Parameterized Verification
Keeping Crowds Safe

Lo BN B B e

A

A & ﬁ -
Javier Esparza

S il .__J' ';: b
!ﬂ. | I ki i) ‘I"l

~Program Verification? Why don't you give up?*“

Theorem (Alan Turing, 1936)
Program termination is undecidable.

~Program Verification? Why don't you give up?*“

Theorem (Alan Turing, 1936)
Program termination is undecidable.

Theorem (Henry G. Rice, 1961)

Every non-trivial property of programs X
Is undecidable. & 3
Pl

~Program Verification? Why don't you give up?*“

Theorem (Alan Turing, 1936)
Program termination is undecidable.

Theorem (Henry G. Rice, 1961)

Every non-trivial property of programs
IS undecidable.

Theorem (Marvin Minsky, 1969)

Every non-trivial property of while-
programs with two counter variables iIs
undecidable.

Because ...

* Undecidablility requires some source of
Hnfinity*:
— Variables with an infinite range

— Dynamic data structures (lists, trees)
— Unbounded recursion

e Concurrent systems
— are difficult to get right, and
— often have a finite state space.

Dijkstra’s Mutual Exclusion Algorithm

Solution of a Problem in
Concurrent Programming Control

E. W. DIKSTRA
T'echnological University, Eindhoven, The Netherlands

A number of mainly independent sequential-cyclic processes
with restricted means of communication with each other can
be made in such a way that at any moment one and only one
of them is engaged in the “critical section” of its cycle.

CACM 8:9, 1965

Concurrent programs are often finite-state

The program for the i7th computer (1 <17 < N) 1s:

“integer j;
Li0: b[z] := false;
Ial: if k # 7 then
1i2: begin ci) := true;
Li3: if b[k] then k := 7
go to Lil
end
else
li4: begin c[i] := false;
for j := 1 step 1 until N do
if 7 # 7 and not ¢[j] then go to L2l

end;
critical section;
cli] := true; b[i] := true;

remainder of the cycle in which stopping is allowed;
go to 1407

Concurrent programs are often finite-state

The program for the i7th computer (1 <17 < N) 1s:

“integer j;
Li0: b[z] := false;
Ial: if k # 7 then
1i2: begin cfi) :=
Li3: if b[k] then k :=
go to Lil
end
else
l74: begin c[i] := false;
for j := 1 step 1
if 7 # 7 and not c[J]

end;
critical section;
cli] := true; b[i] := true;

remainder of the cycle in which stopping is allowed;
go to 1407

A Leader Election Algorithm (90s)

An O(nlog n) Unidirectional Distributed Algorithm
for Extrema Finding in a Circle

DANNY DOLEV, MARIA KLAWE, AND MICHAEL RODEH*

behavior of an active process v,

AQ. Send the message (1, max(v))
Al. If a message (1, i) arrives do as follows:
1. If i # max(v) then send the message (2, i),
and assign i to left(v).
2. Otherwise, halt—max(v) 1s the global maximum.
A2. If a message (2, j) arrives do as follows:
1. If left(v) is greater than both j and max(v)
then assign left (v) to max(v),
and send the message {1, max(v)).
2. Otherwise, become passive.

A Cache-Coherence Protocol (00s)

“~
M -
CPU CPU e e o CPU N \
N\
1\
Cache Cache ¢ 0 Cache FrWrr '-~\ Bus Rdf'—‘t h\

E*‘*\

’ ‘ PrNH Privdrs \ J
BusRdx| BusRdX / \
Bus PrR di-

Source: Wikipedia

Busr o f \ ﬂusLdKfFluﬁh

)1y
Memory / o J / i]‘
| S "/Busﬁdx.f lush "'

A Model of a Bluetooth Driver (10s)

int BCSP_IoIncrement (DEVICE_EXTENSION *e) {
if (e->stoppingFlag)

return -1;
atomic {
e—>pendinglo = e->pendinglo + 1;
struct DEVICE_EXTENSION { ¥
. " return 0;
int pendinglo; }

bool stoppingFlag;
. void BCSP_IoDecrement (DEVICE_EXTENSION #*e) {
bool stoppingEvent; int pendinglo;
} - atomic {
e->pendinglo = e->pendinglo - 1;
pendinglo = e->pendinglo;
bool stopped; ¥
if (pendingIo == 0)
e->stoppingEvent = true;

void main() { .
DEVICE EXTENSION *e = void BCSP_PnpAdd(DEVICE_EXTENSION *e) {
- . int status;
malloc(31zeof(DEVICE_EXTENSION)); status = BCSP_IoIncrement (e);
e->pendinglo = 1; if (status == 0) {
e->stoppingFlag = false; i i S::t"??t‘o];;zz_
e->stoppingEvent = false; } ’
stopped = false; BCSP_IoDecrement (e);
async BCSP_PnpStop(e); g
BCSP_PnpAdd(e) ; void BCSP_PnpStop(DEVICE_EXTENSION *e) {
} e->stoppingFlag = true;

BCSP_IoDecrement (e);

assume e->stoppingEvent;

// release allocated resources
stopped = true;

A Model of a Biochemical System (10s)

oo domain

M3K][s,)/register

: elrelease :

SCF

B domain

M2K]s,|/register,

: glrelease

M3K

Y domain

MPK] s,]J’rt:gir;tti
: g/release

M2K

Source: Shangai Institutes for Biological Sciences

MPK

Robot swarms, flocks of birds, vehicular
networks ... (into the 20s?)

Source: Upenn Source: Iridia-CoDE

Source: Wikipedia

Parameterized Verification

« Model-checking tools can only check instances of
these systems for particular values of the number N
of processes.

Can we prove correctness for every N ?

Parameterized Verification

« Model-checking tools can only check instances of
these systems for particular values of the number N

of processes.

Can we prove correctness for every N ?

e Amounts to checking an infinite family of finite-
state systems.

Keeping a Crowd Safe

* The safety /coverablility problem:

— Given: a program template T[i] with finite-range variables,

a ,,dangerous‘ control point ¢ of T[i].

— Decide: Is there a number N such that the crowd

T[A)NT[2] I --- | T[N]

can reach a global state in which at least one of
T[1],T[2],..,T[N] isat £ (,covers“f)?

Parameterized Verification: Give up?

Theorem (folklore): The Halting Problem can be
reduced to the parameterized coverability problem.

Reduction:
— The template models the behaviour of one tape cell.

TM terminates

— It uses a finite number N of cells
— N copies of the template reach the dangerous
control point

Parameterized Verification: Give up?

Reduction:
— The template models the behaviour of one tape cell.

global var: state: {qq,...,q,}

var: cell;: {aq,..an}
var: active;. boolean

If active; then

If state = g and cell; = a then

state := q'; cell; == a’; (q,a) » (q',a’,R)
active; := false; active;,; = true;
endif

endif

Parameterized Verification: Give up?

Reduction:

— The template models the behaviour of one tape cell.

global var: state: {q,, ..., q.}

Hey, what happens at the

right border?

If state = g and ce a then
state == q'; cell; ="ty
active; := false; active;,; = true;

endif

endif

(q.a) - (q',a’,R)

Parameterized Verification: Give up?

Reduction:
— The template models the behaviour of one tape cell.

global var: state: {q,, ..., q.}

Hey, what happens at the

right border?

J

If state = g and ce a then
state == q'; cell; ="ty
active; := false; active;,{ = true;

endif

(q.a) - (q',a’,R)

endif

Parameterized Verification: Give up?

Theorem (folklore): The Halting Problem can be
reduced to the parameterized coverability problem.

Parameterized Verification: Give up?

Theorem (folklore): The Halting Problem can be
reduced to the parameterized coverability problem.

Parameterized
verification iIs
doomed!

ldentities

* In this reduction, processes do not execute exactly
the same code

* The code makes use of the process identity
(the index i) to organize processes in a ring.

ldentities

* In this reduction, processes do not execute exactly
the same code

* The code makes use of the process identity
(the index i) to organize processes in a ring.

e But many systems do not use identities:
—DKR Leader Election uses identities.

— Dijkstra, MESI-protocol, Bluetooth driver,
niochemical systems do not.

ldentities

* In this reduction, processes do not execute exactly
the same code

* The code makes use of the process identity
(the index i) to organize processes in a ring.

e But many systems do not use identities:
—DKR Leader Election uses identities.

— Dijkstra, MESI-protocol, Bluetooth driver,
niochemical systems do not.

* In other systems, processes must remain
anonymous!

Anonymous Crowds

e Goal: investigate the decidability and complexity of
the coverablility problem for crowds in which

(1) every process executes exactly the same code,
(anonymous crowds), and

(2) the number of processes Is unknown to the
processes.

Coverability Problem for Anonymous Crowds

« Given: Afinite automaton) A (a template) and
a ,,dangerous” state g, of A

* Decide: Isthere a number N such that the
anonymous crowd consisting of N copies
of A can reach a global state that covers
(puts at least one process In) state g4 ?

Coverability Problem for Anonymous Crowds

« Given: Afinite automaton) A (a template) and
a ,,dangerous” state g, of A

* Decide: Isthere a number N such that the
anonymous crowd consisting of N copies
of A can reach a global state that covers
(puts at least one process In) state g4 ?

Coverability Problem for Anonymous Crowds

« Given: Afinite automaton) A (a template) and
a ,,dangerous” state g, of A

* Decide: Isthere a number N such that the
anonymous crowd consisting of N copies
of A can reach a global state that covers
(puts at least one process In) state g4 ?

« Initial configurations not yet specified.

Coverability Problem for Anonymous Crowds

Given: Afinite automaton) A (a template) and
a ,,dangerous” state g, of A

Decide: Isthere a number N such that the
anonymous crowd consisting of N copies
of A can reach a global state that covers
(puts at least one process In) state g4 ?

Initial configurations not yet specified.
Communication mechanism not yet specified

Initial Configurations

« A configuration of the system is completely determined
by the number of processes in each state of the
template (no identities)

« Configuration: function Q@ — N, or vector of natural
numbers with |Q| components, or parallel expression

=1{91.92, 93,94}

(3,0,2,1) g Il g5 1l g4

Initial Sets of Configurations

e Parametrized configurations with leaders:
— Exactly one process in some states
— Zero processes in other states
— Arbitrary number of processes in the rest

Initial Sets of Configurations

e Parametrized configurations with leaders:
— Exactly one process in some states (1,0,N)
— Zero processes in other states (10,1, N{,N,)
— Arbitrary number of processes in the rest

Initial Sets of Configurations

e Parametrized configurations with leaders:
— Exactly one process in some states (1,0,N)
— Zero processes in other states (10,1, N{,N,)
— Arbitrary number of processes in the rest

« Leaderless parametrized configurations

— Zero processes in some states
— Arbitrary number of processes in the rest

Initial Sets of Configurations

e Parametrized configurations with leaders:
— Exactly one process in some states (1,0,N)
— Zero processes in other states (10,1, N{,N,)
— Arbitrary number of processes in the rest

« Leaderless parametrized configurations

(O,0,N)

— Zero processes in some states
P (0101 N1, NZ)

— Arbitrary number of processes in the rest

Initial Sets of Configurations

Parametrized configurations with leaders:

— Exactly one process in some states (1,0,N)

— Zero processes in other states (10,1, N{,N,)
— Arbitrary number of processes in the rest

Leaderless parametrized configurations

(O,0,N)

— Zero processes in some states
P (0101 N1, NZ)

— Arbitrary number of processes in the rest

Two variants of the problem, depending on the
Initial parametrized configurations allowed

— Crowds with leaders as DEFAULT option

Coverablility Problem with Leaders

« Glven: Atemplate A,

an initial parametrized

configuration € of A with
leaders,

a ,,dangerous” state g, of A

 Decide: Is there a configuration '
C € Csuch that the crowd — #“sc 3R
starting at c can reach a g
: : : QLD
configuration covering g, ?

e Glven:

e Decide:

Equivalent Formulation

Afiniteset A, ..., A,, of ,leader templates*
with initial states g, ..., g,

a finite set B4, ..., B,, of ,,crowd templates*
with initial states 7y, ..., 13,

a ,,dangerous” state g,

Are there numbers k4, ..., k,,, such that the
configuration with

e one process ineach of q4,...,q,
° ky, ..., k,, processesinry, ..., 1,
can reach a configuration covering q,;?

Coverability Problem without Leaders

« Glven: Atemplate A,

an initial parametrized
leaderless configuration C
of A

« Decide: Isthere a configuration
¢ € C such that the crowd
starting at c can reach a
configuration covering g, ?

/00 of Communication Mechanisms

Global guards Broadcast Rendezvous

State changes of a One process sends, Synchronous exchange
process depend on state everyone receives between two processes
of all others immediately

Shared memory Lock-free shared memory
Processes compete for lock No locks, interleaved
Lock holder reads/writes reads/writes

shared state

High or Low Complexity?

Verifiers want low
complexity

High or Low Complexity?

Verifiers want low ,,Crowd designers* (swarm

complexity Intelligence, population
protocols, crowdsourcing)
want high complexity

Comm. Mechanisms: Global Guards

Global guards

— Process can make a
move If the current
state of all other
processes satisfies some
condition

Examples

 Abstractions of distributed algorithms (bakery,
mutex)

 \ery hard to implement

Comm. Mechanisms: Global Guards

Global guards

— Process can make a
move If the current e i
state of all other 12V 43
processes satisfies some dq

condition

(Vg1 Vg3) A g

Hm A 3g3

Theorem (Emerson and Kahlon, LICS*03)
The symmetric coverability problem is undecidable for
systems communicating with global guards.

Counter Programs

» Sequence of labelled commands of the form
e fix=x+1
e fix=x—1
o . goto ¢’
e ¢. if x = 0thengoto ¢’ else goto ¢"
e £: halt

Theorem (Minsky 69): The problem whether a counter
program with all counters initialized to 0 halts is
undecidable.

Simulating Counter Programs

e One control template T modelling the control flow of
the program, with a state for each program label.
e One counter template X for each counter x, with two
states: O, ,1,
ldea: ,,x has value n“ modeled by n copies of X In
state 1,
A configuration (¢,n4, ..., n;) of the program is
simulated by a configuration of the crowd with
e One processin gy,
° n, processesinl, ,..,mn; processesinl,

* All other processes in 0-states

Simulating Counter Programs

e Simulating : if x = 0 then goto ¢’else goto ¢”

Simulating Counter Programs

e Simulating f:x:=x+1;¢" ..

4 vX:1,vO0, lﬁc\x 1 X:inc, 4
: —0 O
Ox 3T:inc, AN VX:0,V1, % V T:=inc, Lx
O @ -~

inc
® 0, -~()

Simulating Counter Programs

e Simulating f:x:=x+1;¢" ..

4 vX:1,vO0, lﬁc\x 1 X:inc, 4

O : O, (O
Ox 3T:inc, AN VX:0,V1, % V T:=inc, Lx
O,) -~

inc
® 0, -~()

Simulating Counter Programs

e Simulating f:x:=x+1;¢" ..

4 vX:1,vO0, lﬁc\x 1 X:inc, 4

O : O, (O
Ox 3T:inc, AN VX:0,V1, % V T:=inc, Lx
O O ~O

inc
® 0, -~()

Simulating Counter Programs

e Simulating f:x:=x+1;¢" ..

4 vX:1,vO0, lﬁc\x 1 X:inc, 4
Ox 3T:inc, AN VX:0,V1, % V T:=inc, Lx
O O ~O

inc
® 0, -~()

Simulating Counter Programs

e Simulating f:x:=x+1;¢" ..

4 vX:1,vO0, lﬁc\x 1 X:inc, 4
O —0 (©
0, N _ INC, o 1
AT:inc, AN VX.:0, V1, ~ VT:ninc, X
O o ~(®

inc
® 0, -~()

Comm. Mechanisms: Broadcast

Reliable broadcast

— A process sends a
message

b!! a!l
— All other processes
receive the message
(instantaneously) a?? .@ @))b??

Examples
— Distributed algorithms

— Hardware protocols (cache-coherence)
(Emerson and Kahlon 2003)

— Predicate abstractions of multithreaded programs
(Kaiser, Kroening, Liu, Wahl, 2014,2015)

Reliable broadcast

_missl!
rd-miss!! rd-hit
_ S
Wr-miss??

wr-miss!!

Wr-miss??

wr-hit
rd-hit

Reliable broadcast

rd-miss!! rd-hit
_ 2
Wr-miss??
(8,2,6,1)

rd-miss
wr-miss!!
2

Wr-miss??

wr-hit
rd-hit

Reliable broadcast

rd-miss!! rd-hit
_ 2
Wr-miss??
(8,2,6,1)

rd-miss
wr-miss!!

(7,9,0,0)

Wr-miss??

wr-hit
rd-hit

Reliable broadcast

* Theorem [E., Finkel, Mayr 99] The coverability
problem for broadcast protocols Is decidable.

 Informally:
Anonymous crowds with local guards
are not Turing powerful

 Algorithm: Backward Search

Abdulla et al. (LICS'96), based on the theory of well-
guasi-orders.

Backward Search

C = set of dangerous conf.

Iterate C := C U pre(C) until
C N Init # @:; return ,,unsafe“

or 07?7 (s)=

C fixpoint; return ,,safe*

a??

Backward Search

C = set of dangerous conf.

Iterate C := C U pre(C) until
C N Init # @:; return ,,unsafe“

or 07?7 (s)=

C fixpoint; return ,,safe*

Backward Search

C = set of dangerous conf.

Iterate C := C U pre(C) until

C N Init # @:; return ,,unsafe“
or
C fixpoint; return ,,safe*

C, == Cy, Upre(C,)

Backward Search

C = set of dangerous conf.

Iterate C := C U pre(C) until

C N Init # @:; return ,,unsafe“
or
C fixpoint; return ,,safe*

C, == Cy, Upre(C,)

Backward Search

C = set of dangerous conf.

Iterate C := C U pre(C) until bl
C N Init # @:; return ,,unsafe“

or 077 (as) —

C fixpoint; return ,,safe*

Problems:
 C can hold infinite sets. Finite representation?
e Termination?

Finite representation: Upward-closed sets

 Definition: ¢ < ¢’ if ¢’ has at least as many processes as ¢
In each state

Finite representation: Upward-closed sets

 Definition: ¢ < ¢’ if ¢’ has at least as many processes as ¢
In each state.

» Observation 1: If ¢ isunsafe and ¢ < ¢’, then ¢’ is unsafe.
We say that the set of unsafe configurations is upward-
closed.

Finite representation: Upward-closed sets

 Definition: ¢ < ¢’ if ¢’ has at least as many processes as ¢
In each state.

* Observation 1: If ¢ isunsafe and ¢ < ¢’, then ¢‘ is unsafe.
We say that the set of unsafe configurations is upward-

closed.
e Observation 2: If C is upward-closed then so is pre(C).

Finite representation: Upward-closed sets

Definition: ¢ < ¢’ if ¢’ has at least as many processes as ¢
In each state.

Observation 1: If ¢ isunsafe and ¢ < c¢’, then ¢‘ is unsafe.
We say that the set of unsafe configurations is upward-

closed.

Observation 2: If C is upward-closed then so is pre(C).

Observation 3: The union of upward-closed sets is upward-
closed.

Finite representation: Upward-closed sets

Definition: ¢ < ¢’ if ¢’ has at least as many processes as ¢
In each state.

Observation 1: If ¢ isunsafe and ¢ < c¢’, then ¢‘ is unsafe.
We say that the set of unsafe configurations is upward-

closed.

Observation 2: If C is upward-closed then so is pre(C).

Observation 3: The union of upward-closed sets is upward-
closed.

Conseguence: all sets computed by Backward Search are
upward-closed.

Finite representation: Well quasi-orders

e Proposition: <isa well-quasi-order: every infinite
sequence cq, c,, c3 -+ Of configurations contains an
infinite chain¢;, < ¢;, <¢;, -~

Finite representation: Well quasi-orders

e Proposition: <isa well-quasi-order: every infinite
sequence cq, c,, c3 -+ Of configurations contains an
infinite chain¢;, < ¢;, <¢;, -~

« Conseguence: Every upward-closed set has a finite set
of minimal elements, and can be represented by it.

Termination of Backward Search

« Observation: Backward Search computes a sequence

Cy € C; € C, - of upward-closed sets of
configurations.

 Theorem: U;5o C; = C; forsome j = 0.

Termination of Backward Search

« Observation: Backward Search computes a sequence

Cy € C; € C, - of upward-closed sets of
configurations.

 Theorem: U;5o C; = C; forsome j = 0.
« Conseguence: Backward Search terminates.

Termination of Backward Search

« Observation: Backward Search computes a sequence

Cy € C; € C, - of upward-closed sets of
configurations.

 Theorem: U;5o C; = C; forsome j = 0.

« Conseguence: Backward Search terminates.

Complexity and cut-off bound

Theorem (Schmitz and Schnoebelen 2013)

The coverability problem for broadcast protocols has non-
primitive-recursive complexity, even in the leaderless case.

Complexity and cut-off bound

Theorem (Schmitz and Schnoebelen 2013)

The coverability problem for broadcast protocols has non-
primitive-recursive complexity, even in the leaderless case.

Consequence: There is a family {P, },,—, of broadcast
orotocols with O (n) states such that the smallest number of
processes required to reach the dangerous state is a non-
orimitive-recursive function of n.

Complexity and cut-off bound

Theorem (Schmitz and Schnoebelen 2013)

The coverability problem for broadcast protocols has non-
primitive-recursive complexity, even in the leaderless case.

This round goes 4
to me, Sherlock! B

oroce | greach

orimitive-recursive function # dg,iq‘h-{i
"w’-f ?’

Complexity and cut-off bound

Theorem (Schmitz and Schnoebelen 2013)

The coverability problem for broadcast protocols has non-
primitive-recursive complexity, even in the leaderless case.

And yet, backwards reachability is
useful for verification! I‘'ve used it
to prove properties of a dozen
cache-coherence protocols: their
templates have under 10 states!

G. Delzanno

Application to the MESI-protocol

» Are the states M and S mutually

exclusive?

e Check if the upward-closed set

with minimal element

can be reached from the initial

set

m =1, e=0, s=1,1=0

m=0, e=0, s=0, 1 =N

Wr-miss??

wr-hit
rd-hit

rd-miss!! E) rd-hit
Wr-miss?? S

wr-miss!!

Application to the MESI-protocol

» Are the states M and S mutually

exclusive? dmissl it

e Check if the upward-closed set s @
with minimal element
m =1, e=0, s=1,1=0 wr-miss??

wr-miss!!

can be reached from the initial)
set >
. wr-hi f
m=0, e=0, s=0, 1 =N rd-hitt %fd'h‘t
Co: m=1As=>1

C; = Cy Upre(Cy): (m=>1As=>21)v(im =0ANe =1As2=1)
C, = C; Upre(Cy): Cq

Comm. Mechanisms: Rendez-Vous

Rendez-vous

— Synchronous exchange of
a message between two
processes

(binary encounters) a’ .@

Examples
— Biochemical systems
— Vehicular networks

— Communication protocols: equivalent to message
passing with bounded channels

Rendez-vous

« Important differences with broadcast:
O no way to reliably reach all processes
o the crowd can no longer produce a leader
Theorem:

The coverability problem for
rendez-vous communication and
Is EXPSPACE-complete.

The problem for leaderless
perametrized configuration can be
solved in PTIME. a?

[Lipton 1976]

Lower bound

-

A template with O(n)
states can simulate a

counter counting up to

22"

~

/

Simulating counter machines

* “x has value n” modelled by n processes in state 1.

Simulating counter machines

e “x has value n” modelled by n processes in state 1,
o {:x:=x+1;¢" .. easytosimulate: rendez-vous
between a leader and a “unit process”

6 inc,! 6
8 inc,? {15

Simulating counter machines

e “x has value n” modelled by n processes in state 1.
o {:x:=x+1;¢" .. easytosimulate: rendez-vous
between a leader and a “unit process”

6 inc,! 6
8 inc,? {15

e Vix:=x—1:%" .. similar

Simulating counter machines

e “x has value n” modelled by n processes in state 1.
o {:x:=x+1;¢" .. easytosimulate: rendez-vous
between a leader and a “unit process”

6 inc,! é
0, -1,

O—"—0

o Lix:=x—1,¢" .. similar
* Problem: simulate ¢: if x = O then goto ¢’else goto ¢"

Rendez-vous cannot check that no process is in state 1,

Simulating counter machines

Idea: Simulate only counters counting up to k
Introduce for each counter x a complementary counter
x, and maintain the invariant x +x = k

Simulating counter machines

ldea: Simulate on
Introduce for eac
x, and maintain t

y counters counting up to k
N counter x a complementary counter

ne invariantx +x = k

Simulate Z:if x = 0 then goto #'else goto ¢’ by a

nondeterministic

L.

£y
£,

choice

goto £, or goto ¥,

x:=x—k;x =x+k;goto?
X:=x—1;x:=x+1;goto£"

Simulating counter machines

Idea: Simulate only counters counting up to k
Introduce for each counter x a complementary counter
x, and maintain the invariant x +x = k

Simulate ¢:if x = 0 then goto #’else goto £'" by a
nondeterministic choice

£. goto £, or goto ¥,

{,.x=x—k,x:=x+k;,goto?
{5 x:==x—1;x:=x+1;goto £"

The execution of this code can get stuck, but if it
terminates it faithfully simulates the zero-test.

Simulating counter machines

'Idfa: dSim“1’ Cheat!!! You can’t ‘tk t
En ;?] dur;Zi directly simulate me! You ary counter
simulate . ONly know how to 2 bya

nondetern. Simulate x := x — 1!

£. go.. 4 or goto 4,
{1 x =Xx—k;x=x+k;goto ¢’
{5 x:==x—1;x:=x+1;goto £"

The execution of this code can get stuck, but if it
terminates it faithfully simulates the zero-test.

Simulating counter machines

e Question: By how large a number k can templates with a
total of O(n) states decrease a counter x ?

Simulating counter machines

e Question: By how large a number k can templates with a
total of O(n) states decrease a counter x ?

o Firstanswer: k = 0(n)

e One leader template:

fo 31 fn—l fn

@ decx!AO dec,! . L O decx!o

Simulating counter machines

e Question: By how large a number k can templates with a
total of O(n) states decrease a counter ¢ ?

e Better answer: k = 20()

e |terated doubling:

® goo! . doneg?
>
~ goi! __ goi! __ done,? done? _ done!
> 2 A > 29, >0
?
Qo §0,? gox! gop! _ doney? | doney? _ done!
L >0 > >0 >0 >0
0 "t
(goy! P goy! P doney,? donen?mdonen_ll
9Oon-17 U A U 29, >0
gon?
dec,! done,!
O)- XS0 N
O > >0

Simulating counter machines

e Question: By how large a number k can templates with a
total of O(n) states decrease a counter x ?

e Best answer (Lipton): k = 22"

Simulating counter machines

e Question: By how large a number k can templates with a
total of O(n) states decrease a counter x ?

e Best answer (Lipton): k = 22"

e Iterated squaring

Iterative squaring

* Given templates simulating x := x — m as

fori=mtol
x:=x—1
endfor

Lipton constructs templates simulating x := x — m* as

forj=mtol
fori=mtol
x:=x-—1
endfor
endfor

Upper bound

Lower bound Upper bound
[Lipton 1976] [Rackoff 1978]:

If the goal state Is A
coverable, then it is
coverable in an
instance with 22"
processes.

Upper bound

Fix a template T with n states g4, ..., g,

For every configuration c of T (initial or not!), let
?(c) be the length of the shortest sequence
covering g, (If it exists).

Let / (n) be the maximum of all #(c¢).
How fast can f(n) grow with n ?

Upper bound

Define g(n, i) as f (n), but starting from
“w-configurations” of the form (k,, ..., k;, w, ..., w)
where w means ,,arbitrarily many*.

We are interested in g(n,n) = f(n)
We have g(n,0) =1
Rackoff shows by induction:

g,) =gmn,i—-1"+g(ni-1)

A little math gives g(n, n) < 22"

find another sequence ¢y — ¢; = -+ = ¢ such that

Upper bound

Given a sequence ¢, — ¢; — -+ = cg such that
°cog = (kq,.. k;,w, ..., w) and cg covers q ,

e c'prcoversgy ,andK' < g(n,i) =gn,i—1)'+g(n,i—1)

qd1
d>

di-1
qi

di+1

an

Cob €1 (3 Ck
k1
ky

>1
ki1
ki
w w w w
w w w w

da

All ¢; different

qd1
d>

di-1
qi

di+1

an

Upper bound

Case 1

No number here

greater than
gn,i—1)

da

Upper bound

Case 1

K<ghi-1"'<gni

Co Cq Co Ck
d1
qd»
No number here
greater than
qdi-1 g(n’ l m 1)
qi
di+1 w w w) w)
qn w w w w w w

da

Upper bound

Case 2
Co oo 6 Cpyq o Cg
qd1
q> No number
here greater :
tr?an m>g(n,l—1)
di-1 g(n,i—1)
qi
di+1 w w
In w w 0 w w w

qd1
d>

di-1
qi

di+1

an

Upper bound

Case 2

No number
here greater
than

gn,i—1)

m=>g(n,i—1)

Upper bound

Case 2
L<gni—1)" <gni-1)
— % ~ 7 ’ﬂ
Co . €L Cryq Cr/
q1
az No number
herir?arlﬁater m > g(n,i—1)
qi-1 g(n,i—1)
q; w w w
Qiv1 | W w w w w w
In w w w w w w

qd1
d>

di-1
qi

di+1

an

Upper bound

Case 2

L<gni—-1¢ <gni-1)

!/ !/

Co €L Cr+q Ck
No number
here greater

than

gn,i—1)

ml

W W W W
W W W W W W

m=>g(n,i—1)

m>m—-gn,i—1)>0

Upper bound

Case 2

<g(n,i—-1"+ gﬁn, i—1)=g(n,i

~—

¢ .. C Cryq . Cg
d1
qz No number
here;r?arlﬁater m > g(n, i — 1)

qi-1 g(ni—1)

q; m’ m>m—-gn,i—1)>0
di+1 W w W W

In w w w w w w

Rendez-vous

e ‘\nd

Unfortunately, for us 78]:
verifiers this upper
bound is algorithmically
pretty useless ...

B
J \
r"h 1

-
- 5
L

Backwards Reachability for Rendez-Vous

Theorem [Bozzelli, Ganty 2012]: Backwards
reachability runs in double exponential time
for rendez-vous systems.

Backwards Reachability for Rendez-Vous

But backwards algorithms often
generate too many unreachable
states! Cant’t you come up with
a forward exploration algorithm?

-

4)

Backwards
nential time

Forward Algorithms

The Karp-Miller coverability graph (1969).
« Graph with w-configurations as nodes

Forward Algorithms

The Karp-Miller coverablility graph (1969).

« Graph with w-configurations as nodes

 Initial w-configuration
forc=(1,0,N{,N,): (1.0, w, w)

Forward Algorithms

The Karp-Miller coverablility graph (1969).
« Graph with w-configurations as nodes
 Initial w-configuration

forc= (1,0,N{,N,): (1.0, w, w)

e Construct a,,forward reachability graph*
usingw — 1 = w

Forward Algorithms

The Karp-Miller coverablility graph (1969).

« Graph with w-configurations as nodes

 Initial w-configuration
forc=(1,0,N{,N,): (1.0, w, w)

e Construct a,,forward reachability graph*
usingw — 1 = w

d1 al q>

O—0
d3 a? (4=

O-2C

Forward Algorithms

The Karp-Miller coverablility graph (1969).

« Graph with w-configurations as nodes

 Initial w-configuration
forc=(1,0,N{,N,): (1.0, w, w)

e Construct a,,forward reachability graph*
usingw — 1 = w

1 al q> a
O——0) (1,0,21)-(0,1,1,2)
ds a? (4

O-2C

Forward Algorithms

The Karp-Miller coverablility graph (1969).

« Graph with w-configurations as nodes

 Initial w-configuration
forc=(1,0,N{,N,): (1.0, w, w)

e Construct a,,forward reachability graph*
usingw — 1 = w

1 al q> a
O——0) (1,0,21)-(0,1,1,2)
ds)

O% (10,0,1) > (0,1, w, 2)

Forward Algorithms

The Karp-Miller coverablility graph (1969).
« Graph with w-configurations as nodes
Initial w-configuration

Problem:
termination!!

(10,0,1) > (0.1, »,2)

Forward Algorithms

o Karp-Miller graph: ,,Accelerate” the
construction:

f (0,1,1,0)->: - (w21, 2)
then (w,1,1,0) » -+ - (w,2,1,2)
- - (0,3,1,4)
- - (w,4,1,6)

Forward Algorithms

o Karp-Miller graph: ,,Accelerate” the
construction:

f (0,1,1,0)->: - (w21, 2)
then (w,1,1,0) » -+ - (w,2,1,2)
- - (0,3,1,4)
- - (w,4,1,6)

Replace (w,2,1,2) by (w, w, 1, w)

Forward Algorithms

« Karp-Miller graph: ,,Accelerate” the
construction:

f (0,1,1,0)-:- - (w21, 2)
then (w,1,1,0) » - - (w, 2,1, 2)
- = (w,3,1,4)
- - (w,4,1,6)

Replace (w,2,1,2) by (w, w,1, w)
Observe: the replacement is ,,safe” with
respect to coverability, all configurations under ™
(w,w, 1, w) are coverable

Forward Algorithms

* Theorem (Karp, Miller 69): The Karp-
Miller graph is always finite.

Forward Algorithms

* Theorem (Karp, Miller 69): The Karp-
Miller graph is always finite.

* Theorem (Karp, Miller 69): A state Is
coverable iff it is covered by some node
of the Karp-Miller graph.

Forward Algorithms

* Theorem (Karp, Miller 69): The Karp-
Miller graph is always finite.

* Theorem (Karp, Miller 69): A state IS
coverable iff it is covered by some node
of the Karp-Miller graph.

* Theorem (Mayr, Meyer 81): The Karp-
Miller graph can have non-primitive
recursive size.

Forward Algorithms

Theorem (Karp, Miller 69): The Karp-
Miller graph is always finite.

Theorem (Karp, Miller 69): A state Is
coverable iff it is covered by some node
of the Karp-Miller graph.

Theorem (Mayr, Meyer 81): The Karp-
Miller graph can have non-primitive
recursive size.

So forward-search more expensive than
backward-search?

Forward Algorithms

e EXxpand, Enlarge, Check (Geeraerts et al. 2004)

— The Karp-Miller acceleration is ,,exact® with respect to
coverability: It only introduces an w when it is safe to

do so.
— Construct instead a sequence of
,underapproximations® and ,,overapproximations* :

— the i-th underapproximation contains the state spaces of all
Instances with at most i processes.

— the i-th overapproximation identifies ,,more than
i processes” with ,,arbitrarily many*.

Forward Algorithms

e Theorem (Geeraerts et al. 2004): The Expand-
Enlarge-Check algorithm terminates.

— If g, Is coverable, then some underapproximation
discovers it.

— If g, I1s not coverable, then let K be the largest
number (not w!) in the (finite) Karp-Miller graph. The
overapproximation for i = K Is at least as precise as
the Karp-Miller graph.

Forward Algorithms

e Theorem (Geeraerts et al. 2004): The Expand-
Enlarge-Check algorithm terminates.

— If g, Is coverable, then some underapproximation
discovers it.

— If g, I1s not coverable, then let K be the largest
number (not w!) in the (finite) Karp-Miller graph. The
overapproximation for i = K Is at least as precise as
the Karp-Miller graph.

e Theorem [Majumdar, Zhang 2013]: The EEC
algorithm solves coverability in exponential

space.

The Leaderless Case

« Karp-Miller graph for a leaderless parametrized
configuration:

— Initial w-configuration of the form (w, ..., w, 0, ..., 0)

The Leaderless Case

« Karp-Miller graph for a leaderless parametrized
configuration:

— Initial w-configuration of the form (w, ..., w, 0, ..., 0)

1 al 05 a
©-"0) (..,0,0,00,.)=>(. wwol.)
d3 a? (J4-

The Leaderless Case

« Karp-Miller graph for a leaderless parametrized
configuration:

— Initial w-configuration of the form (w, ..., w, 0, ..., 0)

IS accelerated to
ds3 a? (4-

(...,w,w,w,O,...)i(...,a),a),a),a),...)

The Leaderless Case

« Karp-Miller graph for a leaderless parametrized
configuration:

— Initial w-configuration of the form (w, ..., w, 0, ..., 0)

IS accelerated to
d3 9 {4-

(...,a),a),a),O,...)i(...,a),a),a),a),...)

— S0 every w-configuration of the graph contains only
O'sand w’s.

The Leaderless Case

Fact 1: Every w-configuration of the graph
contains only 0's and w’s.

The Leaderless Case

Fact 1: Every w-configuration of the graph
contains only 0's and w’s.

Consequence: The graph has at most 2" states

The Leaderless Case

Fact 1: Every w-configuration of the graph
contains only 0's and w’s.

Consequence: The graph has at most 2" states

Fact 2: Along every path the w’s increase
monotonically

The Leaderless Case

Fact 1: Every w-configuration of the graph
contains only 0's and w’s.

Consequence: The graph has at most 2" states

Fact 2: Along every path the w’s increase
monotonically

Consequence: Every simple path of the graph has
at most length n, and so the coverability problem
IS In NP

The Leaderless Case

Fact 3: If (...,0,w,0,..)

27 Ne,

(., 0,w0,..) (..,0ww,..)

then (...0w,0,..)

27N,

(.., 0,00,..) (...,0ww,..)

b

(..,w,w,w,..)

The Leaderless Case

Fact 3: If (..,0,w,0,..) Consequence:

M We can compute

the set of w’s
(. 000,..) (0,0 0,..) reachable after

1,2, ... nstepsin
then (....,0,w,0,...) PTIME

27N,

(.., 0,00,..) (...,0ww,..)

D

(..,w,w,w,..)

The Leaderless Case

Theorem (German, Sistla 92): The
coverability problem for leaderless
parametrized configurations IS
solvable in PTIME.

Comm. Mechanisms: Shared memory

Shared memory

* Alock forevery
shared variable

e Process owning the
lock can perform
reads and writes

r(1),

unlock

unlock

Examples
— Multithreaded programs

Shared memory

e Shared memory communication can be simulated by
rendez-vous communication, and vice versa.

Shared memory

e Shared memory communication can be simulated by
rendez-vous communication, and vice versa.

— Shared memory — Rendez-vous:

Consider each shared variable as a leader template
with one state for each possible memory value

Shared memory

e Shared memory communication can be simulated by
rendez-vous communication, and vice versa.

— Shared memory — Rendez-vous:

Consider each shared variable as a leader template
with one state for each possible memory value

— Rendez-vous — Shared memory: one memory value
per action, plus one for ,,currently empty“

Shared memory

e Shared memory communication can be simulated by
rendez-vous communication, and vice versa.

— Shared memory — Rendez-vous:

Consider each shared variable as a leader template
with one state for each possible memory value

— Rendez-vous — Shared memory: one memory value
per action, plus one for ,,currently empty“

« Theorem: The coverability problem for shared-memory
systems is EXPSPACE-complete

The Leaderless Case

 However: the simulation does not preserve
~leaderlessness"

Theorem: The coverability problem for shared-
memory systems EXPSPACE-complete for
leaderless initial configurations

Comm.Mech: Lock-free Shared Memory

Lock-free shared
memory

— Concurrent reads and
writes allowed

— Interleaving semantics

Comm.Mech: Lock-free Shared Memory

wa (1)

ra(2)

ra(1)

ra(3)

wa (1)

ra(2)

ra(1)

ra(3)

wa (1)

ra(2)

ra(1)

ra(3)

wa (1)

ra(2)

ra(1)

ra(3)

wa (1)

ra(2)

ra(1)

ra(3)

Lock-free Shared Memory

Theorem (E.,Ganty, Majumdar 2013, 2015)

The coverablility problem for lock-free shared
memory Is NP-complete.

In the leaderless case, the problem is polynomial.

Lock-free Shared Memory

o Configuration: triple (g, v, C), where
— q . state of the leader
— v . current value of the store
— C :number of processes in each state of contributor

Lock-free Shared Memory

« \We construct the Karp-Miller graph:
f [qV,(w1,10)]----[qvV (w21 2)]
then[q,v,(w,1,1,0)] - - = [g,Vv, (w,2,1,2)]
- >[q,V,(w,314)]
- >[q,Vv,(w,41,6)]

Replace [q,V, (w,2,1,2)] by [q,v(w,w, 1, w)]

Lock-free Shared Memory

Fact 1. Every w-configuration of the graph contains
only O’'sand w’s.

1 'Y,
@ TC(U) @

Lock-free Shared Memory

Fact 1: Every w-configuration of the graph contains
only O’'sand w’s.

1 'Y,
@ TC(U) @

[V, (@.0,..)] = [a.v. (@1, .)]
- [q,v, (w,2,...)]
- [q,V, (w,3,..)]

Replace [q,V, (w,1,...)] by [0, V(w, w, ...)]

Lock-free Shared Memory

Fact 2: In every run, the w’s grow monotonically.

Lock-free Shared Memory

Fact 2: In every run, the w’s grow monotonically.

Consequence: Every simple path of the Karp-Miller
graph has length n; - n,, - n. where
* n; number of states of leader template

* n, number of values
e n. number of states of contributor template

Therefore: coverability is in NP.

Lock-free Shared Memory

Compare with: The coverability problem for a fixed
number of contributor processes is PSPACE-
complete.

Shared memory without locking

Theorem (E.,Ganty, Majumdar 2013)

The problem remains NP-complete if the template Is a
polytime Turing machine

This means we cannot distribute an
exponentially long computation onto
exponentially many machines so that
each machine only does polynomial
work.

Not covered work and open guestions

\ON\
el m“\at\o

Not covered work and open guestions

Not covered work and open guestions

Not covered work and open guestions

