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Back in victorian Britain . . .

There was concern amongst the Victorians that aristocratic
families were becoming extinct.

Francis Galton (1822-1911), anthropologist and polymath:
Are families of English peers more likely to die out than the
families of ordinary men?

Let p0,p1, . . . ,pn be the respective probabilities that a man
has 0, 1, 2, . . . n sons, let each son have the same
probability for sons of his own, and so on. What is the
probability that the male line goes extinct?

Henry William Watson (1827-1903), vicar and mathematician:
The probability that the line goes extinct is the least solution of

x = p0 + p1x + p2x2 + . . .+ pnxn
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Stochastic branching theory

Stochastic branching processes (SBPs)

Stochastic processes for the behaviour of populations whose
individuals die and reproduce.

Used as models of reproduction of biological species, evolution
of gene pools, chemical and nuclear reactions.

Very well studied by mathematicians (several standard
textbooks).

Our work in the last months (and ongoing)

Investigate SBPs as models for the stochastic analysis of CS
systems with process creation:

multi-threaded programs, OS
tasks, computer viruses, dynamic data structures,
divide-and-conquer algorithms . . .
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A classification of SBPs

Two classical dimensions
Single-type/Multi-type
(one/several “subspecies” with different offspring probabilities).

Untimed/Timed

A new dimension for CS systems
Distinction between processes and processors

Unboundedly many processors
(new processes immediately allocated to fresh processors)
All research on SBPs has only considered this model.

Single processor

K -processors, variable number of processors . . .
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In this talk . . .

. . . single-typed, untimed systems, with either unboundedly
many or a single processor.

restriction to single-type only for expository reasons
deterministic lifetimes can be modelled within the untimed
model
extensions to stochastic lifetimes and k -processors are
future work.

Mix of survey and new results
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Describing systems

A process “dies” when it generates its children.
Thread creation is simulated by assuming that one child is
the continuation of the parent.

Our running example:

X
0.1
−−−→ 〈X ,X ,X 〉 X

0.2
−−−→ 〈X ,X 〉 X

0.1
−−−→ X X

0.6
−−−→ ε

Probability generating function f (x)

f (x) = 0.1x3 + 0.2x2 + 0.1x + 0.6
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Describing executions: family trees

0.6

0.6

0.10.6 0.6 0.6

0.20.2

0.1

Executing a family tree
∞-processors: generation-wise
1-processor: scheduler (system det. by pgf and scheduler)
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Probability of termination (extinction)

Observe
The probability of extinction is independent of the number of
processors. (More processors accelerate a computation, but
don’t change it.)

Theorem (well known)
The probability of extinction of the process types is the least
nonnegative fixed point of the pgf, i.e., the smallest nonnegative
solution of x = f (x).

The least solution for f (x) = 0.1x3 + 0.2x2 + 0.1x + 0.6 is 1.

The least solution for f (x) = 2/3x2 + 1/3 is 1/2.
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Critical and subcritical systems

We consider systems that terminate with probability 1.

Further classified into:

Critical: expected number of children is 1.
Subcritical: expected number of children smaller than 1.
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Probability space

Elementary events: family trees.
Probability of a family tree: product of the probabilities of
its nodes.

0.6

0.6

0.10.6 0.6 0.6

0.20.2

0.1
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The∞-processor case: random variables

Completion time (time to extinction)
Random variable T that assigns to a family tree its number of
generations.

Processor number
Random variable N that assigns to a family tree the maximal
size of a generation.

Brázdil, E., Kiefer, Luttenberger Stochastic process creation



An example

0.6

0.6

0.10.6 0.6 0.6

0.20.2

0.1

Completion time = 4 (four generations)
Processor number = 4 (size of the 3rd generation)
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Analyzing the completion time

Proposition

The probabilities Pr(T ≤ 1) , Pr(T ≤ 2) , Pr(T ≤ 3) , . . . of
termination in at most 1,2,3, . . . generations are equal to

f (0) , f (f (0)) = f 2(0) , f (f (f (0))) = f 3(0) , . . .

Proof by example.

Let f (x) = 0.1x3 + 0.2x2 + 0.1x + 0.6.

Let pk+1 be the probability of termination in at most
k + 1-generations. We have

pk+1 = 0.1 · p3
k + 0.2 · p2

k + 0.1 · pk + 0.6

= f (pk )
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Analyzing the completion time

By Kleene’s theorem, the least fixed point of f (x) is the limit of
f (0), f 2(0), f 3(0) . . .

Least fixed point of f (x) = probability of termination.

k -th Kleene approximant to the least fixed point
=

probability of termination after at most k generations.
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Analyzing the process number

Much harder problem, studied in the 70s by Lindvall and
Nerman for one-type systems.

Fact
The pgf of a subcritical system has exactly two fixed points.

Theorem (Lindvall 76,Nerman 77)
Let a > 1 be the greatest fixed point of the pgf. For all n ≥ 1

Pr[N > n] <
a− 1
an − 1

and Pr[N > n] ∈ Θ

(
1

nan

)
.

For f (x) = 0.1x3 + 0.2x2 + 0.1x + 0.6 we have a ≈ 1.3722.
For instance, Pr[N > n] ≤ 0.01 for n ≥ 12.

Brázdil, E., Kiefer, Luttenberger Stochastic process creation



Analyzing the process number

Much harder problem, studied in the 70s by Lindvall and
Nerman for one-type systems.

Fact
The pgf of a subcritical system has exactly two fixed points.

Theorem (Lindvall 76,Nerman 77)
Let a > 1 be the greatest fixed point of the pgf. For all n ≥ 1

Pr[N > n] <
a− 1
an − 1

and Pr[N > n] ∈ Θ

(
1

nan

)
.

For f (x) = 0.1x3 + 0.2x2 + 0.1x + 0.6 we have a ≈ 1.3722.
For instance, Pr[N > n] ≤ 0.01 for n ≥ 12.

Brázdil, E., Kiefer, Luttenberger Stochastic process creation



Analyzing the process number

Much harder problem, studied in the 70s by Lindvall and
Nerman for one-type systems.

Fact
The pgf of a subcritical system has exactly two fixed points.

Theorem (Lindvall 76,Nerman 77)
Let a > 1 be the greatest fixed point of the pgf. For all n ≥ 1

Pr[N > n] <
a− 1
an − 1

and Pr[N > n] ∈ Θ

(
1

nan

)
.

For f (x) = 0.1x3 + 0.2x2 + 0.1x + 0.6 we have a ≈ 1.3722.
For instance, Pr[N > n] ≤ 0.01 for n ≥ 12.

Brázdil, E., Kiefer, Luttenberger Stochastic process creation



Analyzing the process number

Much harder problem, studied in the 70s by Lindvall and
Nerman for one-type systems.

Fact
The pgf of a subcritical system has exactly two fixed points.

Theorem (Lindvall 76,Nerman 77)
Let a > 1 be the greatest fixed point of the pgf. For all n ≥ 1

Pr[N > n] <
a− 1
an − 1

and Pr[N > n] ∈ Θ

(
1

nan

)
.

For f (x) = 0.1x3 + 0.2x2 + 0.1x + 0.6 we have a ≈ 1.3722.
For instance, Pr[N > n] ≤ 0.01 for n ≥ 12.

Brázdil, E., Kiefer, Luttenberger Stochastic process creation



The single processor case: random variables

Recall: a scheduler repeatedly chooses a process from from
the pool of current processes awaiting execution.

Time to termination (time to extinction)
Random variable T that assigns to a family tree its size.
Independent of the scheduler.

Completion space
Random variable Sσ that assigns to a family tree the maximal
size reached by the pool during the execution of the tree by the
scheduler σ.
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An example

0.6

0.6

0.10.6 0.6 0.6

0.20.2

0.1

Completion time = 9, completion space between 3 and 5
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Analyzing the completion time

Proposition
The expected value of T is the solution of a linear equation.

Proof by example.

Consider f (x) = 0.1x3 + 0.2x2 + 0.1x + 0.6.

E [T ] = 0.6 · 1
+ 0.1 · ( 1 + E [T ] )
+ 0.2 · ( 1 + 2E [T ] )
+ 0.1 · ( 1 + 3E [T ] )

= 1 + 0.8 · E [T ]

and so E [T ] = 5.
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A theorem by Dwass

Theorem (Dwass69)
If p0 > 0 then

Pr[T = j] =
1
j

pj,j−1

for every j ≥ 0, where pj,j−1 denotes the probability that a
generation has j − 1 processes under the condition that the
parent generation has j processes.
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Analyzing the completion space

Scheduler
Function that assigns to a family tree one of its executions.

Offline schedulers
Know the complete family tree in advance.

Online schedulers
Only know the part of the family tree executed so far.
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An example

0.6
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0.10.6 0.6 0.6

0.20.2

0.1

Goal: obtain bounds valid for all online schedulers, and
compare them with the optimal offline scheduler
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Kleene Iteration

Consider f (x) = 3
8x2 + 1

4x + 3
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Newton’s method

Consider x = f (x) with f (x) = 3
8x2 + 1

4x + 3
8
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Mathematical formulation of Newton’s method

The Newton approximants to the least fixed point of f (x) are
given by:

ν(0) = 0

ν(i+1) = ν(i) +
f
(
ν(i))− ν(i)

1− f ′
(
ν(i)

)
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Completion space of the optimal scheduler

Proposition

The probability Pr(Sop ≤ k) of completing execution within
space at most k is equal to the k-th Newton approximant ν(k) of
the least fixed point of f (x).

Proof idea.

Show that {Pr(Sop ≤ k)}k ≥0 and {νk}k≥0 satisfy the same
recurrence equation.

Least fixed point of f (x) = probability of termination

k -th Newton approximant to the least fixed point
=

probability of termination within space at most k

Brázdil, E., Kiefer, Luttenberger Stochastic process creation



Completion space of the optimal scheduler

Proposition

The probability Pr(Sop ≤ k) of completing execution within
space at most k is equal to the k-th Newton approximant ν(k) of
the least fixed point of f (x).

Proof idea.

Show that {Pr(Sop ≤ k)}k ≥0 and {νk}k≥0 satisfy the same
recurrence equation.

Least fixed point of f (x) = probability of termination

k -th Newton approximant to the least fixed point
=

probability of termination within space at most k

Brázdil, E., Kiefer, Luttenberger Stochastic process creation



Completion space of the optimal scheduler

Proposition

The probability Pr(Sop ≤ k) of completing execution within
space at most k is equal to the k-th Newton approximant ν(k) of
the least fixed point of f (x).

Proof idea.

Show that {Pr(Sop ≤ k)}k ≥0 and {νk}k≥0 satisfy the same
recurrence equation.

Least fixed point of f (x) = probability of termination

k -th Newton approximant to the least fixed point
=

probability of termination within space at most k

Brázdil, E., Kiefer, Luttenberger Stochastic process creation



Completion space of the optimal scheduler

Proposition

The probability Pr(Sop ≤ k) of completing execution within
space at most k is equal to the k-th Newton approximant ν(k) of
the least fixed point of f (x).

Proof idea.

Show that {Pr(Sop ≤ k)}k ≥0 and {νk}k≥0 satisfy the same
recurrence equation.

Least fixed point of f (x) = probability of termination

k -th Newton approximant to the least fixed point
=

probability of termination within space at most k

Brázdil, E., Kiefer, Luttenberger Stochastic process creation



Exploiting the result

Applying our recent results on the convergence speed of
Newton’s method [STOC’07 and STACS’08EKL08]:

Theorem
For a subcritical system there are c > 0 and 0 < d < 1 such
that Pr[Sop ≥ k ] ≤ c · d2k

for every k ∈ N.

Consequence: the optimal scheduler always has finite
expected completion space

Theorem
For a critical system there are c > 0 and 0 < d < 1 such that
Pr[Sop ≥ k ] ≤ c · dk for every k ∈ N.
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Online schedulers

Theorem
Let a > 1 be the greatest fixed point of the pgf of a subcritical
system (in a certain normal form). Then

Pr[Sσ ≥ n] =
a− 1
an − 1

for every online scheduler σ and for every n ≥ 1.

All online schedulers have the same distribution.
(No longer true for multitype systems!!)
Gap between online and offline schedulers:

Pr[Sop ≥ k ] ≤ c · d2k
for the optimal scheduler.

Pr[Sσ ≥ n] = a−1
an−1 for any online scheduler σ.

The optimal scheduler always has finite expected space,
online schedulers may not.
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Conclusions

Stochastic branching processes are important for
computer science.

Mathematicians haven’t studied SBPs for computer
science yet

No distinction between processes and processors.
No study of “CS random variables” like space consumption.

Beautiful theory! Surprising connectiosn between
approximants to fixed points and random variables of
interest.
Much to do:

k -processors, non-terminating systems,
light-first schedulers . . .
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Back to victorian Britain . . .

There was concern amongst the Victorians that aristocratic
families were becoming extinct.

Francis Galton (1822-1911), anthropologist and polymath:
Are families of English peers more likely to die out than the
families of ordinary men?

Let p0,p1, . . . ,pn be the respective probabilities that a
man has 0, 1, 2, . . . n sons, let each son have the
same probability for sons of his own, and so on. What
is the probability that the male line goes extinct?

Henry William Watson (1827-1903), vicar and mathematician:
The probability is the least solution of

X = p0 + p1X + p2X 2 + . . .+ pnX n
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English peers again . . .

Due to an algebraic error, Watson concluded wrongly that all
families eventually die out.

But Galton found a fact, that, with hindsight, provides a possible
explanation for the observed data:

English peers tended to marry heiresses
(daughters without brothers)
Heiresses come from families with lower fertility rates
(lower probabilities p1, p2, p3, . . . ).
. . . which increases the probability of the family dying out.
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