability problem.

Parameterized
verification is

doomed!

Identities

• In this reduction, processes do not execute exactly
the same code

• The code makes use of the process identity
(the index ݅) to organize processes in a ring.

• But many systems do not use identities:
– DKR Leader Election uses identities.
– Dijkstra, MESI-protocol, Bluetooth driver,

biochemical systems do not.
• In other systems, processes must remain

anonymous!

Identities

• In this reduction, processes do not execute exactly
the same code

• The code makes use of the process identity
(the index ݅) to organize processes in a ring.

• But many systems do not use identities:
– DKR Leader Election uses identities.
– Dijkstra, MESI-protocol, Bluetooth driver,

biochemical systems do not.
• In other systems, processes must remain

anonymous!

Identities

• In this reduction, processes do not execute exactly
the same code

• The code makes use of the process identity
(the index ݅) to organize processes in a ring.

• But many systems do not use identities:
– DKR Leader Election uses identities.
– Dijkstra, MESI-protocol, Bluetooth driver,

biochemical systems do not.
• In other systems, processes must remain

anonymous!

Anonymous Crowds

• Goal: investigate the decidability and complexity of
the coverability problem for crowds in which
(1) every process executes exactly the same code,

(anonymous crowds), and
(2) the number of processes is unknown to the

processes.

Coverability Problem for Anonymous Crowds

• Given: A finite automaton ܣ ((a template) and
a „dangerous“ state ௗݍ of ܣ

• Decide: Is there a number ܰ such that the
anonymous crowd consisting of ܰ copies
of can	ܣ reach a global state that covers
(puts at least one process in) state ?ௗݍ

Coverability Problem for Anonymous Crowds

• Given: A finite automaton ܣ ((a template) and
a „dangerous“ state ௗݍ of ܣ

• Decide: Is there a number ܰ such that the
anonymous crowd consisting of ܰ copies
of can	ܣ reach a global state that covers
(puts at least one process in) state ?ௗݍ

Coverability Problem for Anonymous Crowds

• Given: A finite automaton ܣ ((a template) and
a „dangerous“ state ௗݍ of ܣ

• Decide: Is there a number ܰ such that the
anonymous crowd consisting of ܰ copies
of can	ܣ reach a global state that covers
(puts at least one process in) state ?ௗݍ

• Initial configurations not yet specified.

Coverability Problem for Anonymous Crowds

• Given: A finite automaton ܣ ((a template) and
a „dangerous“ state ௗݍ of ܣ

• Decide: Is there a number ܰ such that the
anonymous crowd consisting of ܰ copies
of can	ܣ reach a global state that covers
(puts at least one process in) state ?ௗݍ

• Initial configurations not yet specified.
• Communication mechanism not yet specified

Initial Configurations
• A configuration of the system is completely determined

by the number of processes in each state of the
template (no identities)

• Configuration: function ܳ → ℕ, or vector of natural
numbers with ܳ components, or parallel expression

ܳ = ,ଵݍ ,ଶݍ ,ଷݍ ସݍ 	

3, 0, 2, 1 ଵଷݍ										 ∥ ଷଶݍ ∥ ସݍ

Initial Sets of Configurations

• Parametrized configurations with leaders:
– Exactly one process in some states
– Zero processes in other states
– Arbitrary number of processes in the rest

• Leaderless parametrized configurations

– Zero processes in some states
– Arbitrary number of processes in the rest

• Two variants of the problem, depending on the
initial parametrized configurations allowed

– Crowds with leaders as DEFAULT option

1,0,ܰ
1,0,1, ଵܰ, ଶܰ

0,0,ܰ
0,0, ଵܰ, ଶܰ

Initial Sets of Configurations

• Parametrized configurations with leaders:
– Exactly one process in some states
– Zero processes in other states
– Arbitrary number of processes in the rest

• Leaderless parametrized configurations

– Zero processes in some states
– Arbitrary number of processes in the rest

• Two variants of the problem, depending on the
initial parametrized configurations allowed

– Crowds with leaders as DEFAULT option

1,0,ܰ
1,0,1, ଵܰ, ଶܰ

0,0,ܰ
0,0, ଵܰ, ଶܰ

Initial Sets of Configurations

• Parametrized configurations with leaders:
– Exactly one process in some states
– Zero processes in other states
– Arbitrary number of processes in the rest

• Leaderless parametrized configurations

– Zero processes in some states
– Arbitrary number of processes in the rest

• Two variants of the problem, depending on the
initial parametrized configurations allowed

– Crowds with leaders as DEFAULT option

1,0,ܰ
1,0,1, ଵܰ, ଶܰ

0,0,ܰ
0,0, ଵܰ, ଶܰ

Initial Sets of Configurations

• Parametrized configurations with leaders:
– Exactly one process in some states
– Zero processes in other states
– Arbitrary number of processes in the rest

• Leaderless parametrized configurations

– Zero processes in some states
– Arbitrary number of processes in the rest

• Two variants of the problem, depending on the
initial parametrized configurations allowed

– Crowds with leaders as DEFAULT option

1,0,ܰ
1,0,1, ଵܰ, ଶܰ

0,0,ܰ
0,0, ଵܰ, ଶܰ

Initial Sets of Configurations

• Parametrized configurations with leaders:
– Exactly one process in some states
– Zero processes in other states
– Arbitrary number of processes in the rest

• Leaderless parametrized configurations

– Zero processes in some states
– Arbitrary number of processes in the rest

• Two variants of the problem, depending on the
initial parametrized configurations allowed

– Crowds with leaders as DEFAULT option

1,0,ܰ
1,0,1, ଵܰ, ଶܰ

0,0,ܰ
0,0, ଵܰ, ଶܰ

Coverability Problem with Leaders

• Given: A template ܣ,
an initial parametrized
configuration ऍ of ܣ with
leaders,
a „dangerous“ state ௗݍ of ܣ

• Decide: Is there a configuration
c ∈ ऍ such that the crowd
starting at c can reach a
configuration covering ௗݍ ?

Equivalent Formulation

• Given: A finite set ,ଵܣ … ௡ܣ, of „leader templates“
with initial states ,ଵݍ … , ௡ݍ
a finite set ,ଵܤ … ௡ܤ, of „crowd templates“
with initial states ,ଵݎ … , ,௠ݎ
a „dangerous“ state ௗݍ

• Decide: Are there numbers ݇ଵ, … ,݇௠ such that the
configuration with
• one process in each of ,ଵݍ … , ௡ݍ
• ݇ଵ, … , ݇௠ processes in ݎଵ, … , ௠ݎ
can reach a configuration covering ?ௗݍ

Coverability Problem without Leaders

• Given: A template ܣ,
an initial parametrized
leaderless configuration ऍ
of ܣ

• Decide: Is there a configuration
c ∈ ऍ such that the crowd
starting at c can reach a
configuration covering ௗݍ ?

Broadcast
One process sends,
everyone receives
immediately

Lock-free shared memory
No locks, interleaved
reads/writes

Rendezvous
Synchronous exchange
between two processes

Shared memory
Processes compete for lock
Lock holder reads/writes
shared state

Zoo of Communication Mechanisms
Global guards
State changes of a
process depend on state
of all others

High or Low Complexity?

Verifiers want low
complexity

High or Low Complexity?

„Crowd designers“ (swarm
intelligence, population
protocols, crowdsourcing)
want high complexity

Verifiers want low
complexity

Comm. Mechanisms: Global Guards
Global guards

– Process can make a
move if the current
state of all other
processes satisfies some
condition

Examples
• Abstractions of distributed algorithms (bakery,

mutex)
• Very hard to implement

Comm. Mechanisms: Global Guards

• Theorem (Emerson and Kahlon, LICS‘03)
The symmetric coverability problem is undecidable for
systems communicating with global guards.

Global guards
– Process can make a

move if the current
state of all other
processes satisfies some
condition

Counter Programs

• Sequence of labelled commands of the form
• ℓ:ݔ ≔ ݔ + 1
• ℓ:ݔ ≔ ݔ − 1
• ℓ: ℓᇱ	ܗܜܗ܏	
• ℓ:	 if ݔ = 0 then goto ℓ′		else goto ℓ′′
• ℓ: halt

Theorem (Minsky 69): The problem whether a counter
program with all counters initialized to 0 halts is
undecidable.

Simulating Counter Programs

• One control template ܶ modelling the control flow of
the program, with a state for each program label.

• One counter template ܺ for each counter with ,ݔ two
states: 	0௫	, 1௫

Idea: „ݔ has value ݊“ modeled by ݊ copies of ܺ in
state 1௫	

• A configuration (ℓ,݊ଵ, … ,݊௞) of the program is
simulated by a configuration of the crowd with
• one process in ݍℓ,	
• ݊ଵ processes in 1௫భ, …, ݊௞ processes in 1௫ೖ
• All other processes in 0-states

Simulating Counter Programs

• Simulating ℓ:	if ݔ = 0 then goto ℓᇱelse	goto	ℓᇱᇱ	

∀	ܺ: 0௫
ℓ

:ܥ	∃ 1௖

ℓ′

ℓ′′

Simulating Counter Programs

• Simulating ℓ: ݔ ≔ ݔ + 1; ℓᇱ: …

∀	ܺ: 1௫ ∨ 0௫
ℓ ݅݊ܿ௫ ℓᇱ∃	ܺ: ݅݊ܿ௫

0௫ 1௫∃ܶ: ݅݊ܿ௫ 	∧ 	∀	ܺ: 0௫ ∨ 1௫
݅݊ܿ௫ ∀	ܶ: ¬݅݊ܿ௫

0௫ 1௫∃ܶ: ݅݊ܿ௫ 	∧ 	∀	ܺ: 0௫ ∨ 1௫
݅݊ܿ௫ ∀	ܶ: ¬݅݊ܿ௫

…

Simulating Counter Programs

• Simulating ℓ: ݔ ≔ ݔ + 1; ℓᇱ: …

∀	ܺ: 1௫ ∨ 0௫
ℓ ݅݊ܿ௫ ℓᇱ∃	ܺ: ݅݊ܿ௫

0௫ 1௫∃ܶ: ݅݊ܿ௫ 	∧ 	∀	ܺ: 0௫ ∨ 1௫
݅݊ܿ௫ ∀	ܶ: ¬݅݊ܿ௫

0௫ 1௫∃ܶ: ݅݊ܿ௫ 	∧ 	∀	ܺ: 0௫ ∨ 1௫
݅݊ܿ௫ ∀	ܶ: ¬݅݊ܿ௫

…

Simulating Counter Programs

• Simulating ℓ: ݔ ≔ ݔ + 1; ℓᇱ: …

∀	ܺ: 1௫ ∨ 0௫
ℓ ݅݊ܿ௫ ℓᇱ∃	ܺ: ݅݊ܿ௫

0௫ 1௫∃ܶ: ݅݊ܿ௫ 	∧ 	∀	ܺ: 0௫ ∨ 1௫
݅݊ܿ௫ ∀	ܶ: ¬݅݊ܿ௫

0௫ 1௫∃ܶ: ݅݊ܿ௫ 	∧ 	∀	ܺ: 0௫ ∨ 1௫
݅݊ܿ௫ ∀	ܶ: ¬݅݊ܿ௫

…

Simulating Counter Programs

• Simulating ℓ: ݔ ≔ ݔ + 1; ℓᇱ: …

∀	ܺ: 1௫ ∨ 0௫
ℓ ݅݊ܿ௫ ℓᇱ∃	ܺ: ݅݊ܿ௫

0௫ 1௫∃ܶ: ݅݊ܿ௫ 	∧ 	∀	ܺ: 0௫ ∨ 1௫
݅݊ܿ௫ ∀	ܶ: ¬݅݊ܿ௫

0௫ 1௫∃ܶ: ݅݊ܿ௫ 	∧ 	∀	ܺ: 0௫ ∨ 1௫
݅݊ܿ௫ ∀	ܶ: ¬݅݊ܿ௫

…

Simulating Counter Programs

• Simulating ℓ: ݔ ≔ ݔ + 1; ℓᇱ: …

∀	ܺ: 1௫ ∨ 0௫
ℓ ݅݊ܿ௫ ℓᇱ∃	ܺ: ݅݊ܿ௫

0௫ 1௫∃ܶ: ݅݊ܿ௫ 	∧ 	∀	ܺ: 0௫ ∨ 1௫
݅݊ܿ௫ ∀	ܶ: ¬݅݊ܿ௫

0௫ 1௫∃ܶ: ݅݊ܿ௫ 	∧ 	∀	ܺ: 0௫ ∨ 1௫
݅݊ܿ௫ ∀	ܶ: ¬݅݊ܿ௫

…

Comm. Mechanisms: Broadcast

Reliable broadcast
– A process sends a

message
– All other processes

receive the message
(instantaneously)

Examples
– Distributed algorithms
– Hardware protocols (cache-coherence)

(Emerson and Kahlon 2003)
– Predicate abstractions of multithreaded programs

(Kaiser, Kroening, Liu, Wahl, 2014,2015)

Reliable broadcast

I S

EM

rd-miss!!

rd-miss??

wr-miss??

wr-miss!!wr-miss??

wrwr-hit

rd-hit

rd-hit
rd-hit

Reliable broadcast

8 2

16

rd-miss!!

rd-miss??

wr-miss??

wr-miss!!wr-miss??

wrwr-hit

rd-hit

rd-hit
rd-hit

(8,2,6,1)

?

rd-miss

Reliable broadcast

8 2

16

rd-miss!!

rd-miss??

wr-miss??

wr-miss!!wr-miss??

wrwr-hit

rd-hit

rd-hit
rd-hit

(8,2,6,1)

(7,9,0,0)

rd-miss

Reliable broadcast

• Theorem [E., Finkel, Mayr 99] The coverability
problem for broadcast protocols is decidable.

• Informally:

Anonymous crowds with local guards
are not Turing powerful

• Algorithm: Backward Search

Abdulla et al. (LICS‘96), based on the theory of well-
quasi-orders.

Init

Backward Search

ܥ ≔ set of dangerous conf.

Iterate ܥ ≔ ܥ ∪ (ܥ)݁ݎ݌ until
ܥ ∩ ݐ݅݊ܫ ≠ ∅; return „unsafe“

or
fixpoint; return	ܥ „safe“

:ଵܥ = ܥ

Init

Backward Search

ܥ ≔ set of dangerous conf.

Iterate ܥ ≔ ܥ ∪ (ܥ)݁ݎ݌ until
ܥ ∩ ݐ݅݊ܫ ≠ ∅; return „unsafe“

or
fixpoint; return	ܥ „safe“

:ଵܥ = ܥ

ଶܥ ≔ ଵܥ ∪ (ଵܥ)݁ݎ݌

Init

Backward Search

ܥ ≔ set of dangerous conf.

Iterate ܥ ≔ ܥ ∪ (ܥ)݁ݎ݌ until
ܥ ∩ ݐ݅݊ܫ ≠ ∅; return „unsafe“

or
fixpoint; return	ܥ „safe“

:ଵܥ = ܥ

ଶܥ ≔ ଵܥ ∪ (ଵܥ)݁ݎ݌

ଶܥ ≔ ଶܥ ∪ (ଶܥ)݁ݎ݌

Init

Backward Search

ܥ ≔ set of dangerous conf.

Iterate ܥ ≔ ܥ ∪ (ܥ)݁ݎ݌ until
ܥ ∩ ݐ݅݊ܫ ≠ ∅; return „unsafe“

or
fixpoint; return	ܥ „safe“

:ଵܥ = ܥ

ଶܥ ≔ ଵܥ ∪ (ଵܥ)݁ݎ݌

ଶܥ ≔ ଶܥ ∪ (ଶܥ)݁ݎ݌

Backward Search

ܥ ≔ set of dangerous conf.

Iterate ܥ ≔ ܥ ∪ (ܥ)݁ݎ݌ until
ܥ ∩ ݐ݅݊ܫ ≠ ∅; return „unsafe“

or
fixpoint; return	ܥ „safe“

Problems:
• ܥ can hold infinite sets. Finite representation?
• Termination?

Finite representation: Upward-closed sets

• Definition: ܿ ≤ ܿᇱ if ܿ′ has at least as many processes as ܿ
in each state

Finite representation: Upward-closed sets

• Definition: ܿ ≤ ܿᇱ if ܿ′ has at least as many processes as ܿ
in each state.

• Observation 1: If c is unsafe and ܿ ≤ ܿᇱ, then c‘ is unsafe.
We say that the set of unsafe configurations is upward-
closed.

Finite representation: Upward-closed sets

• Definition: ܿ ≤ ܿᇱ if ܿ′ has at least as many processes as ܿ
in each state.

• Observation 1: If c is unsafe and ܿ ≤ ܿᇱ, then c‘ is unsafe.
We say that the set of unsafe configurations is upward-
closed.

• Observation 2: If ܥ is upward-closed then so is pre C .

Finite representation: Upward-closed sets

• Definition: ܿ ≤ ܿᇱ if ܿ′ has at least as many processes as ܿ
in each state.

• Observation 1: If c is unsafe and ܿ ≤ ܿᇱ, then c‘ is unsafe.
We say that the set of unsafe configurations is upward-
closed.

• Observation 2: If ܥ is upward-closed then so is pre C .
• Observation 3: The union of upward-closed sets is upward-

closed.

Finite representation: Upward-closed sets

• Definition: ܿ ≤ ܿᇱ if ܿ′ has at least as many processes as ܿ
in each state.

• Observation 1: If c is unsafe and ܿ ≤ ܿᇱ, then c‘ is unsafe.
We say that the set of unsafe configurations is upward-
closed.

• Observation 2: If ܥ is upward-closed then so is pre C .
• Observation 3: The union of upward-closed sets is upward-

closed.
• Consequence: all sets computed by Backward Search are

upward-closed.

Finite representation: Well quasi-orders

• Proposition: ≤ is a well-quasi-order: every infinite
sequence ܿଵ, ܿଶ, ܿଷ⋯ of configurations contains an
infinite chain ܿ௜భ ≤ ܿ௜మ ≤ ܿ௜య⋯

Finite representation: Well quasi-orders

• Proposition: ≤ is a well-quasi-order: every infinite
sequence ܿଵ, ܿଶ, ܿଷ⋯ of configurations contains an
infinite chain ܿ௜భ ≤ ܿ௜మ ≤ ܿ௜య⋯

• Consequence: Every upward-closed set has a finite set
of minimal elements, and can be represented by it.

Termination of Backward Search

• Observation: Backward Search computes a sequence
଴ܥ ⊆ ଵܥ ⊆ ⋯ଶܥ of upward-closed sets of
configurations.

• Theorem: ⋃ 	௜௜ஹ଴ܥ = ௝ܥ for some ݆ ≥ 0.
• Consequence: Backward Search terminates.

Termination of Backward Search

• Observation: Backward Search computes a sequence
଴ܥ ⊆ ଵܥ ⊆ ⋯ଶܥ of upward-closed sets of
configurations.

• Theorem: ⋃ 	௜௜ஹ଴ܥ = ௝ܥ for some ݆ ≥ 0.
• Consequence: Backward Search terminates.

Termination of Backward Search

• Observation: Backward Search computes a sequence
଴ܥ ⊆ ଵܥ ⊆ ⋯ଶܥ of upward-closed sets of
configurations.

• Theorem: ⋃ 	௜௜ஹ଴ܥ = ௝ܥ for some ݆ ≥ 0.
• Consequence: Backward Search terminates.

Love
it!

Complexity and cut-off bound

Theorem (Schmitz and Schnoebelen 2013)

The coverability problem for broadcast protocols has non-
primitive-recursive complexity, even in the leaderless case.

Complexity and cut-off bound

Theorem (Schmitz and Schnoebelen 2013)

The coverability problem for broadcast protocols has non-
primitive-recursive complexity, even in the leaderless case.

Consequence: There is a family { ௡ܲ}௡ୀ଴ஶ of broadcast
protocols with ܱ ݊ states such that the smallest number of
processes required to reach the dangerous state is a non-
primitive-recursive function of ݊.

Complexity and cut-off bound

Theorem (Schmitz and Schnoebelen 2013)

The coverability problem for broadcast protocols has non-
primitive-recursive complexity, even in the leaderless case.

Consequence: There is a family { ௡ܲ}௡ୀ଴ஶ of broadcast
protocols with ܱ ݊ states such that the smallest number of
processes required to reach the dangerous state is a non-
primitive-recursive function of ݊.

This round goes
to me, Sherlock!

Complexity and cut-off bound

Theorem (Schmitz and Schnoebelen 2013)
The coverability problem for broadcast protocols has non-
primitive-recursive complexity, even in the leaderless case.

G. Delzanno

And yet, backwards reachability is
useful for verification! I‘ve used it
to prove properties of a dozen
cache-coherence protocols: their
templates have under 10 states!

Application to the MESI-protocol

• Are the states M and S mutually
exclusive?

• Check if the upward-closed set
with minimal element

m =1, e=0, s=1, i =0
can be reached from the initial
set

m=0, e=0, s=0, i =N

݉ :	଴ܥ ≥ 	1 ∧ ݏ	 ≥ 	1

଴ܥ ∧ ݁ݎ݌ ଴ܥ :	 ݉ ≥ 	1 ∧ ݏ	 ≥ 	1 ∨	 ݉	 = 0 ∧ 	݁	 = 1 ∧ ݏ	 ≥ 1

ଵܥ ∧ ݁ݎ݌ ଵܥ :	 ଴ܥ ∧ ݁ݎ݌ ଴ܥ

I S

EM

rd-miss!!

rd-miss??

wr-miss??

wr-miss!!
wr-miss??

wrwr-hit

rd-hit

rd-hitrd-hit

Application to the MESI-protocol

• Are the states M and S mutually
exclusive?

• Check if the upward-closed set
with minimal element

m =1, e=0, s=1, i =0
can be reached from the initial
set

m=0, e=0, s=0, i =N

݉ :	଴ܥ ≥ 	1 ∧ ݏ	 ≥ 	1

ଵܥ = ଴ܥ ∪ ݁ݎ݌ ଴ܥ :	 ݉ ≥ 	1 ∧ ݏ	 ≥ 	1 ∨	 ݉	 = 0 ∧ 	݁	 = 1 ∧ ݏ	 ≥ 1

ଶܥ = ଵܥ ∪ ݁ݎ݌ ଵܥ :	 ଵܥ

I S

EM

rd-miss!!

rd-miss??

wr-miss??

wr-miss!!
wr-miss??

wrwr-hit

rd-hit

rd-hitrd-hit

Comm. Mechanisms: Rendez-Vous

Rendez-vous
– Synchronous exchange of

a message between two
processes
(binary encounters)

Examples
– Biochemical systems
– Vehicular networks
– Communication protocols: equivalent to message

passing with bounded channels

Rendez-vous

Theorem:
The coverability problem for
rendez-vous communication and
is EXPSPACE-complete.
The problem for leaderless
perametrized configuration can be
solved in PTIME.

• Important differences with broadcast:
o no way to reliably reach all processes
o the crowd can no longer produce a leader

Lower bound
[Lipton 1976]

A template with ܱ ݊
states can simulate a
counter counting up to
2ଶ೙.

Simulating counter machines

• ݔ “ has value ݊” modelled by ݊ processes in state 1௖

Simulating counter machines

• ݔ “ has value ݊” modelled by ݊ processes in state 1௫
• ℓ:ݔ ≔ ݔ + 1; ℓᇱ … easy to simulate: rendez-vous

between a leader and a “unit process”

݅݊ܿ௫!ℓ ℓ′

݅݊ܿ௫?0௫ 1௫

Simulating counter machines

• ݔ “ has value ݊” modelled by ݊ processes in state 1௖
• ℓ:ݔ ≔ ݔ + 1; ℓᇱ … easy to simulate: rendez-vous

between a leader and a “unit process”

݅݊ܿ௫!ℓ ℓ′

݅݊ܿ௫?0௫ 1௫

• ℓ: ݔ ≔ ݔ − 1; ℓᇱ … similar

Simulating counter machines

• ݔ “ has value ݊” modelled by ݊ processes in state 1௖
• ℓ:ݔ ≔ ݔ + 1; ℓᇱ … easy to simulate: rendez-vous

between a leader and a “unit process”

݅݊ܿ௫!ℓ ℓ′

• ℓ: ݔ ≔ ݔ − 1; ℓᇱ … similar
• Problem: simulate ℓ:	if ݔ = 0 then goto ℓᇱelse	goto	ℓᇱᇱ	

Rendez-vous cannot check that no process is in state 1௫

݅݊ܿ௫?0௫ 1௫

Simulating counter machines

• Idea: Simulate only counters counting up to ݇
• Introduce for each counter ݔ a complementary counter

and ,ݔ maintain the invariant ݔ + ݔ = ݇

Simulating counter machines

• Idea: Simulate only counters counting up to ݇
• Introduce for each counter ݔ a complementary counter

and ,ݔ maintain the invariant ݔ + ݔ = ݇
• Simulate ℓ:	if ݔ = 0 then goto ℓᇱelse	goto	ℓᇱᇱ by a

nondeterministic choice

ℓ:				goto ℓଵ or goto ℓଶ
ℓଵ:		ݔ ≔ ݔ − ݔ ;݇ ≔ ݔ + ݇; goto ℓᇱ
ℓଶ:		x ≔ ݔ − 1; x ≔ ݔ + 1;	goto ℓᇱᇱ

Simulating counter machines

• Idea: Simulate only counters counting up to ݇
• Introduce for each counter ݔ a complementary counter

and ,ݔ maintain the invariant ݔ + ݔ = ݇
• Simulate ℓ:	if ݔ = 0 then goto ℓᇱelse	goto	ℓᇱᇱ by a

nondeterministic choice

ℓ:				goto ℓଵ or goto ℓଶ
ℓଵ:		ݔ ≔ ݔ − ݔ ;݇ ≔ ݔ + ݇; goto ℓᇱ
ℓଶ:		x ≔ ݔ − 1; x ≔ ݔ + 1;	goto ℓᇱᇱ

• The execution of this code can get stuck, but if it
terminates it faithfully simulates the zero-test.

Simulating counter machines

• Idea: Simulate only counters counting up to ݇
• Introduce for each counter ݔ a complementary counter

and ,ݔ maintain the invariant ݔ + ݔ = ݇
• Simulate ℓ:	if ݔ = 0 then goto ℓᇱelse	goto	ℓᇱᇱ by a

nondeterministic choice

ℓ:				goto ℓଵ or goto ℓଶ
ℓଵ:		ݔ ≔ ݔ − ݔ ;݇ ≔ ݔ + ݇; goto ℓᇱ
ℓଶ:		x ≔ ݔ − 1; x ≔ ݔ + 1;	goto ℓᇱᇱ

• The execution of this code can get stuck, but if it
terminates it faithfully simulates the zero-test.

Cheat!!! You can’t
directly simulate me! You
only know how to
simulate ݔ ≔ ݔ − 1!

Simulating counter machines

• Question: By how large a number ݇ can templates with a
total of O(݊) states decrease a counter ݔ ?

Simulating counter machines

• Question: By how large a number ݇ can templates with a
total of O(݊) states decrease a counter ݔ ?

• First answer: ݇ = ܱ(݊)

• One leader template:

݀݁ܿ௫!
ℓ଴ ℓଵ ݀݁ܿ௫!

ℓ௡ℓ௡ିଵ

⋯݀݁ܿ௫!

Simulating counter machines

• Question: By how large a number ݇ can templates with a
total of O(݊) states decrease a counter ܿ ?

• Better answer: ݇ = 2ை(௡)

• Iterated doubling:
!଴݋݃

!ଵ݋݃ !ଵ݋݃

?଴݁݊݋݀

߱

?଴݋݃

?ଵ݁݊݋݀ ?ଵ݁݊݋݀ !଴݁݊݋݀

!ଶ݋݃ !ଶ݋݃ ?ଶ݁݊݋݀ ?ଶ݁݊݋݀ !ଵ݁݊݋݀

!௡݋݃ !௡݋݃ ?௡݁݊݋݀ ?௡݁݊݋݀ !௡ିଵ݁݊݋݀

݀݁ܿ௫! !௡݁݊݋݀

?ଵ݋݃

?௡ିଵ݋݃
?௡݋݃

… … …

Simulating counter machines

• Question: By how large a number ݇ can templates with a
total of O(݊) states decrease a counter ݔ ?

• Best answer (Lipton): ݇ = 2ଶ೙

Simulating counter machines

• Question: By how large a number ݇ can templates with a
total of O(݊) states decrease a counter ݔ ?

• Best answer (Lipton): ݇ = 2ଶ೙

• Iterated squaring

Iterative squaring

• Given templates simulating ࢞ ≔ ࢞ as	࢓−

for ݅ = ݉	to	1
ݔ ≔ ݔ − 1

endfor

Lipton constructs templates simulating ࢞ ≔ ࢞ ଶ࢓− as

for ݆ = ݉	to	1
for ݅ = ݉	to	1
ݔ ≔ ݔ − 1

endfor
endfor

Upper bound
Lower bound
[Lipton 1976]

Upper bound
[Rackoff 1978]:

If the goal state is
coverable, then it is
coverable in an
instance with 2ଶ௡

processes.

Upper bound

• Fix a template ܶ with ݊ states ݍଵ, … , ௡ݍ
• For every configuration ܿ of ܶ (initial or not!), let
ℓ ܿ be the length of the shortest sequence
covering ݍଵ (if it exists).

• Let ݂ ݊ be the maximum of all ℓ ܿ .
• How fast can ݂ ݊ grow with ݊ ?

Upper bound
• Define ݃ ݊, ݅ as ݂ ݊ , but starting from

“߱-configurations” of the form ݇ଵ, … , ݇௜ ,߱, … ,߱
where ߱ means „arbitrarily many“.
We are interested in ݃ ݊,݊ = ݂ ݊

• We have ݃ ݊, 0 = 1
• Rackoff shows by induction:

݃ ݊, ݅ = ݃ ݊, ݅ − 1 ௜ + ݃(݊, ݅ − 1)

• A little math gives ݃ ݊,݊ ≤ 2ଶ೙

Upper bound
Given a sequence ܿ଴ → ܿଵ → ⋯ → ܿ௄ such that
• ܿ଴ = (݇ଵ, … ,݇௜,߱, … ,߱) and ܿ௄ covers ݍௗ,
find another sequence ܿ଴ → ܿଵᇱ → ⋯ → ܿ௄ᇲ

ᇱ such that
• ܿ′௄ᇲ covers ݍௗ , and ܭᇱ ≤ ݃ ݊, ݅ = ݃ ݊, ݅ − 1 ௜ + ݃(݊, ݅ − 1)

݇ଵ
݇ଶ
…

݇௜ିଵ
݇௜

ܿ଴

߱
…

߱

߱
…

߱

ܿଵ ܿଶ

߱
…

߱

…

߱
…

߱

…

߱
…

߱

≥ 1	

ܿ௄

߱
…

߱

ଵݍ
ଶݍ
…

௜ିଵݍ
௜ݍ
௜ାଵݍ

…

௡ݍ

ௗݍ

All ܿ௜ different

ܿ଴

߱
…

߱

߱
…

߱

ܿଵ ܿଶ

߱
…

߱

…

߱
…

߱

…

߱
…

߱

	

ܿ௄

߱
…

߱

ଵݍ
ଶݍ
…

௜ିଵݍ
௜ݍ
௜ାଵݍ

…

௡ݍ

≥ 1	

Upper bound
Case 1

No number here
greater than
݃(݊, ݅ − 1)

ௗݍ

Upper bound
Case 1

ܿ଴

߱
…

߱

߱
…

߱

ܿଵ ܿଶ

߱
…

߱

…

߱
…

߱

…

߱
…

߱

	

ܿ௄

߱
…

߱

ଵݍ
ଶݍ
…

௜ିଵݍ
௜ݍ
௜ାଵݍ

…

௡ݍ

No number here
greater than
݃(݊, ݅ − 1)

1

ܭ ≤ ݃ ݊, ݅ − 1 ௜ ≤ ݃ ݊, ݅

≥ 1	 ௗݍ

Upper bound
Case 1

ܿ଴

߱
…

߱

߱
…

߱

… ܿ௅

߱
…

߱

ܿ௅ାଵ

߱
…

߱

…

߱
…

߱

	

ܿ௄

߱
…

߱

ଵݍ
ଶݍ
…

௜ିଵݍ
௜ݍ
௜ାଵݍ

…

௡ݍ

Case 2

݉

݉ > ݃(݊, ݅ − 1)
No number
here greater

than
݃(݊, ݅ − 1)

Upper bound
Case 1

ܿ଴

߱
…

߱

߱
…

߱

… ܿ௅

߱
…

߱

ܿ௅ାଵ

߱
…

߱

…

߱
…

߱

	

ܿ௄

߱
…

߱

ଵݍ
ଶݍ
…

௜ିଵݍ
௜ݍ
௜ାଵݍ

…

௡ݍ

Case 2

m

݉ > ݃(݊, ݅ − 1)
No number
here greater

than
݃(݊, ݅ − 1)

ܮ ≤ ݃ ݊, ݅ − 1 ௜
Same argument

as in Case 1

Upper bound
Case 1

ܿ଴

߱
…

߱

߱
…

߱

… ܿ௅

߱
…

߱

ܿ௅ାଵ

߱
…

߱

…

߱
…

߱

	

ܿ௅ᇲ
ᇱ

߱
…

߱

ଵݍ
ଶݍ
…

௜ିଵݍ
௜ݍ
௜ାଵݍ

…

௡ݍ

Case 2

m

݉ > ݃(݊, ݅ − 1)
No number
here greater

than
݃(݊, ݅ − 1)

ܮ ≤ ݃ ݊, ݅ − 1 ௜

߱ ߱ ߱

≤ ݃(݊, ݅ − 1)

Induction
hypothesis

Upper bound
Case 1

ܿ଴

߱
…

߱

߱
…

߱

… ܿ௅

߱
…

߱

ܿ௅ାଵᇱ

߱
…

߱

…

߱
…

߱

	

ܿ௄ᇱ

߱
…

߱

ଵݍ
ଶݍ
…

௜ିଵݍ
௜ݍ
௜ାଵݍ

…

௡ݍ

Case 2

݉

݉ > ݃(݊, ݅ − 1)
No number
here greater

than
݃(݊, ݅ − 1)

ܮ ≤ ݃ ݊, ݅ − 1 ௜ ≤ ݃(݊, ݅ − 1)

݉′ ݉ᇱ > ݉ − ݃ ݊, ݅ − 1 > 0…

Enough processes!

Upper bound
Case 1

ܿ଴

߱
…

߱

߱
…

߱

… ௅ܥ

߱
…

߱

௅ାଵᇱܥ

߱
…

߱

…

߱
…

߱

	

௄ᇱܥ

߱
…

߱

ଵݍ
ଶݍ
…

௜ିଵݍ
௜ݍ
௜ାଵݍ

…

௡ݍ

Case 2

݉

݉ > ݃(݊, ݅ − 1)
No number
here greater

than
݃(݊, ݅ − 1)

≤ ݃ ݊, ݅ − 1 ௜ + ݃ ݊, ݅ − 1 = ݃(݊, ݅)

݉′ ݉ᇱ > ݉ − ݃ ݊, ݅ − 1 > 0…

Rendez-vous
Upper bound
[Rackoff 1978]:Unfortunately, for us

verifiers this upper
bound is algorithmically
pretty useless …

Backwards Reachability for Rendez-Vous

Theorem [Bozzelli, Ganty 2012]: Backwards
reachability runs in double exponential time
for rendez-vous systems.

Init
:ଵܥ = ܥ

ଶܥ ≔ ଵܥ ∪ (ଵܥ)݁ݎ݌

ଶܥ ≔ ଶܥ ∪ (ଶܥ)݁ݎ݌

Backwards Reachability for Rendez-Vous

Theorem [Bozzelli, Ganty 2012]: Backwards
reachability runs in double exponential time
for rendez-vous systems.

Init
:ଵܥ = ܥ

ଶܥ ≔ ଵܥ ∪ (ଵܥ)݁ݎ݌

ଶܥ ≔ ଶܥ ∪ (ଶܥ)݁ݎ݌

But backwards algorithms often
generate too many unreachable
states! Cant´t you come up with
a forward exploration algorithm?

Forward Algorithms

The Karp-Miller coverability graph (1969).
• Graph with ߱-configurations as nodes

Forward Algorithms

The Karp-Miller coverability graph (1969).
• Graph with ߱-configurations as nodes
• Initial ߱-configuration

for ऍ= 1,0, ଵܰ, ଶܰ : 	(1,0,߱,߱)

Forward Algorithms

The Karp-Miller coverability graph (1969).
• Graph with ߱-configurations as nodes
• Initial ߱-configuration

for ऍ= 1,0, ଵܰ, ଶܰ : 	(1,0,߱,߱)
• Construct a „forward reachability graph“

using ߱ − 1 = ߱

Forward Algorithms

The Karp-Miller coverability graph (1969).
• Graph with ߱-configurations as nodes
• Initial ߱-configuration

for ऍ= 1,0, ଵܰ, ଶܰ : 	(1,0,߱,߱)
• Construct a „forward reachability graph“

using ߱ − 1 = ߱

ଵݍ!ܽ ଶݍ

ଷݍ ?ସܽݍ

Forward Algorithms

The Karp-Miller coverability graph (1969).
• Graph with ߱-configurations as nodes
• Initial ߱-configuration

for ऍ= 1,0, ଵܰ, ଶܰ : 	(1,0,߱,߱)
• Construct a „forward reachability graph“

using ߱ − 1 = ߱

ଵݍ!ܽ ଶݍ

ଷݍ ?ସܽݍ

(1,0,2,1)
௔
→ (0,1,1,2)

Forward Algorithms

The Karp-Miller coverability graph (1969).
• Graph with ߱-configurations as nodes
• Initial ߱-configuration

for ऍ= 1,0, ଵܰ, ଶܰ : 	(1,0,߱,߱)
• Construct a „forward reachability graph“

using ߱ − 1 = ߱

ଵݍ!ܽ ଶݍ

ଷݍ ?ସܽݍ

(1,0,2,1)
௔
→ (0,1,1,2)

(1,0,߱, 1)
௔
→ (0,1,߱, 2)

Forward Algorithms

The Karp-Miller coverability graph (1969).
• Graph with ߱-configurations as nodes
• Initial ߱-configuration

for ऍ= 1,0, ଵܰ, ଶܰ : 	(1,0,߱,߱)
• Construct a „forward reachability graph“

using ߱ − 1 = ߱

ଵݍ!ܽ ଶݍ

ଷݍ ?ସܽݍ

(1,0,2,1)
௔
→ (0,1,1,2)

(1,0,߱, 1)
௔
→ (0,1,߱, 2)

Problem:
termination!!

Forward Algorithms

• Karp-Miller graph: „Accelerate“ the
construction:
If (߱, 1, 1, 0) → ⋯ → (߱, 2, 1, 2)
then (߱, 1, 1, 0) → ⋯ → (߱, 2, 1, 2)

→ ⋯ → (߱, 3, 1, 4)
→ ⋯ → (߱, 4, 1, 6)
⋯

Replace ߱, 2, 1, 2 by (߱,߱, 1,߱)
Observe: the replacement is „safe“ with
respect to coverability, all configurations under
߱,߱, 1,߱ are coverable

Forward Algorithms

• Karp-Miller graph: „Accelerate“ the
construction:
If (߱, 1, 1, 0) → ⋯ → (߱, 2, 1, 2)
then (߱, 1, 1, 0) → ⋯ → (߱, 2, 1, 2)

→ ⋯ → (߱, 3, 1, 4)
→ ⋯ → (߱, 4, 1, 6)
⋯

Replace ߱, 2, 1, 2 by (߱,߱, 1,߱)
Observe: the replacement is „safe“ with
respect to coverability, all configurations under
߱,߱, 1,߱ are coverable

Forward Algorithms

• Karp-Miller graph: „Accelerate“ the
construction:
If (߱, 1, 1, 0) → ⋯ → (߱, 2, 1, 2)
then (߱, 1, 1, 0) → ⋯ → (߱, 2, 1, 2)

→ ⋯ → (߱, 3, 1, 4)
→ ⋯ → (߱, 4, 1, 6)
⋯

Replace ߱, 2, 1, 2 by (߱,߱, 1,߱)
Observe: the replacement is „safe“ with
respect to coverability, all configurations under
߱,߱, 1,߱ are coverable

Forward Algorithms

• Theorem (Karp, Miller 69): The Karp-
Miller graph is always finite.

• Theorem (Karp, Miller 69): A state is
coverable iff it is covered by some node
of the Karp-Miller graph.

• Theorem (Mayr, Meyer 81): The Karp-
Miller graph can have non-primitive
recursive size.

• So forward-search more expensive than
backward-search?

Forward Algorithms

• Theorem (Karp, Miller 69): The Karp-
Miller graph is always finite.

• Theorem (Karp, Miller 69): A state is
coverable iff it is covered by some node
of the Karp-Miller graph.

• Theorem (Mayr, Meyer 81): The Karp-
Miller graph can have non-primitive
recursive size.

• So forward-search more expensive than
backward-search?

Forward Algorithms

• Theorem (Karp, Miller 69): The Karp-
Miller graph is always finite.

• Theorem (Karp, Miller 69): A state is
coverable iff it is covered by some node
of the Karp-Miller graph.

• Theorem (Mayr, Meyer 81): The Karp-
Miller graph can have non-primitive
recursive size.

• So forward-search more expensive than
backward-search?

Forward Algorithms

• Theorem (Karp, Miller 69): The Karp-
Miller graph is always finite.

• Theorem (Karp, Miller 69): A state is
coverable iff it is covered by some node
of the Karp-Miller graph.

• Theorem (Mayr, Meyer 81): The Karp-
Miller graph can have non-primitive
recursive size.

• So forward-search more expensive than
backward-search?

Forward Algorithms

• Expand, Enlarge, Check (Geeraerts et al. 2004)
 The Karp-Miller acceleration is „exact“ with respect to

coverability: It only introduces an ߱ when it is safe to
do so.

 Construct instead a sequence of
„underapproximations“ and „overapproximations“ :
 the ݅-th underapproximation contains the state spaces of all

instances with at most ݅ processes.
 the ݅-th overapproximation identifies „more than
݅	processes“ with „arbitrarily many“.

• .

Forward Algorithms

• Theorem (Geeraerts et al. 2004): The Expand-
Enlarge-Check algorithm terminates.
– If ௗݍ is coverable, then some underapproximation

discovers it.
– If ௗݍ is not coverable, then let ܭ be the largest

number (not ߱!) in the (finite) Karp-Miller graph. The
overapproximation for ݅ = ܭ is at least as precise as
the Karp-Miller graph.

• Theorem [Majumdar, Zhang 2013]: The EEC
algorithm solves coverability in double
exponential time.

Forward Algorithms

• Theorem (Geeraerts et al. 2004): The Expand-
Enlarge-Check algorithm terminates.
– If ௗݍ is coverable, then some underapproximation

discovers it.
– If ௗݍ is not coverable, then let ܭ be the largest

number (not ߱!) in the (finite) Karp-Miller graph. The
overapproximation for ݅ = ܭ is at least as precise as
the Karp-Miller graph.

• Theorem [Majumdar, Zhang 2013]: The EEC
algorithm solves coverability in exponential
space.

The Leaderless Case

• Karp-Miller graph for a leaderless parametrized
configuration:
– Initial ߱-configuration of the form (߱, … ,߱, 0, … , 0)

The Leaderless Case

ଷݍ

߱ ߱
ܽ!

߱ 0
?ସܽݍ

ଵݍ ଶݍ

• Karp-Miller graph for a leaderless parametrized
configuration:
– Initial ߱-configuration of the form (߱, … ,߱, 0, … , 0)

(… ,߱,߱,߱, 0, …)
௔
→ (… ,߱,߱,߱, 1, …)

The Leaderless Case

ଷݍ

߱ ߱
ܽ!

߱ 0
?ସܽݍ

ଵݍ ଶݍ

• Karp-Miller graph for a leaderless parametrized
configuration:
– Initial ߱-configuration of the form (߱, … ,߱, 0, … , 0)

(… ,߱,߱,߱, 0, …)
௔
→ (… ,߱,߱,߱, 1, …)

is accelerated to

… ,߱,߱,߱, 0, …
௔
→ (… ,߱,߱,߱,߱, …)

The Leaderless Case

(… ,߱,߱,߱, 0, …)
௔
→ (… ,߱,߱,߱, 1, …)

ଷݍ

߱ ߱
ܽ!

߱ 0
?ସܽݍ

ଵݍ ଶݍ

is accelerated to

… ,߱,߱,߱, 0, …
௔
→ (… ,߱,߱,߱,߱, …)

– So every ߱-configuration of the graph contains only
0´s and ߱´s.

• Karp-Miller graph for a leaderless parametrized
configuration:
– Initial ߱-configuration of the form (߱, … ,߱, 0, … , 0)

The Leaderless Case

Fact 1: Every ߱-configuration of the graph
contains only 0´s and ߱´s.
Consequence: The graph has at most 2௡ states
Fact 2: along every path the ߱‘s increase
monotonically
Consequence: Every simple path of the graph has
at most length ݊, and so the coverability problem
is in NP

The Leaderless Case

Fact 1: Every ߱-configuration of the graph
contains only 0´s and ߱´s.
Consequence: The graph has at most 2௡ states
Fact 2: along every path the ߱‘s increase
monotonically
Consequence: Every simple path of the graph has
at most length ݊, and so the coverability problem
is in NP

The Leaderless Case

Fact 1: Every ߱-configuration of the graph
contains only 0´s and ߱´s.
Consequence: The graph has at most 2௡ states
Fact 2: Along every path the ߱‘s increase
monotonically
Consequence: Every simple path of the graph has
at most length ݊, and so the coverability problem
is in NP

The Leaderless Case

Fact 1: Every ߱-configuration of the graph
contains only 0´s and ߱´s.
Consequence: The graph has at most 2௡ states
Fact 2: Along every path the ߱‘s increase
monotonically
Consequence: Every simple path of the graph has
at most length ݊, and so the coverability problem
is in NP

The Leaderless Case
Fact 3: If (… , 0,߱, 0, …)

(… ,߱,߱, 0, …) (… , 0,߱,߱, …)

a b

(… , 0,߱, 0, …)

(… ,߱,߱, 0, …) (… , 0,߱,߱, …)

a b

(… ,߱,߱,߱, …)
b a

then

The Leaderless Case
Fact 3: If (… , 0,߱, 0, …)

(… ,߱,߱, 0, …) (… , 0,߱,߱, …)

a b

(… , 0,߱, 0, …)

(… ,߱,߱, 0, …) (… , 0,߱,߱, …)

a b

(… ,߱,߱,߱, …)
b a

then

Consequence:
We can compute
the set of ߱’s
reachable after
1,2, … n steps in
PTIME

The Leaderless Case

Theorem (German, Sistla 92): The
coverability problem for leaderless
parametrized configurations is
solvable in PTIME.

Shared memory, no
locking
 Concurrent reads and

writes allowed
 Interleaving semantics

Comm. Mechanisms: Shared memory

Shared memory
• A lock for every

shared variable
• Process owning the

lock can perform
reads and writes

Examples
– Multithreaded programs

Shared memory

• Shared memory communication can be simulated by
rendez-vous communication, and vice versa.
– Shared memory → Rendez-vous:

Consider each shared variable as a leader template
with one state for each possible memory value

– Rendez-vous → Shared memory: one memory value
per action

• Theorem: The coverability problem for shared-memory
systems is EXPSPACE-complete

Shared memory

• Shared memory communication can be simulated by
rendez-vous communication, and vice versa.
– Shared memory → Rendez-vous:

Consider each shared variable as a leader template
with one state for each possible memory value

– Rendez-vous → Shared memory: one memory value
per action

• Theorem: The coverability problem for shared-memory
systems is EXPSPACE-complete

Shared memory

• Shared memory communication can be simulated by
rendez-vous communication, and vice versa.
– Shared memory → Rendez-vous:

Consider each shared variable as a leader template
with one state for each possible memory value

– Rendez-vous → Shared memory: one memory value
per action, plus one for „currently empty“

• Theorem: The coverability problem for shared-memory
systems is EXPSPACE-complete

Shared memory

• Shared memory communication can be simulated by
rendez-vous communication, and vice versa.
– Shared memory → Rendez-vous:

Consider each shared variable as a leader template
with one state for each possible memory value

– Rendez-vous → Shared memory: one memory value
per action, plus one for „currently empty“

• Theorem: The coverability problem for shared-memory
systems is EXPSPACE-complete

The Leaderless Case

• However: the simulation does not preserve
„leaderlessness“

Theorem: The coverability problem for shared-
memory systems EXPSPACE-complete for
leaderless initial configurations

Shared memory, no
locking
 Concurrent reads and

writes allowed
 Interleaving semantics

Comm.Mech: Lock-free Shared Memory

Lock-free shared
memory
 Concurrent reads and

writes allowed
 Interleaving semantics

ௗ(2)ݎ

ௗ(1)ݓ

ௗ(1)ݎ

ௗ(3)ݎ

௖(1)ݎ
௖(3)ݓ

௖(2)ݓ

௖(1)ݎ
௖(1)ݓ

0

Comm.Mech: Lock-free Shared Memory

ௗ(2)ݎ

ௗ(1)ݓ

ௗ(1)ݎ

ௗ(3)ݎ

௖(1)ݎ
௖(3)ݓ

௖(2)ݓ

௖(1)ݎ ௖(1)ݓ

௖(1)ݎ
௖(3)ݓ

௖(2)ݓ

௖(1)ݎ ௖(1)ݓ

0

ܰ = 2

ௗ(2)ݎ

ௗ(1)ݓ

ௗ(1)ݎ

ௗ(3)ݎ

௖(1)ݎ
௖(3)ݓ

௖(2)ݓ

௖(1)ݎ ௖(1)ݓ

௖(1)ݎ
௖(3)ݓ

௖(2)ݓ

௖(1)ݎ ௖(1)ݓ

0

ܰ = 2

ௗ(2)ݎ

ௗ(1)ݓ

ௗ(1)ݎ

ௗ(3)ݎ

௖(1)ݎ
௖(3)ݓ

௖(2)ݓ

௖(1)ݎ ௖(1)ݓ

௖(1)ݎ
௖(3)ݓ

௖(2)ݓ

௖(1)ݎ ௖(1)ݓ

1

ௗ(2)ݎ

ௗ(1)ݓ

ௗ(1)ݎ

ௗ(3)ݎ

௖(1)ݎ
௖(3)ݓ

௖(2)ݓ

௖(1)ݎ ௖(1)ݓ

௖(1)ݎ
௖(3)ݓ

௖(2)ݓ

௖(1)ݎ ௖(1)ݓ

1

ௗ(2)ݎ

ௗ(1)ݓ

ௗ(1)ݎ

ௗ(3)ݎ

௖(1)ݎ
௖(3)ݓ

௖(2)ݓ

௖(1)ݎ ௖(1)ݓ

௖(1)ݎ
௖(3)ݓ

௖(2)ݓ

௖(1)ݎ ௖(1)ݓ

1

ௗ(2)ݎ

ௗ(1)ݓ

ௗ(1)ݎ

ௗ(3)ݎ

௖(1)ݎ
௖(3)ݓ

௖(2)ݓ

௖(1)ݎ ௖(1)ݓ

௖(1)ݎ
௖(3)ݓ

௖(2)ݓ

௖(1)ݎ ௖(1)ݓ

1

ௗ(2)ݎ

ௗ(1)ݓ

ௗ(1)ݎ

ௗ(3)ݎ

௖(1)ݎ
௖(3)ݓ

௖(2)ݓ

௖(1)ݎ ௖(1)ݓ

௖(1)ݎ
௖(3)ݓ

௖(2)ݓ

௖(1)ݎ ௖(1)ݓ

1

ௗ(2)ݎ

ௗ(1)ݓ

ௗ(1)ݎ

ௗ(3)ݎ

௖(1)ݎ
௖(3)ݓ

௖(2)ݓ

௖(1)ݎ ௖(1)ݓ

௖(1)ݎ
௖(3)ݓ

௖(2)ݓ

௖(1)ݎ ௖(1)ݓ

1

ௗ(2)ݎ

ௗ(1)ݓ

ௗ(1)ݎ

ௗ(3)ݎ

௖(1)ݎ
௖(3)ݓ

௖(2)ݓ

௖(1)ݎ ௖(1)ݓ

௖(1)ݎ
௖(3)ݓ

௖(2)ݓ

௖(1)ݎ ௖(1)ݓ

2

ௗ(2)ݎ

ௗ(1)ݓ

ௗ(1)ݎ

ௗ(3)ݎ

௖(1)ݎ
௖(3)ݓ

௖(2)ݓ

௖(1)ݎ ௖(1)ݓ

௖(1)ݎ
௖(3)ݓ

௖(2)ݓ

௖(1)ݎ ௖(1)ݓ

2

ௗ(2)ݎ

ௗ(1)ݓ

ௗ(1)ݎ

ௗ(3)ݎ

௖(1)ݎ
௖(3)ݓ

௖(2)ݓ

௖(1)ݎ ௖(1)ݓ

௖(1)ݎ
௖(3)ݓ

௖(2)ݓ

௖(1)ݎ ௖(1)ݓ

2

ௗ(2)ݎ

ௗ(1)ݓ

ௗ(1)ݎ

ௗ(3)ݎ

௖(1)ݎ
௖(3)ݓ

௖(2)ݓ

௖(1)ݎ ௖(1)ݓ

௖(1)ݎ
௖(3)ݓ

௖(2)ݓ

௖(1)ݎ ௖(1)ݓ

2

ௗ(2)ݎ

ௗ(1)ݓ

ௗ(1)ݎ

ௗ(3)ݎ

௖(1)ݎ
௖(3)ݓ

௖(2)ݓ

௖(1)ݎ ௖(3)ݓ

௖(1)ݎ
௖(3)ݓ

௖(2)ݓ

௖(1)ݎ ௖(1)ݓ

1

ௗ(2)ݎ

ௗ(1)ݓ

ௗ(1)ݎ

ௗ(3)ݎ

௖(1)ݎ
௖(3)ݓ

௖(2)ݓ

௖(1)ݎ ௖(3)ݓ

௖(1)ݎ
௖(3)ݓ

௖(2)ݓ

௖(1)ݎ ௖(1)ݓ

1

ௗ(2)ݎ

ௗ(1)ݓ

ௗ(1)ݎ

ௗ(3)ݎ

௖(1)ݎ
௖(3)ݓ

௖(2)ݓ

௖(1)ݎ ௖(1)ݓ

௖(1)ݎ
௖(3)ݓ

௖(2)ݓ

௖(1)ݎ ௖(1)ݓ

1

ௗ(2)ݎ

ௗ(1)ݓ

ௗ(1)ݎ

ௗ(3)ݎ

௖(1)ݎ
௖(3)ݓ

௖(2)ݓ

௖(1)ݎ ௖(1)ݓ

௖(1)ݎ
௖(3)ݓ

௖(2)ݓ

௖(1)ݎ ௖(1)ݓ

1

ௗ(2)ݎ

ௗ(1)ݓ

ௗ(1)ݎ

ௗ(3)ݎ

௖(1)ݎ
௖(3)ݓ

௖(2)ݓ

௖(1)ݎ ௖(1)ݓ

௖(1)ݎ
௖(3)ݓ

௖(2)ݓ

௖(1)ݎ ௖(1)ݓ

1

ௗ(2)ݎ

ௗ(1)ݓ

ௗ(1)ݎ

ௗ(3)ݎ

௖(1)ݎ
௖(3)ݓ

௖(2)ݓ

௖(1)ݎ ௖(1)ݓ

௖(1)ݎ
௖(3)ݓ

௖(2)ݓ

௖(1)ݎ ௖(1)ݓ

3

ௗ(2)ݎ

ௗ(1)ݓ

ௗ(1)ݎ

ௗ(3)ݎ

௖(1)ݎ
௖(3)ݓ

௖(2)ݓ

௖(1)ݎ ௖(1)ݓ

௖(1)ݎ
௖(3)ݓ

௖(2)ݓ

௖(1)ݎ ௖(1)ݓ

3

ௗ(2)ݎ

ௗ(1)ݓ

ௗ(1)ݎ

ௗ(3)ݎ

௖(1)ݎ
௖(3)ݓ

௖(2)ݓ

௖(1)ݎ ௖(1)ݓ

௖(1)ݎ
௖(3)ݓ

௖(2)ݓ

௖(1)ݎ ௖(1)ݓ

3

Lock-free Shared Memory

Theorem (E.,Ganty, Majumdar 2013, 2015)
The coverability problem for lock-free shared
memory is NP-complete.
In the leaderless case, the problem is polynomial.

Lock-free Shared Memory

• Configuration: triple ,ݍ) where ,(ܥ,ݒ
– ݍ : state of the leader
– ݒ : current value of the store
– ܥ : number of processes in each state of contributor

Lock-free Shared Memory

• We construct the Karp-Miller graph:
If [q, v, ߱, 1, 1, 0] → ⋯ → [q, v, ߱, 2, 1, 2]
then [q, v, ߱, 1, 1, 0] → ⋯ → [q, v, ߱, 2, 1, 2]

→ ⋯ → [q, v, ߱, 3, 1, 4]
→ ⋯ → [q, v, ߱, 4, 1, 6]

⋯
Replace [q, v, ߱, 2, 1, 2] by [q, v ߱,߱, 1,߱]

Lock-free Shared Memory

Fact 1: Every ߱-configuration of the graph contains
only 0´s and ߱´s.

[q, v, ߱, 0, …] → [q, v, ߱, 1, …]
→ [q, v, ߱, 2, …]
→ [q, v, ߱, 3, …] ⋯

Replace [q, v, ߱, 1, …] by [q, v ߱,߱, …]

߱ 0
௖ݎ ݒ

ଵݍ ଶݍ
ݒ

Lock-free Shared Memory

Fact 1: Every ߱-configuration of the graph contains
only 0´s and ߱´s.

[q, v, ߱, 0, …] → [q, v, ߱, 1, …]
→ [q, v, ߱, 2, …]
→ [q, v, ߱, 3, …] ⋯

Replace [q, v, ߱, 1, …] by [q, v ߱,߱, …]

߱ 0
௖ݎ ݒ

ଵݍ ଶݍ
ݒ

Lock-free Shared Memory

Fact 2: In every run, the ߱′s grow monotonically.
Consequence: Every simple path of the Karp-Miller
graph has length ݊௟ ⋅ ݊௩ ⋅ ݊௖ where

• ݊௟ number of states of leader template
• ݊௩ number of values
• ݊௖ number of states of contributor template

Therefore: coverability is in NP.

Lock-free Shared Memory

Fact 2: In every run, the ߱′s grow monotonically.
Consequence: Every simple path of the Karp-Miller
graph has length ݊௟ ⋅ ݊௩ ⋅ ݊௖ where

• ݊௟ number of states of leader template
• ݊௩ number of values
• ݊௖ number of states of contributor template

Therefore: coverability is in NP.

Lock-free Shared Memory

Compare with: The coverability problem for a fixed
number of contributor processes is PSPACE-
complete.

Shared memory without locking
Theorem (E.,Ganty, Majumdar 2013)
The problem remains NP-complete if the template is a
polytime Turing machine

This means we cannot distribute an
exponentially long computation onto
exponentially many machines so that
each machine only does polynomial
work.

Not covered work and open questions

Not covered work and open questions

Not covered work and open questions

Not covered work and open questions

That´s
all!

