
Synchronization Component Veri�cation
Vlad Gheorghe

2nd May 2008

1 Introduction
Multi-threaded programming has become a mainstream practice in the last years
because of its ease of expressing simultaneous processes that many applications
contain. Examples range from complex graphic user interfaces to powerful servers
that are running on multiprocessor machines.

Although its merits in naturally expressing parallelism are incontestable, there
is a well established agreement among programmers that working with multiple
threads is by far more error-prone than sequential programming. Race conditions
and deadlocks are known to occur as consequences of most subtle bugs.

This kind of programming errors have been studied and formalized in [3].
Race condition is a situation that may appear when many threads that execute

concurrently access a shared resource without explicit synchronization. There are
two di�erent types of races.

General races can cause undeterministic execution and are failures of pro-
grams intended to be deterministic.

Data races cause non-atomic execution of critical sections. The e�ect of a data
race is that the resource may be accessed by a thread when in an inconsistent
state, hence being possible to lose its integrity (this can be formalized by the
violation of some integrity invariants). In order to avoid data races programmers
use synchronization mechanisms that allow the restriction of possible concurrent
thread interleaving (with regard to the common shared resource) such that only
executions that leave the resource in a consistent state are allowed. In particular,
shared data is accesed from critical sections implemented by some synchronization
mechanism.

The most classic example of synchronization mechanism is the mutex . By
using this mechanism a thread can be given exclusive access to a certain shared
resource, i.e. the guarantee that no other thread accesses the resource at the same
time, thus being eliminated the possibility of interference between the concurrent
threads.

1

1 INTRODUCTION 2

In order to reason about concurrent programs one needs an execution model.
Such a model, so-called of interleaving atomic actions, is described in [1]. A
program state σ associates a value to each variable of the program. Execution
of a sequential program results in a sequence of atomic actions that modify the
program state. Execution of multiple concurrent sequential programs results in
an interleaving sequence of the atomic actions of the component processes that
can be described as a history or computation sequence

α1 α2 αi αi+1

σ0 → σ1 → . . . → σi → . . .
where σi are states and αi are atomic transitions (actions). The sequence

α1α2α3. . . is an interleaving of the sequences of atomic action resulting from the
execution of concurrent processes.

The behavior of a concurrent program is de�ned by the set of all possible his-
tories it can exhibit during execution, each history corresponding to a particular
interleaving of those sequence of atomic actions of the component processes.

In order to interact, processes must communicate and synchronize. Commu-
nication allows one process to in�uence execution of another one, and can be
accomplished in two fundamentally di�erent ways : shared variables and mes-
sage passing. When shared variables are used, a process may write to a variable
that can be accesed later by another process. When message passing is used, one
process sends a message to another process.

As we want to analyze Java programs, we are placed on the shared variable
side of inter-process communication.

To communicate, one thread changes the state of an object and the other
reads it. This will work only if the second thread performs the read after the
�rst thread has �nised with the writing. If the second thread reads the shared
object state before the modi�cation it can get a meaningful, but incorrect state
from the communication point of view. Even worse, if the read is performed
concurrently with the write (in the case that at least one of these two operations
consists of more than one atomic actions) the former may result in an meaningless
object state.

The ability of forcing a thread to delay execution in order to prevent commu-
nication errors is called synchronization.

In a shared memory framework, as the Java platform is, two kinds of syn-
chronization appear and are supported natively by the language through explicit
synchronization primitives :

� mutual exclusion groups actions of a thread into critical sections that are
never interleaved with actions of other threads. Java language supports
critical sections by the synchronized keyword

� conditional synchronization allows a thread to be suspended until some

1 INTRODUCTION 3

speci�ed condition becomes true. This is implemented in Java by the prim-
itive methods wait, notify and notifyAll of the Object class.

A more detailed insight to Java synchronization primitives will be given in 5.1.

Parallel programming is known to be di�cult and error-prone. The history
of parallel algorithms has many examples of incorrect and published algorithms
for di�erent problems of various complexity, ranging from mutual exclusion to
the di�cult task of garbage collection. In many of such cases the authors were
outstanding computer scientists. The bottom line is that the task of program-
ming concurrent threads that communicate and are correctly synchronized is too
complex in its general form to be easily comprehensible by humans.

However, once a parallel program is written, there are methods that can verify
that it is correct. That is, it really does what is supposed to do, according to the
speci�cation of problem it is intended to solve. Thus, a primary requirement for
the veri�cation is the presence of a speci�cation for the problem, along with the
implementation. Usually, in the program development process, the speci�cation
is informal, whereas a formal veri�cation requires a formal representation. To
this end, speci�cation languages have been developed.

However, there are signi�cant di�erences in style between languages for fro-
mulating properties and speci�cations of a computational task and programming
languages which describe precise, unambiguous and e�cent solutions that are
reasonably easy for a computer to execute. The abstraction levelof the former
is usually much higher than that of the latter. Consequently, the key issue in
formal veri�cation is establishing the relation between these two widely di�erent
levels of description of a problem.

** In general, the natural questions one could ask about
This work aims to develop an e�ective method that can be used to perform

veri�cation of programs for detecting synchronization errors.

The rest of this paper is organized as follows. In Section 2 we review the
motives that make formal veri�cation desirable. After that Section 3 gives an
overview of other work regarding formal software veri�cation that contains many
base concepts of the domain. Section 4 presents our original approach to race
condition detection. Before describing in Section 6 the automated tool imple-
mented in this project, the more important concepts for the implementation are
described in Section 5. Some practical results that were obtained using our ver-
i�cation methodology are presented in Section 7. Next, we discuss some of the
issues that arised during the development of our methodology, drawbacks and
improvement opportunities in Section 8, before concluding with Section 9.

2 MOTIVATION 4

2 Motivation
In an attempt to tame the complexity of parallel programming di�erent idioms
have been developed. These consist of sets of �programming rules� that, when
correctly applied, guarantee freedom of synchronization errors. For example,
�when accessing a shared variable the protecting lock must be held�. While this
approach of programming discipline is susceptible of errors because consistent
implementation of the rules is only be veri�ed by hand, it also incurs loss of
performance, as for a particular problem may require more synchronization than
su�cient. It is known that synchronization causes performance loss because of
two reasons. First, it involves an inherent overhead that results from global com-
munication between threads. As a typical con�guration runs threads on multiple
processors, sharing a common main memory, each processor must �ush the local
memory (cache) and, before continuing execution, it must refresh all the local
copies that have changed, in order to maintain consistency. Second, synchroniza-
tion results in the serialization of operations on the di�erent processors in the
system. This leads to lesser speed-up factors, that also have a negative e�ect on
performance, as the potential parallelism of the system is not properly used.

Another approach is to design higher level synchronization mechanisms that
will hopefully help to implement more naturally a broader class of synchroniza-
tion problems. The monitor concept, introduced by C.A.R. Hoare in the 1970's,
is an example of such a construct. However, this approach may introduce unnec-
essary synchronization as well, because each synchronization problem has its own
particularities that only can be addressed best with custom synchronization.

Designing synchronization mechanisms speci�c to each application would issue
better performance because the minimum synchronization required to maintain
data consistency over every possible execution of the parallel program is imple-
mented. The complexity of such an implementation would make synchronization
errors to get easily unnoticed, hence making it more error-prone. This is the
moment when formal veri�cation comes into play.

Formal veri�cation is a set of techniques that can increase one's con�dence
in the correctness of some implementation of a problem. This de�nition stresses
the fact that absolute correctness of a program cannot be determined. In general,
the veri�cation of a certain implementation is performed against a speci�cation
of the problem. Although the veri�cation process ends with success, the spec-
i�cation may contain errors. On the other hand the veri�cation process itself
may be faulty, whether it is performed by hand, in the form of a mathematical
demonstration, or it is automated by using software veri�cation tools. However,
after successfuly passing a veri�cation process, an implementation is improbable
still to have errors.

There still remains the problem of how to write a correct speci�cation. This
task is as hard as the veri�cation problem itself. A program which is proved to
be correct relative to a faulty speci�cation remains incorrect w.r.t. its intended

2 MOTIVATION 5

purpose. For this matter, the speci�cation method should be as concise and hu-
man comprehensible as possible because at this point human good sense alone
can decide whether it is correct or not.

The need of formal veri�cation has become more acute lately with the emer-
gence of embedded systems. In this �eld that involves mass production a fault
of a system that escaped the testing phase to distribution on market can cause
massive �nancial losses. Hardware producers are facing similar problems, too.

Safety critical systems is another category of applications where veri�cation
is necessary. The failure of such systems involve in general important losses (ex-
pensive equipment needed in space missions, large amounts of money in �nancial
transaction systems or even human lifes in tra�c control systems) that justify
the high overall cost. In fact, this class of applications has been the playground
of fromal veri�cation methods since the beginning.

One problem with classic methods of formal veri�cation is the cost. It takes
to have highly quali�ed pro�esionals in mathematics, logic, theorem proving or
model checking in order to perform such correctness proofs. While this is accept-
able for costly safety critical systems, it is no longer feasible with the proliferation
of low cost embedded applications. It follows that an automated, simple to un-
derstand and to use veri�cation method is highly desirable. This would allow a
dramatic quality improvment of software at a signi�cantly lower cost.

Another di�culty is the integration of the veri�cation process in the software
development process. In general, veri�cation is performed after the entire imple-
mentation is completed and operates at the implementation level. In case that
an error is found in the veri�cation stage it can be di�cult to realize whether the
source of the bug is at logical level, dating from the design stage, or at implemen-
tation level. If the former is found, the project must re-iterate the development
process from the early design phase. To avoid this kind of unpleasant situations,
the developers should be able to detect such errors from the early stages of the
project. One solution is to use a component-based approach toghether with a
component veri�cation technique.

If, instead of performing the veri�cation at a late stage of the development,
the system is paritioned in independent components that are veri�ed indepen-
dently then the potential errors will be detected much sooner and it will be more
easy to track down and �x, as they are already localized to a ceratin component.

The main challenge of practically every formal veri�cation method is to state
what correctness really means. That is, to give a formal speci�cation for the ver-
i�ed system. This can become a daunting task for fair large systems.A common
approach to system veri�cation is to create, using a special purpose representa-
tion, a model of the system that has the same execution semantics as the source
language and then specify the desired properties using the model. If the transla-
tion to the language supported by the veri�cation process is done manually errors

3 RELATED WORK 6

can be introduced. An automated translation is preferrable in this case. Another
issue is that, in most of the approaces, the speci�cation is given in terms of the
source program or its model (e.g. in the form of predicates over the original vari-
ables). That means that a speci�cation can not be reused for another component
implementing he same logical behaviour, but it has to b entirely rewritten in
terms of the new component's variables. The independence of the speci�cation
from the speci�ed component would enable reusability.

The aim of this work is to devise an e�ective, component oriented, static
veri�cation methodology, based on a comprehensible speci�cation method, that
is targeted at detecting synchronization errors in multithreaded, shared memory
programs.

3 Related work
Given that race conditions are amongst the most di�cult to detect, reproduce and
eliminate programming errors, there has been a continuous interest in developing
tools that help programmers in these matters.

There are two main categories of methods in this domain: static (compile-
time) methods and dynamic (run-time) methods.

In run-time methods the synchronization primitives are instrumented with
instructions that generate a usage log at run-time. This log is inspected (run-time
or post-mortem) in order to �nd synchronization errors such as race conditions.
A classic example of such tool is Eraser [2].

This kind of detection methods are mainly used in the testing phase of pro-
gram development, as there is of not much help detecting errors in a program
already in use (aside from stopping the program such that it does not yield erro-
neous results). Another major drawback is that race conditions may occur only
on very particular executions (nondeterminism being scheduling dependent) and
thus infrequent. To improve this situation mixed approaches of dynamic and
static detection have been devised.

Static methods only use the program source code in the attempt to �nd syn-
chronization errors without running the program. This is a major advantage over
run-time methods, beacause if an error exists it is guaranteed to be detected. The
downside is that the de�nition for errors is not always accurate, so only a particu-
lar class of errors are detected, or even 'spurious' errors (it is the case in that due
to the lack of information a certain o�ending but infesasible execution is taken
as feasible).

Several approaches lay in the static veri�cation methods category: theorem
proving, type checking and model checking.

4 APPROACH 7

The theorem proving approach uses predicates over program variables to spec-
ify the set of correct program behaviors.

-safety /liveness

There are also several recent papers on static, type checking-based methods
[4, 5]. The basic idea is to add locking semantics to the type system of the original
language. Thus, when declaring a variable, one can specify the �guarding� lock
aside the variable's datatype (or, as an equivalent approach, the �owning� object).
Then the typesystem ensures that a thread holds the respective lock whenever
the variable is accessed. The result is that the programmer is forced to obey a
programming discipline, otherwise the type checking will not succeed.

The major problem with this approach is that it is only able to verify local
properties, while the correcness of general synchronization is a global property.
The target language only contains mutexes as synchronization primitives, thus
making impossible the implementation of more complex synchronization behavior
such as read-write locks. This method can only by applied to the simplest (and
also the most une�cent) idiom of data race avoidance : accesses to all shared data
shall be made only within critical sections. For many problems this requirement
is too conservative and results in performance degradation.

-MC

4 Approach
Our goal is to �nd a way to statically detect race conditions that may occur in a
program. In particular, the focus is on data races, but, as we will see further on,
general races can also detected.

The Java programming language has been chosen source language for its es-
tablished qualities such as being easily analyzable (mainly due to the absence of
pointers) and native multiprogramming support.

On the route to our goal, we must �rst de�ne program corectness for our
particular purpose.

Data races occur as a direct consequence of failing to insure atomic execution
of the actions of a single thread that access shared varibles. The actions in
question are said to form a critical section. The intention is of altering the
shared object (that contains many variables) form a consistent state to another
consistent state without interference from another concurrent threads. Note that,
in this context, atomicity is only relative to the set of shared variables accessed
inside the critical section; another thread can still interleave its actions as long
as these do not refer to variables from this set. So, from data race freedom point
of view, a program is correct if all critical sections are correctly implemented.

4 APPROACH 8

Any multi-threaded programming environment must provide some explicit
synchronization primitives. The Java language has native support for such prim-
itives in the form of monitors (details are given in 5.1).

Critical section is a conceptual construct that can be implemented in general
using the synchronization primitives at hand. The same e�ect can be obtained
by exploiting the dependencies between actions of di�erent threads induced by
accesses to the same shared variables. However, this leads to ine�cient imple-
mentations, thus making the former the preferred alternative.

The simplest way of implementing a critical section is by using locks. Before
entering the critical section a thread �rst acquires the protecting lock, and releases
it after leaving the critical section. If every thread conforms to this rule then the
critical section property is preserved.

Note that the Java language only supports locks in the form of synchronized
code blocks with the semantics that the speci�ed lock is acquired before entering
the block and released immediately afterwards. This means that a thread can
use a lock only to explicitly implement a critical section of code, and not for
inter-thread signalling (the other primitives are reserved for that purpose). This
synchronization mechanism is actually called mutex (for mutual exclusion).

However, the mutex is not powerfull enough to express more advanced syn-
chonization idioms. An widely used such idiom is the read-write lock. When
multiple threads share a resource, read operations can be executed concurrently
without any danger of data corruption, but write operations must be executed in
an exclusive fashion. This funcionality is of great importance for the performance
of concurrent database systems, to give one example.

E�cient synchronization can be achieved only if custom designed for each
problem, using the full range of synchronization primitives provided by the lan-
guage, i.e. both locks and condition variables.

To summarize, the programs that we want to analyze for race freedom imple-
ment critical sections in terms of locks and condition variables.

Now, we come to the di�cult task of specifying the problem that such pro-
grams implement, focusing on synchronization. After all, how can we specify
that critical sections are correctly implemented, i.e. the actions that they consist
of are atomically executed by every possible computation sequence ? A simple
observation is that, before we can get to the veri�cation of such properties, we
have to know exactly which actions belong to the respective critical section. As-
suming that the source code is mapped to sequences of actions, this amounts to
designating the particular block of source code that is intended to be executed
as critical section.

Suppose that we have to verify a program that uses the read-write lock id-
iom. A decent Java implementation would contain a ReadWriteLock class that
provides the threads with methods that implement the desired semantics, i.e.
readLock(), readUnLock(), writeLock() and writeUnLock(). In order to give a
speci�cation, the user has to designate in the program source which sections of

4 APPROACH 9

code must execute atomically. While in the case of a write section this amounts
to marking the section of the program between writeLock and writeUnLock (as
this as to execute atomically), for the reads the critical sections are inside the
ReadWriteLock class.

In the quest for a concise and comprehensible speci�cation method, we con-
clude that critical sections are situated at a too low level to be used as means of
specifying corectness. Therefore we abandon this abstraction level for the speci-
�cation, but move one level up and continue.

We introduce a veri�cation method that complements the type-checking ap-
proach to data race detection. In that approach is checked that a 'user' program
makes correct use of a primitive synchronization mechanism - Java's synchro-
nized, i.e. mutex. We generalize the class of synchronization mechanisms to
more complex (and powerful) ones and argue these to be correct w.r.t their spec-
i�cations. The veri�cation process is greatly simpli�ed by the use of a speci�-
cation model devised for the special purpose of easily stating the correctness of
synchronization components.

The approach to veri�cation of multi-threaded programs presented in this
paper is in line with the component orientation of present software development
practices, that are guided by concepts as modularity and compositionality, both
of these being captured by component-based programming.

When a complex program is being designed it is desirable functionality to be
partitioned in modules as independent as possible. For a multi-threaded program,
the inter-thread communication and synchronization functionality is a perfect
candidate for such a module. For object-oriented languages such functionality
would be implemented in classes whose instances we will call synchronization
objects. Threads are being synchronized by using synchronization objects as high
level components. Data exchange through synchronization objects may also be
permitted (e.g. bounded bu�er).

This approach to programming not only isolates in a component some inde-
pendent behavior, but also the perils of multi-threading programming. If every
inter-thread communication is made through synchronization objects any syn-
chronization error will occur inside these components. It follows that in order to
answer whether a program is free of synchronization errors it su�ces to consider
the synchronization components.

A major di�culty in formal veri�cation is identifying what needs to be proved,
i.e. the speci�cation that states the expected (correct) behavior of a component.

The purpose of the speci�cation is, beside to state correctness, to separate
the implementation of a component from its usage. From the viewpoint of the
component, the speci�cation represents the functional requirements of the poten-
tial clients that must be implemented accordingly. From the point of view of the
�user�, the speci�cation describes the valid usage patterns of the component.

4 APPROACH 10

From an external point of view such synchronization components have se-
quential behavior in the sense that the collection of threads that use them are
only able to observe the operation's invocations as atomic actions, given that
data inside synchronization components is totally encapsulated. This leads to
the idea that a speci�cation for this kind of components may be formulated in a
sequential fashion, for instance using abstract data types (ADTs).

Methods of a synchronization object exhibit the following functions :

� blocking methods are able to suspend a thread's execution until the system
reaches a particular condition (resource is available, awaited event occurred,
etc.)

� noti�cation - called by a thread to signal an event to the syn-object. The
syn-object can take appropriate action (waking-up other threads, for in-
stance)

� observation - inquiries on the syn-object's state.

We argue that the speci�cation method we introduce is able to express the
blocking-noti�cation functionality of these methods.

The speci�cation of a synchronization component describes an abstract model
of a virtual implementation. The model has an abstract internal state described
as an ADT in the speci�cation language.

The model given in the speci�cation is implicitly bound to a certain imple-
mentation through the method's names. Every method in the implementation
contains two outstanding locations, labeled on_entry and on_exit. We will give
characterizing properties for them later.

Each of these outstanding locations in the implementation are conceptually
present in the speci�cation, too. Actually, they represent the only relation be-
tween implementation and speci�cation, and are therefore called joinpoints.

At each joinpoint the speci�cation contains two predicates and an atomic
action that operate on the abstract (speci�cation's) state.

The basic intuition of our model is that the speci�cation and the implementa-
tion of a synchronization object �execute� simultaneously, the only link between
them being the joinpoints, on_entry and on_exit, for each method, where a
conceptual rendez-vous between the two takes place (Figure 2 on page 12).

Correctness is expressed by the predicates of the speci�cation's joinpoints,
that must hold for every execution of the corresponding joinpoint in the imple-
mentation.

For each joinpoint there are two predicates over the abstract state :

4 APPROACH 11

Blocking

Exit

on_exit

Entry

void method_name()

on_entry

Figure 1: A method has three sections

� an assertion - ensures that the implementation only allows correct execu-
tions of the methods. It captures the correctness of the implementation of
the synchronization component

� an assumption - ensures that the component is used in a valid manner, i.e.
the methods are called in a correct pattern according to the semantics of the
component. It captures the correct usage of the implemented component.

Correctness of an implementation against a speci�cation is expressed in general by
one of the assertions of the on_exit actions from the model. The implementation
drives the control �ow and the model monitors through assertions that at certain
points in the execution the model state is valid.

Note that the actions of the model operate on the 'abstract' state, not the
'real' state (made up of the implementation's variables).

The on_entry joinpoint is placed right at the �rst location of the method.
The meaning of on_exit is that when reaching this point a thread cannot

be blocked anymore by the implementation. An characterizing property is that
when calling a method in an single-thread environment, for certain valid states
of the synchronization object, the thread would block just before the method's
on_exit point.

However, for simpli�cation reasons we assume every method synchronized
and then the on_exit point coincides with the last location of the method.

Using this simple model and the power of expressing abstract the state as and
ADT term (also being able to use ready to use structures de�ned in libraries) the
user can easily specify complex behavior of a synchronization object.

4 APPROACH 12

Figure 2: Speci�cation and implementation are linked through joinpoints

A major advantage is the independence of the speci�cation from the imple-
mentation. This allows the separation of concerns in the matters of speci�cation
and implementation. Also, once a speci�cation written, it can be used to verify
di�erent implementations, thus promoting reusability. On the other hand, a sin-
gle implementation can be veri�ed against di�erent speci�cations, with di�erent
levels of abstraction. We will elaborate more on this idea in Section 8.

Once we have both the implementation and the speci�cation all we need
in a platform that supports the semantics of both and that will perform the
real veri�cation. After many failed attempts with di�erent high level languages,
theorem proving veri�cation methods and tools, all the answers were given by a
speci�cation language created by Leslie Lamport [8], Temporal Logic of Actions
(TLA+). It has been designed as a speci�cation language for general systems,
with the ability of expression at practically any abstraction level. This made it
possible to implement an automated tool that translates the original Java code
of the implementation and merges it with the speci�cation's internal actions and
asssertions/assumptions, resulting in a TLA+ speci�cation that describes the
whole assembly. The tool is named FUSION.

TLA+ is described in more detail in 5.3.
The determinant factor in chosing TLA+ as a target language is the tool

support. The Temporal Logic Checker (TLC) uses a form of model checking in

4 APPROACH 13

order to verify TLA+ speci�cations.
The language and the model-checking tool support both safety (the case of

assertions/assumptions that we use) and liveness properties. This means that
eventual liveness properties can be later added to the component speci�cation,
these being already supported by the target language.

4.1 Veri�cation process overview
The user's point of view of a Java component's veri�cation is depicted in Figure
3 on page 14.

The FUSION tool takes as arguments the names of three input �les :

� Java source code - a valid Java class that constitutes an implementation of
the synchroniation object being veri�ed

� Speci�cation - a valid TLA+ module that de�nes special identi�ers desig-
nating the speci�cation state, initial predicate, and for every joinpoint of
every method in the component the assumptions, assertions and actions
over the speci�cation state. Being a TLA+ module, the EXTENDS clause
can be used to access standard or user libraries. This results in code reuse
and improved power of expression in writing speci�cations.

� Composition - a text �le describing a closed program that contains multiple
concurrent threads making calls on the component's methods.

The detailed syntax of these �les is described later in 6.1.
Two �les are the result of the fusion process : out.tla and out.cfg. These are

ready to be fed into the TLA+ checker, TLC, by a single shell command :

$ tlc out

As the invariant's veri�cation is done by TLC as exhaustive state space explo-
ration, this process can take some time for large (or complex) components as well
as compositions. Although, in general the synchronization components contain
a large part of critical section code, this having the e�ect of drastically reducing
the allowed interleavings.

The outcome of the automated TLC checking has the following interpreta-
tions:

� Success - the implementation conforms to the speci�cation for the given
composition.

� An assumption is violated - according to the speci�cation, the composition
uses the component (i.e. calls its methods) in an invalid pattern.

4 APPROACH 14

Source.java
(java class

source)User
supplied

Spec.tla
(component
specification
written in

a TLA+ subset)

Composition.comp
(description of the
threads that execute
the component’s

methods concurrently)

FUSION
(automated model
generation tool)

out.cfg
(configuration
file for TLC)

out.tla
(TLA+ transcript

of the Java compnent
integrated with

specification’s actions
and assertions/assumptions

TLC
(Temporal Logic Checker)

Tool
Generated

EXTENDS

Success
Error

Implementation
satifsies

Specification
(for given composition)

Assertion
Failed

Implementation
violates the
Specification

Assumption
Failed

Composition
does not correspond
to Specification’s

Assumtions

Provided
Monitor.tla

(TLA+ implementation
of Java synchronizaion
primitives : wait,

notify,...

EXTENDS

Figure 3: Information �ow in the automated veri�cation process

5 PREREQUISITES 15

� An assertion is violated - according to the speci�cation, the implementation
allows executions that are invalid.

In case of failure, TLC also generates a trace of the o�ending execution, that is
of great help in locating the actual fault in the implementation.

4.2 Example
- semaphore

5 Prerequisites
In this section we will overview the base concepts that this project is built upon.

5.1 The Java language semantics
As we chose Java as the source language, we have to implement the Java language
semantics. The Java Language Speci�cation (JLS) [6] de�nes a set of rules that
every JVM implementation must obey.

Of particular interest is the Java Memory Model (JMM), that de�nes the
rules that govern inter-thread communication through the main shared memory.

Referring to the Java programming language, only a few explicit synchroniza-
tion mechanisms are provided :

� locks - used by synchronyzed code blocks

� condition variables - accessed by wait notify notifyAll

5.2 Transition Diagrams as an execution model
We will use transition diagrams as described in [1] as the support of the Java
language semantics. These are simple objects that are still powerfull enough to
express thread concurrency, atomic actions and, most important, can be used
to implement Java primitive synchronization mechanisms (monitor locks, wait,
notify, notifyAll).

Transition diagrams describe the control structure of a program in terms of
locations and transitions. Locations represent the program counter that points
to the next instruction in the program to be executed. Transitions model the
e�ect of acutal execution of program instructions in terms of a new value for
the program counter. The execution itself is modeled by a state transformation,
where state represents the contents of the memory. A state transformation con-
sists of assigning to some memory cells the results of some operation performed
with values read from the memory.

6 IMPLEMENTATION 16

A transition diagram can be represented as a labelled directed graph. The
nodes of the graph are referred to as locations. There is a distinguished node
called the entry node, where the computation starts. Similarly, the distinguished
exit node has no outgoing edges and is the node where every terminating compu-
tation ends. Each directed edge is labelled by an instruction of the form c → f
where c denotes a total boolean function over the state space, also called condi-
tion, and f denotes a total state transformation:

l l’
c f

- interleaving of actions
- advance assumptions

5.3 Temporal Logic of Actions as a multi-level language
- math based - easy to understand & use

- modules, library of primitive types
- highly expressive -> n/p with lts
- safety & liveness properties
- tool support

5.4 The Temporal Logic Checker (TLC)
- BFS, di�trace, con�g, performance

6 Implementation
The FUSION tool has been implemented to automate the process of translation
from Java source code to TLA+ and integration of speci�cation's actions in the
result.

The language used in this implementation is Haskell [12].
The transformation process of the original Java code passes several levels :

1. Java source code

2. LTS - for each method or constructor a LTS with equivalent semantics can
be generated.

3. The speci�cation actions and assertions/assumptions are merged in the
LTSs at the corresponding joinpoints.

4. TLA+ implementations of each LTS are generated

6 IMPLEMENTATION 17

5. A closed program is created as a TLA+ module by assembling the construc-
tor and methods in concurrent threads according to the description given
in the composition �le.

The speci�cation is already a valid TLA+ module, so the generated module only
needs to EXTEND it in order to access the speci�cation initial predicates, actions,
assertions and assumptions.

6.1 Input �les
This section describes the various �les that must be provided in order to perform
component verri�cation.

6.1.1 Java source code
This is intended to be a real, compilable Java class source code, that implements
the synchronization component that needs to be veri�ed.

However, as the tool has been implemented for demonstration purposes only,
just a subset of the Java language is supported.

The implemented gramar is given below in a BNF-like notation.

Class ::= { Modifier } class Identifier [super Identifier]
{ { FieldsOrMethod } }

Modifier ::= static | public | private | protected | synchronized | abstract
FieldsOrMethod ::=

{ Modifier }
(Identifier MethodCont //constructor

| Type Identifier
({ , Identifier } ; //fields declaration

| MethodCont // method definition
)

)
Type ::= void | int | boolean
MethodCont ::=

([Formal { , Formal }])
[throws Identifier { , Identifier }]
Block

Formal ::= { Modifier } Type Identifier
Block ::=

{ { Locals } {Statement} }
Locals ::= { Modifier } Type Identifier { , Identifier } ;
Statement ::=

6 IMPLEMENTATION 18

Block
| synchronized ParExpr Block
| if ParExpr Statement [else Statement]
| while ParExpr Statement
| return Expr ;
| Expr ;
| ;

ParExpr ::= (Expr)
Expr ::= ! Primary | - Primary | + Primary |

Primary * Primary | Primary / Primary | Primary % Primary |
Primary + Primary | Primary - Primary |
Primary < Primary | Primary > Primary | Primary <= Primary | Primary >= Primary |
Primary == Primary | Primary != Primary |
Primary && Primary |
Primary || Primary |
Primary = Primary

Primary ::=
ParExpr

| new Identifier
| this
| Access
| Literal

Access ::= Identifier [Arguments] //access to a field or method
Arguments ::= ([Expr { , Expr }])
Literal ::= IntLiteral | BoolLiteral
IntLiteral ::= Integer
BoolLiteral ::= false | true

The grammar has several omissions, but proved to be su�cient to easily accomo-
date real-world examples.

As this grammar is a strict subset of the Java Language grammar, we can
assume that the source code has already been compiled using a Java compiler,
thus being correct both syntactically and semantically. However, at this level
some checks are still performed.

Note that there is no use of Java object references, as the present method does
not support these. This is a major restriction that, as discussed in Section 8, could
be lifted by the assimilation of an interthread alias analysis in the method.

6.1.2 The Speci�cation File
6.1.3 The Composition File
The target language and accompanying tool (TLA+ and TLC respectively) only
directly support closed systems, i.e. systems with all components known at the

6 IMPLEMENTATION 19

time of veri�cation. The synchronization component that we intent to verify
constitutes an open system, as it can be used in virtually any environment.

Throughout the veri�cation process, the composition �le has the role of the
�unknown� environment. The user is free (and even encouraged) to perform
the component's veri�cation repeatedly, with several compositions. Knowing the
complexity of the component, one should be able to devise an usage (composition
of component methods) that will generate a su�ciently large set of executions to
expose all potential synchronization errors.

The composition �le describes a set of threads concurrently executing calls
on the same shared component. Each thread is a sequential composition of such
calls.

The syntax is very simple :

Composition ::= Thread { || Thread }
Thread ::= MethodName { ; MethodName }

6.2 Java frontend
The Java grammar subset used (as de�ned in 6.1.1) has been implemented using
the monadic parser combinator library Parsec[11].

The high degree of reusability and polymorphism speci�c to Haskell allowed
the implementation of the parser to be very close to the initial grammar.

In the monadic setting, a parser is an action over an input string (consisting
of characters or tokens, depending on whether one has chosen to use basic parsers
or to implement the lexers separately, by hand) that results in a representation,
according to the implemented grammar, of a part of the input string (this is
generally an abstract syntax tree, or AST in short) and the remaining, unparsed
string.

The library provides very useful basic character parsers (such as integer
or identi�er) that actually are lexeme parsers and can be con�gured according
to the particularity of the source language. These basic parsers can then be
�assembled� into more complex parsers, by using combinators.

Parser combinators are functions that have parsers both as arguments and
results. Examples of such parsers are :

� many p - is the parser that accepts a string of repeated strings accepted
by the argument p

� p1 <|> p2 - �rst try p1, and if it fails report no error and parse p2

Combinator parsing is very well suited to funcional languages and provides an
elegant solution with several advantages over classic parser generators such as
YACC :

6 IMPLEMENTATION 20

� Combinator parsers are written and used within the same programming
language as the rest of the program. There is no gap between the grammar
formalism (yacc) and the host programming language (C). This also implies
that the development takes place in a single environment, with the same
rules for type checking, modularisation, and so on.

� Parsers are �rst-class values within the language. They can be put into
lists, passed as parameters and returned as values. It is easy to extend the
existing set of parsers to custom made parsers speci�c to the problem.

A very powerful feature that has been extensively used is the expression parser
generator, buildExpressionParser. It supports pre�x, post�x and in�x opera-
tions and priority levels.

The parser is implemented in the module Java.hs. The internal representation
of Java code, the abstract syntax tree, along with the corresponding accesor and
utility methods, is de�ned in a separate module, JavaAS.hs, as it is also used by
the next stages of the generation process.

The veri�cation system supports local block variables, so nested namespaced
had to be used to implement this functionality at frontend level.

6.3 Java to Transition Diagrams translation
6.4 Transition Diagrams to TLA+ translation
6.5 Monitor library
The Java Virtual Machine provides instructions that can be used to implement the
synchronization primitives of Java language. As the source code that uses them
is translated to TLA+, we must also implement the synchronyzation primitives,
with the semantics described in [7], in TLA+.

Java semantics make no assumption whatsoever about the order of threads
The Java synchronization primitives were designed as transition diagrams and

implemented in TLA+ by hand. The diagrams are given in �gure Figure 4 on
page 21.

The monitor is implemented using the following shared variables :

� lock is the state of the lock protecting the monitor. Must be positive. A
thread may acquire a lock multiple times.

� owner is the unique ID of the thread that is holding the lock (if any). It
helps implement the lock re-acquiring capability.

� CV (Condition Variable) is used by a thread that calls notify/notifyAll
to signal the waiting threads.

7 EXPERIENCE 21

entry

exit

entry

exit

Lock

lock--;
owner = if(lock>0)
then tl.this_thread

else NO_THREAD

UnLock

entry

wait

allow

nCV++; tl.oldLock=lock; lock=0;
owner=NO_THREAD

contention

exit

lock=0 OR owner=NO_THREAD

lock++; owner=this_thread

CV > 1

nCV--; CV--

lock=0 OR owner=NO_THREAD

lock++; owner=tl.this_thread

CV==1

nCV--; CV--;
allow=True

Wait

entry

exit

nCV > 0

CV = nCV; allow=False

NotifyAll

nCV == 0

entry

exit

nCV > 0

CV = 1; allow = False

Notify

nCV == 0

Figure 4: LTS diagrams for the synchronization primitives

� nCV keeps track of the number of threads waiting on the condition variable

� allow is an auxiliary boolean variable that helps preventing other threads
to enter the waiting queue while this is in the �ushing phase following a
call to notifyAll.

The Lock/UnLock primitives are straigh-forward to implement.
When a thread calls wait or notify(All), we can assume that it also owns

the corresponding lock, as the Java speci�cation states that an exception must
be thrown otherwise.

Notify and notifyAll have no e�ect when no thread is waiting for the con-
dition (nCV == 0).

If there are some threads waiting, notify assigns CV:=1 and

7 Experience
This section presents some practical results obtained using our veri�cation method-
ology.

7 EXPERIENCE 22

7.1 Semaphore
A semaphore is a shared object with two operations: P() and V(). V() increments
the value of the semaphore P() decrements the value of the semaphore, only if that
value would not become negative (i.e. the value is not zero). An implementation
of a semaphore will block the thread calling P if the condition does not hold,
until some future moment that another thread modi�es (by calling V) the value
s.t. the condition becomes true. The V operation may be called and complete
any number of times. It just increments the semaphore's value, not violating
any invariant of the model. It follows that any precondition on this method is
inappropriate.

Algorithm 1 Simple semaphore speci�cation
speci�cation Semaphore {

np, nv : Nat;
on_exit P() {

assertion : np < nv
action : np' = np + 1

}
on_entry V()
{

action : nv' = nv + 1
}

}

And a Java implementation is given on the following page
The corresponding on_entry and on_exit points are marked in the imple-

mentation.
Note how the speci�cation's state and implementation's state are independent

and, necessary, equivalent. At this low level of complexity it is not hard to imagine
an implementation straight from the semaphore speci�cation. Nevertheless, for
more complex synchronization components, the speci�cation designer can use the
full power of abstraction o�ered by TLA+ in order to write a concise and hence
credible component speci�cation.

7.2 Read-Write Lock
In order to demonstrate the expressiveness of the speci�cation language we present
a more elaborated example. This will also show that an object can be speci�ed
at di�erent levels of re�nement, thus a same implementation will comply to two
di�erent speci�cations, related by the re�nement relation

7 EXPERIENCE 23

Algorithm 2 A simple semaphore implementation in Java
class Semaphore {

int value=0 ; // the implementation's state
synchronized void P() {
//ON_ENTRY
while (value == 0) { wait(); }
//ON_EXIT
value = value - 1 ;

}
synchronized void V() {

//ON_ENTRY
//ON_EXIT
value = value + 1;
notify();

}
}

Read-Write Lock is a synchronization object used to coordinate threads that
access a resource in two modes : read and write. Before accessing the shared
resource a thread must acquire a lock corresponding to the type of operation it
will perform on the resource. After �nishing the operation it must release the
previously acquired lock. Related to the lock, a thread is characterized by the
type of lock it holds : reader or writer. The lock can be in one of three states :

� unlocked

� read-locked

� write-locked

Multiple threads may hold the lock in its read-locked state. Only one thread may
hold the lock in the write-lock state.

The example presented below complies to this semantics, and more : it in-
cludes a fairness policy that prevents the participating threads from starving
when waiting to acquire a certain kind of lock. The policy states that :

� when in the read-locked state readers shall not be granted the lock if there
are also writers waiting

� when both readers and writers request the lock it will be alternately granted
to both threads categories.

8 DISCUSSION 24

This behavior is achieved by recording the kind of the last holder in the unlocked
state. The lock will be granted to the threads of the opposite kind.

An implementation follows. Note that this implementation was taken from a
quite respectable textbook.

If we drop the fairness in requirements the following speci�cation can be writ-
ten. This is a weaker speci�cation than the �rst one, so the above implementation
complies to it, also.

7.3 The checking : surprise, surprise...
As the semaphore example is pretty simple we expected that it is also correctly
implemented, and so it is. Veri�cation with many di�erent con�gurations did not
reveal any errors.

The surprises came from the Readers & Writers test, which was assumed to
be error-free, given that it comes from a textbook. In fact it doesn't even prevent
both readers and writers accessing the database concurrently, not to speak of
enforcing fairness.

A check against the weak RWLock speci�cation revealed that the OnExit
assertion for startWrite is violated by an 83 steps long behavior. An inspection
of the trace generated by the checker allowed the scenario diagram to be created.

If we take a second (advised) look at the code, it is not hard to notice that
once a waiting reader is signaled nothing can stop it from entering the critical
region, as soon it regains the monitor's lock, because the waiting condition will
always be false from that point on (startWaitingReadersTime can only increase).
It follows that if another writer (Writer1) gains the lock released by Writer0 in
the contention with Reader0 it �nds that the critical region is empty (Reader0
has not entered yet) so it proceeds. When Reader0 gets at last the monitor's lock
it just �nishes the startRead method and enters the critical region too, at the
same time with Writer1.

When we tried to patch the bug (added a condition so that this situation
would not happen) the checking process found another execution that violates an
assertion.

8 Discussion
-Speci�cation is closely related to OO interface + contract, speci�c to synchro-
nization

An interesting note is that an implementation (de�ned by a Java class) can be
seen as an instance of a speci�cation; the instantiation relation between classes
an objects is lifted to speci�cations and implementations (classes). Also, the

8 DISCUSSION 25

startWrite

startWrite

startRead

startWrite

Writer 0 Reader 0 Writer 1

Running
In critical

region

Wait for
condition

Wait for lock

Figure 5: The read-write lock implementation has bugs...

generalization and specialization relations on classes lift over to speci�cations as
a re�nement relation.

We consider the denotation D of a speci�cation S as the set of classes that
comply to it .

D = denot(S)
A speci�cation S1 is re�ned by a speci�cation S2 i� the denotation of S1

includes the denotation of S2 .
S1 Â S2 ↔ denot(S1) ⊇ denot(S2)

- JVM semantics, di�erences - abhick ?
- grammar omissions
- restrictions on components - no data ,just control. -> improvement : handle

data transfer as well , eg bounded bu�er; alias analysis
- alias analysis would allow use of object creation and manipulation inside the

Java component, broadening the area of aplicability. Note that TLA+ already

9 CONCLUSION 26

endWrite

startWrite

startRead

startRead

endRead

startWrite

Writer 0 Reader 0 Reader 1 Writer 1

Running
In critical

region

Wait for
condition

Wait for lock

Figure 6: The patched version of fair read-write lock showed another bug

has the support for describing speci�cations of such components (the libraries
contain Naturals,Sets, Sequences and practically any datatype can be de�ned)

- improvement of execution trace (code line) -> locating bugs easier

9 Conclusion
In this paper we introduced a simple and e�ective veri�cation methodology for
synchronization components.

10 ideas
� The modules veri�ed are small enough for model checking being a viable

alternative. As the use of mutual exclusion is of common occurence, the
state space is reduced compared to regular program sections.

� We can assume that wait/notify are called within a synchronized block
of the same object, as otherwise an IllegalMonitorStateException will be
raised at runtime. (the JVM spec says that this is true only for notify, but
most implementations do it for wait, also).

� Bugs in TLC (implementation experience)

REFERENCES 27

� BEGIN with an example (- semaphore) to illustrate the whole generation
process - explain techniques used...

� data race = failure to enforce atomicity. problem : how to specify where
actions should be atomic. -one option=to indicate the critical regions. but
if we knew that we could just insert mutexes at the speci�ed points and
the problem is solved. => we need a more high level method of specifying
what �correct� really means.

� independence of spec from implementation, as opposed to classic methods

� composition - || includes ;

References
[1] Willem-Paul de Roever et al. Concurrency Veri�cation. Introduction to Com-

positioanl and Noncompositional Methods. Cambridge University Press 2001

[2] Stefan Savage et al. Eraser : A Dynamic Data Race Detector for Multi-
threaded Programs. ACM Transactions on Computer Systems, Vol 15, No.
4, November 1997

[3] Robert H.B. Netzer, Barton P. Miller What Are Race Conditions ? Some
issues and formalizations. in ACM Letters on Programming Languages and
Systems, Vol. 1, No. 1, March 1992, Pages 74-88

[4] Martin Rinard, Chandrasekhar Boyapati. A Parametrized Type System for
Race-Free Java Programs, OOPSLA 2001

[5] Cormac Flanagan, Stephen N. Freund. Type-Based Race Detection for Java

[6] J. Gosling, B. Joy, G. Steele. The Java Language Speci�cation. Chapter 17,
Addison Wesley, 1996

[7] Tim Lindholm, Frank Yellin. The JavaTM Virtual Machine Speci�cation
Copyright © 1999 Sun Microsystems, Inc. All rights reserved

[8] Leslie Lamport. Specifying Systems 04 Mar 2002 (Preliminary Draft)

[9] Stephen J. Hartley, Concurrent Programming: The Java Programming Lan-
guage, Oxford University Press, 1998

[10] M. Ben-Ari, Principles of Concurrent and Distributed Programming,
Prentice-Hall, 1990

[11] Daan Leijen. Parsec, a fast combinator parser.
http://www.cs.uu.nl/~daan/parsec.html

REFERENCES 28

[12] Haskell, a general purpose, purely functional programming language.
http://www.haskell.org

REFERENCES 29

Algorithm 3 A fair read-write lock speci�cation
specification FairRWLock {
import Nat
type LockKind = RLock | WLock
type RWLockState = RLocked Nat | WLocked | UnLocked LockKind
var

lock : RWLockState = UnLocked RLock;
nReadersWaiting : Nat = 0;
nWritersWaiting : Nat = 0;

// readers
on_entry startRead() {

action : nReadersWaiting' = nReadersWaiting + 1
}
on_exit startRead() {

assert : (lock /= WLocked) /\
(nWritersWaiting=0 \/ lock = UnLocked WLock)

action :
(nReadersWaiting' = nReadersWaiting -1) /\

(lock' = case lock of {
UnLocked _ -> RLocked 1
RLocked n -> RLocked (n+1)

})
}
on_entry endRead() {

assume : lock = RLocked _ // describes the usage
action : lock' = case lock of {

RLocked 1 -> UnLocked RLock
RLocked n -> RLocked (n-1)

}
}
// writers
on_entry startWrite() {

action : nWritersWaiting' = nWritersWaiting + 1
}
on_exit startWrite() {

assert : (lock = UnLocked RLock) \/
(lock= UnLocked WLock /\ nReadersWaiting=0)

action : (nWritersWaiting' = nWritersWaiting - 1) /\ (lock' = WLocked)
}
on_entry endWrite() {

assume : lock = WLocked // describes the usage
action : lock' = UnLocked WLock

}
}//spec

REFERENCES 30

Algorithm 4 Fair read-write lock implementation in Java
class Database specification FairRWLock {

private int numReaders = 0;
private int numWriters = 0;
private int numWaitingReaders = 0;
private int numWaitingWriters = 0;
private boolean okToWrite = true;
private long startWaitingReadersTime = 0;
private long age=0;
public Database() { }
public synchronized void startRead() {

//ON_ENTRY
long readerArrivalTime = 0;
if (numWaitingWriters > 0 || numWriters > 0) {

numWaitingReaders++;
readerArrivalTime = age++ ;
while (readerArrivalTime >= startWaitingReadersTime)

wait();
//ON_EXIT1
numWaitingReaders--;

} else {
//ON_EXIT2

}
numReaders++;

}
public synchronized void endRead() {

//ON_ENTRY
numReaders--;
okToWrite = numReaders == 0;
if (okToWrite) notifyAll();

}
public synchronized void startWrite() {

//ON_ENTRY
if (numReaders > 0 || numWriters > 0) {

numWaitingWriters++;
okToWrite = false;
while (!okToWrite)

wait();
//ON_EXIT1
numWaitingWriters--;

} else {
//ON_EXIT2

}
okToWrite = false;
numWriters++;

}
public synchronized void endWrite() {

//ON_ENTRY
numWriters--; // ASSERT(numWriters==0)
okToWrite = numWaitingReaders == 0;
startWaitingReadersTime = age++;
notifyAll();

}
}

REFERENCES 31

Algorithm 5 Read-write lock speci�cation without any fairness requirements
specification BasicRWLock {
import Nat
type RWLockState = RLocked Nat | WLocked | UnLocked
var

lock : RWLockState = UnLocked RLock;
// readers
on_exit startRead() {

precondition (lock != WLocked)
lock' = case lock of {

UnLocked -> RLocked 1
RLocked n -> RLocked (n+1)

}
}
on_entry endRead() {

assume lock = RLocked _ // describes the usage
lock' = case lock of {

RLocked 1 -> UnLocked RLock
RLocked n -> RLocked (n-1)

}
}
// writers
on_exit startWrite() {

precondition (lock = UnLocked)
lock' = WLocked

}
on_entry endWrite() {

assume lock = WLocked // describes the usage
lock' = UnLocked

}
}//spec

