
Refinement of Chart Patterns in

CPL

Raluca Musăloiu-Elefteri

ralucam@mail.com

A report presented in partial fulfilment for the degree of

Bachelor of Science

Supervisors:

Khoo Siau Cheng

School of Computing

National University of Singapore

khoosc@comp.nus.edu.sg

Nicolae Ţăpuş

Dept. of Computer Science

University “Politehnica” of Bucharest

ntapus@cs.pub.ro

2003

Dedicated to everyone

Acknowledgments

Special thanks go to my project supervisor, A/P Khoo Siau Cheng for his beyond

limits patience and support and for very interesting discussions during our meet-

ings. Also, many thanks for my second supervisor, A/P Chin Wei Ngan. For these

two guys EVERY day REALLY has 24 hours.

Saswat Anand created the CPL Language and also took part at almost all the

meetings with Khoo Siau Cheng. I want to thank him for sharing ideas with me

and in general, for making the project funnier.

I also want to thank to my supervisor from Romania, prof. Nicolae Tăpuş, for

his optimistic way of view and for all his efforts in encouraging students to do their

best.

Entire Programming Languages and Systems Lab team was very nice and all

Romanians from there deserve many thanks for all good time we spend together.

Also, I want to thank prof. Cristian Giumale who teach an absolutely won-

derful Functional Programming course at Computer Science Department at UPB,

Romania.

iii

Contents

Acknowledgments iii

Summary vii

List of Tables viii

List of Figures ix

1 Introduction 1

2 About CPL 2

3 The problem of adjusting definitions of chart patterns 4

4 Design 8

4.1 d-Dimensional space . 9

4.2 Voronoi Diagram . 11

4.2.1 Voronoi Diagram in 2D space 12

4.2.2 Voronoi in d-dimensional space 14

iv

Contents v

4.2.3 Size of the diagram . 15

4.3 Nearest Neighbor problem . 16

4.3.1 Exact problem . 17

4.3.2 Approximative methods . 18

4.4 Bruteforce Method . 21

4.4.1 Bruteforce Method 1 . 21

4.4.2 Bruteforce Method 2 . 21

4.4.3 Data normalization . 23

4.4.4 Problems . 25

4.5 Bounding Box Method . 25

4.5.1 Method . 26

4.5.2 Example . 27

4.5.3 Threshold . 32

4.5.4 More refinement . 33

5 ... and Implementation 38

5.1 Files . 38

5.1.1 CPLTuningBf.hs . 40

5.1.2 CPLTuningBb.hs . 41

5.1.3 CPL.hs . 42

5.1.4 Constraints.hs . 43

5.1.5 Evaluations.hs . 43

5.1.6 Features.hs . 43

5.1.7 Utils.hs . 43

5.1.8 Makefile . 43

5.1.9 Other files . 43

5.2 Additional scripts . 44

Contents vi

6 Testing Area 45

6.1 Bruteforce method . 45

6.2 Bounding box method . 47

6.3 Comparison . 47

7 Conclusion 49

Summary

This project analyzes several approaches that can be used for adjusting chart pat-

terns definitions written in CPL (Chart Pattern Language) and then proposes and

implements two distinct methods for doing this.

vii

List of Tables

4.1 Nearest-neighbor - exact problem 18

4.2 Nearest-neighbor - approximative problem 20

6.1 Bruteforce method - tests . 46

6.2 Bounding box method - tests . 47

6.3 Tests - comparison . 48

viii

List of Figures

3.1 Head-And-Shoulder pattern . 6

3.2 Example of a positive instance of Head-And-Shoulder pattern . . . 6

3.3 Example of a negative instance of Head-And-Shoulder pattern . . . 6

3.4 Entire process . 7

4.1 Possible characteristics of an instance 9

4.2 Instances in 2D and 3D space . 10

4.3 Voronoi Diagram . 12

4.4 Projecting the polyhedron from 3D space onto original 2D space . . 15

4.5 Bruteforce method 2 . 22

4.6 Example - Stage 1 . 28

4.7 Example - expanding Y interval (max limit), Y first 29

4.8 Example - expanding Y interval (min limit), Y first 30

4.9 Example - expanding X interval (max limit), Y first 31

4.10 Example - expanding X interval (min limit), Y first 32

4.11 Example - expanding X interval (max limit), X first 33

4.12 Example - expanding X interval (min limit), X first 34

ix

List of Figures x

4.13 Example - expanding Y interval (max limit), X first 35

4.14 Example - expanding Y interval (min limit), Y first 35

4.15 Comparison . 36

4.16 Threshold . 36

4.17 Removing negative boxes . 37

Chapter 1
Introduction

In Chapter 2 we will talk a little about Haskell and Chart Pattern Language and

about what is already done using this language. Chapter 3 will present the concrete

definition of the problem, in the sense of what this pattern refinement is supposed

to mean. The next chapter (Chapter 4) will contain the theoretical part of the

project, how the refinement problem can be approached and what problems occur.

Chapter 5 is about implementation of algorithms, modules, scripts, file formats and

so on. The next chapter, Chapter 6, will contain the results of the tests and some

ways to evaluate the goodness of the new definitions and then, the conclusion and

possible future work (Chapter 7). Of course the references part cannot be skipped.

1

Chapter 2
About CPL

Chart Pattern Language (CPL) was proposed by Saswat Anand in his MSc thesis

[22] [23] in 2001 and it is a high-level language to facilitate pattern discovery

process. The language enables financial analysts to do the following tasks:

1. Define patterns with fuzzy constraints. Through incremental addition of

fuzzy constraints to a pattern, the user is able to refine patterns iteratively.

2. Reuse patterns. Complex patterns are built by composing simpler patterns

and adding further constraints on them.

By embedding Chart Pattern Language within Haskell, the user can reap ben-

efits from various nice features of Haskell. Specifically,

• Haskell’s strong type system infers the type of pattern definition automati-

cally. This frees programmers, who are financial analysts by profession, from

the mundane task of declaring variables and specifying types – a task which

they are not at all comfortable with or enjoy doing.

• Higher-order functions are used extensively throughout the system to create

a natural and concise syntax for the language. CPL has been designed with

2

3

the aim of making it similar to spread-sheet formula language, which all

financial analysts feel familiar with.

• Searching for patterns in price history involves multiple constraints satis-

faction, which has a worst case exponential running time. Lazy Evaluation

plays a crucial role by automatically avoiding unnecessary computation dur-

ing searching for patterns.

Chapter 3
The problem of adjusting definitions of

chart patterns

Chart patterns are generally used for detecting systematic behavior of stock per-

formance. That is, the occurrence of a pattern bodes the rising or falling of stock

price in the near future. It is known that chart pattern specifications are subjective

in nature. The usual yardstick to measure the effectiveness of pattern specification

lies in its ability to predict the future correctly at most of the time. We investigate

how a pattern specification can be refined to boost its predictive power.

As a yardstick for measuring the effectiveness of pattern specification is mainly

its prediction ability, we rely on past stock data to determine this ability. Our

experiment begins with a collection of past stock data. We intend to break the

data set into two groups: the controlled and uncontrolled groups.

For fairness, both the controlled and uncontrolled groups should have similar

kind of stock constituents. That is, the composition of stock in one group should

be similar to that in the other group.

Given a chart pattern specification c, and two sets of stock data, labeled as C

(for controlled group) and U (for uncontrolled group), let s(c, D) be the average

4

5

predictability (ranged between 0 and 1) of pattern specification c over a set of data

D. The pattern-refinement problem is as follows:

Suppose s(c, C) and s(c, U) are p1 and p2 respectively, where 0 <

pi < 0.5, for i = 1, 2. Use the data set C and specification c to find

a refined pattern specification c′ such that:

1. [[c′]] ⊂ [[c]], where [[c]] represents the set of pattern instances

conforming to c found in a set of stock data

2. The syntactic size of the specification c′ is as small as possible

in comparison with the original specification c,

3. and predicting s(c′, U) = p′ where p′ = p2 + δ for δ significantly

large (wanted).

It is quite natural to classify each pattern instance found in the controlled group

according to their predictability. We call those instances in the controlled group

that matches the prediction the positive instances, and we call those instances that

does not match the prediction the negative.

For example, let’s consider a famous pattern in stock market called Head-And-

Shoulder (Figure 3.1). It is known [10] that after an occurrence of this pattern

on the stock market the price should drop for a certain period of time. In this

case we will consider that an instance (an occurrence of the pattern in the data

set) is positive if the price really drops (as can be seen in Figure 3.2) and negative

otherwise (Figure 3.3).

A clear image of the entire process is illustrated in Figure 3.4.

6

Neckline

Right Shoulder

Head

Left Shoulder

Price

Time

0

Instance

Figure 3.1: Head-And-Shoulder pattern

Price

Time

0

Instance

Positive
instance

Figure 3.2: Example of a positive instance of Head-And-Shoulder pattern

Price

Time

0

Instance

Negative
instance

Figure 3.3: Example of a negative instance of Head-And-Shoulder pattern

7

Training
data
set

Search
+
−

Instances

methods

Adjustment NEW

definition

Search

set
data
Test

Search

Instances

Instances

+

+
−

−

Initial

definition

Initial

definition

U

s(c’, U)=p’

s(c, U) = p2

c

c’s(c, C)=p1

c

C

F
igu

re
3.4:

E
n
tire

p
ro

cess

Chapter 4
Design

Let’s see how can we automate this training process.

We said before that the definition written in CPL helps us to find a set of

instances classified into two groups: positive and negative. We can try to generate

a new definition by including some constraints in the original definition based on

information that describes the instances and their power of prediction. So we need

to find some characteristics that can best describe the positive instances and push

them in some way into the current definition.

For example, if we consider an instance like the one in the Figure 4.1 some

characteristics might be:

h1

h
,

h2

h
,

h1

h2
, |h1 − h2| etc.

But it’s very hard to define characteristics that describe all patterns. Every

kind of pattern (i.e. head-and-shoulder) has its own set of characteristics that best

describes it. That’s why when we want to refine a pattern definition we need to

know from start what characteristics we want to adjust. Beside this, we need to

have a function to evaluate power of prediction of each pattern.

From now we will call the values of the characteristics as features.

8

4.1 d-Dimensional space 9

h1

h

h2

Figure 4.1: Possible characteristics of an instance

4.1 d-Dimensional space

An intuitive way to see an instance of a pattern is a point space. We can map the

features of an instance to coordinates of a point in space. For example an instance

described by 2 features can be represented by a point in plane. For 3 features we

will have a point in 3D space (Figure 4.2).

This mapping of instances to points in ℜd has the advantage that it doesn’t

lose information, it takes in consideration all correlations between features. This

representation also enables the evaluation of the difference between 2 instances by

using the Euclidean distance formula between 2 points in ℜd space:

distance(Xi, Xj) =

√

√

√

√

d
∑

k=1

(fik − fjk)
2

where Xi(fi1, fi2, . . . , fid), Xj(fj1, fj2, . . . , fjd
).

Now we can see quite clearly the inputs to our automation process. We have:

- a pattern specification in CPL

- a set of data (represented by a evolution of price in time)

4.1 d-Dimensional space 10

I

Y

X

y

x

Y

X

Z

x

z

y

I

Figure 4.2: Instances in 2D and 3D space

- a function to evaluate the power of prediction of the instances found in the

data set; This function does not only depend on information available in

the instance, but also depend on the stock data immediately following the

instance.

- a set of functions representing characteristics of the pattern; Using these

functions we compute for every instance found a set of values correspond to

the coordinates of a point in space.

With these inputs we can generate a new specification for the pattern, in CPL,

that will detect instances with a better power of prediction. The bigger the training

data set is, the better definition will be generated.

The entire problem seems now quite manageable. If we can find some methods

to manipulate these data in a efficient way then the problem is solved. But still it

doesn’t seem clear how we can do this. In the following section we will present two

totally different methods, both based on this representation of instances as points

in space.

4.2 Voronoi Diagram 11

4.2 Voronoi Diagram

The evaluation function classifies some of the instances as positive (if they match

the prediction) and some as negative (if they do not match the prediction). We

want our new definition to be able to find out if an unknown instance is more likely

to be a positive or a negative one. A very intuitive way is to assume that a newly

discovered instance is positive if the closest instance in the training set is positive

and negative if the closest one is negative.

Let’s consider the simple case of n points in 2D space. The number of points

is assumed to be at least two and finite and all points must be distinctive (every

two points differ by at least a coordinate). Given this set of points, we assign

every location in the space to the nearest member of the point set. If the location

happens to be equally close to two or more members of the point set, we assign

the location to all those members. As a result every point in our set will have

it’s own cell (region) formed by all points in the space closest to if. All the points

that are assigned to two or more members in the point set form the boundaries of

the regions. This construction is called planar ordinary Voronoi diagram and the

regions that constitute the Voronoi diagram are called ordinary Voronoi polygons.

Mathematically, the definition can be expressed like this [20, page. 67]:

Let P = {p1, p2, . . . , pn}, where 2 ≤ n < ∞ and pi 6= pj for i 6= j, xi, xj ∈ P .

The region given by

V (pi) = {x| ‖x − pi‖ ≤ ‖x − pj‖ for j 6= i, j ∈ P}

is called the (ordinary) Voronoi polygon associated with pi or the Voronoi polygon

of pi and the set given by

ϑ = {V (p1), . . . , V (pn)}

is called (planar ordinary) Voronoi diagram or Voronoi diagram of P .

4.2 Voronoi Diagram 12

Another equivalent definition was given by Berg ([4, page 149]).

An example of Voronoi diagram can be seen in Figure 4.3.

Figure 4.3: Voronoi Diagram

4.2.1 Voronoi Diagram in 2D space

There are some algorithms in computation geometry that are available for com-

puting Voronoi diagram in 2-dimensional space. Here are 4 algorithms, briefly

presented. More details can be found in Computational Geometry in C by Joseph

O’Rourke [21].

Intersection of Halfplanes

Each Voronoi region can be constructed separately, by intersecting n − 1 halfplanes,

using this formula:

V (pi) =
⋂

i6=j

H(pi, pj)

It is known that the intersection of n halfplanes can be done in O(n log n)

time using a divide-and-conquer algorithm. Doing this for each point the cost of

computing diagram will be O(n2 log n).

4.2 Voronoi Diagram 13

Incremental Construction

Suppose the Voronoi diagram for k points is already constructed and we would

like to construct the diagram after adding one more point p. Green and Sibson, in

1977, were the first to provide such an incremental algorithm. This is one of the

cleanest algorithms for computing Voronoi diagram [21].

It spends O(n) time for a point insertion, so the total complexity will be O(n2).

In spite of squared complexity, this was the most popular method for constructing

Voronoi diagrams.

Field gave an implementation for this in 1986. Then the incremental algorithm

was revised using randomized algorithms.

Divide and Conquer

A complex divide-and-conquer algorithm for constructing Voronoi diagram was

proposed by Shamos and Hoey in 1975 with a complexity of O(n log n). Although

the complexity is nearly optimal, the algorithm is very difficult to implement.

Guibas and Stolfi made available an implementation of this algorithm in 1985,

using some smart data structures.

Fortune’s Algorithm

In ’80, most implementations for computing Voronoi diagrams used the O(n2)

incremental algorithm, accepting a slower performance to avoid the complexity of

the divide-and-conquer coding.

But in 1985, Fortune invented a clever plane-sweep algorithm that is as simple

as the incremental algorithms, but has worst-case complexity of O(n log n).

4.2 Voronoi Diagram 14

4.2.2 Voronoi in d-dimensional space

In our specific case (adjusting pattern definitions), every instance is described by

a set of usually more than 2 of features which can be seen as coordinates of the

point. The particular case of 2 dimensions is not enough, since our points are in a

multi-dimensional space.

That’s why we need to consider the problem of computing Voronoi diagram in

higher dimensions.

A definition of Voronoi diagram can be like this:

Given a set P of n distinct points in ℜd, Voronoi diagram is the partition of

ℜd space into n polyhedral regions V (pi), pi ∈ P . Similar with 2D space, each

region V (pi) is defined as a set of points in ℜd which are closer to pi than to any

other points in P :

V (pi) = {x ∈ ℜd | distance(x, pi) ≤ distance(x, pj) ∀ pj ∈ P − pi}

where distance is the Euclidean distance function:

distance(pi, pj) =

√

√

√

√

d
∑

k=1

(fik − fjk)
2,

pi(fi1, fi2, . . . , fid) and pj(fj1, fj2, . . . , fjd)

In order to compute Voronoi diagram, the following construction is very impor-

tant. For each point pi(fi1, fi2, . . . , fid) in P , consider the hyperplane tangent

to the paraboloid in ℜd+1 at pi : xd+1 = x2
1 + . . . + x2

d. This hyperplane is

represented by h(pi):

d
∑

j=1

f 2
ij −

d
∑

j=1

2 f 2
ij xj + xd+1 = 0

By replacing the equality with inequality ≥ above for each point pi, we obtain

a system of n inequalities. The polyhedron T in ℜd+1 of all solutions to the system

of inequalities is a lifting of the Voronoi diagram to one higher dimensional space.

4.2 Voronoi Diagram 15

In other words, by projecting the polyhedron T onto the original ℜd+1 space, we

obtain the Voronoi diagram in the sense that the projecting of each facet of T

associated with pi ∈ P is exactly the Voronoi cell for point pi:

T = {x ∈ ℜd+1 |
d

∑

j=1

f 2
ij −

d
∑

j=1

2 f 2
ij xj + xd+1 ≥ 0 ∀pi(fi1, fi2, . . . , fid) ∈ P}

or

T = {x ∈ ℜd+1 | b − A x ≥ 0}

where A is a given n × (d + 1) matrix and b is a vector of size n.

This process can also be seen as the projection of lower part of convex hull of

the points lifted in that special way in ℜd+1 (Figure 4.4).

Figure 4.4: Projecting the polyhedron from 3D space onto original 2D space

The connection between the Voronoi diagrams in dimension d and convex hulls

in dimension d + 1 was first established in 1979 by Kevin Q. Brown [9] and then

Edelsbrunner and Seidel [11] found that method described above.

4.2.3 Size of the diagram

It can be proven that, for Voronoi diagram in two dimensions, if the number of

points is n ≥ 3, there will be n regions, with at most 3n − 6 edges and at

4.3 Nearest Neighbor problem 16

most 2n − 5 vertices. So, considering the algorithms above, the diagram can be

computed in O(n log n) time using O(n) storage.

For higher dimensions the situation is not as good as in 2D. Victor Klee [13]

showed in 1980 that for n points in d-dimensional space, the size of the diagram

(the number of edges and vertices) is O(n⌈d/2⌉) and the complexity of the algorithm

is O(n log n + n⌈d/2⌉). Another proof was given by Seidel in 1991 [25]:

O(n⌊(d+1)/2⌋)

The exponential complexity of the size of this diagram make it hard to use if

the number of dimensions (features) is higher than 2. In our case the exponential

complexity make is unusable at all because the entire diagram should be included

in the new definition of the pattern.

We can think that our problem is not exactly the classical Voronoi problem. We

don’t want to know for sure what is the exact region in space in which a given point

is located, instead we only want to know if it belongs to a positive or a negative

region. This looks like a big simplification, because we can think of combining all

positive regions and eliminating the hyper-planes between two positive regions, but

in these way we obtain some non-convex structures and the complexity remains

exponential...

In our particular case, n and d don’t take some extremely large values, but even

considering some reasonable values, like n = 100 and d = 10, the size (1005) is

far from acceptable.

4.3 Nearest Neighbor problem

Until now we were focused on computing Voronoi diagram. If the complexity of

this weren’t so high we could form a new definition of the pattern by including this

diagram inside it together with a low complexity searching method for locating

4.3 Nearest Neighbor problem 17

an unknown point (instance) in this diagram. But as we saw above the size is

exponential and we cannot accept it in the definition.

So we have to think in a slightly different way: instead of computing the whole

Voronoi diagram we could consider this alternative problem:

Given n points in ℜd space and a query point q find which

point in the set is closest to q.

In computational geometry this problem is called nearest neighbor problem and

it has been intensively studied in the last three decades. The goal of this problem

is the same as in Voronoi case, but now, trying to avoid the computation of a huge

data structure we accept the possibility of doing some more computation at query

time if this could reduce the complexity of storage space.

There are several issues we need to consider when implementing an algorithm

to find the nearest neighbor:

1. the size of the data structure DNN , which is determined in the offline pre-

processing stage

2. time to reply to a query, which is influenced by the design of the DNN as well

as the algorithm used to locate nearest neighbor

3. time to create the data structure DNN ; this is less important because it occurs

in preprocessing time

4.3.1 Exact problem

In high-dimensional space, the nearest-neighbor problem was first considered by

Dobkin and Lipton [8]. In 1976 they were the first to provide an exponential in

d search algorithm (O(2d log n)) using a double exponential in d data structure

(O(n2d+1

)).

4.3 Nearest Neighbor problem 18

Later Clarkson [6] showed in 1988 that queries could be answered in O(dd log n)

time with O(n⌈d/2⌉(1+δ)) space, for any δ > 0. He reduced the storage complexity

by increasing the query time cost.

Most of the subsequent approaches require a query time of at least O(exp(d) ·

log n): Yao and Yao [27], Matousěk [17] and Agarwal and Matousěk [1] all suffer

from a query time that is exponential in d.

One exception is an algorithm given by Meiser [18]. He showed in 1993 that

exponential factors in query time could be eliminated by giving a algorithm with

O(d5 log n) query time and O(nd + δ) space.

In any fixed dimension greater than 2, no known method achieves the simulta-

neous goals of linear space and logarithmic query time.

A summary of these algorithms can be seen in Table 4.1.

Query Storage Paper

2d log n n2d+1

Dobkin, Lipton ’76

dd log n n⌈d/2⌉(1+δ) Clarkson ’88

Yao ’85

Matousěk ’92

Agarwal and Matousěk ’92

d5 log n nd + δ Meiser ’93

Table 4.1: Nearest-neighbor - exact problem

4.3.2 Approximative methods

The apparent difficulty of obtaining algorithms that are efficient in the worst case

with respect to both space and query time for dimensions higher than/then 2

4.3 Nearest Neighbor problem 19

suggests that the alternative approach of finding approximate nearest neighbor is

worth considering:

Consider a set P of points in ℜd and a query point q ∈ ℜd.

Given ǫ > 0 we say that a point p ∈ P is (1 + ǫ) −

approximate nearest neighbor of q if

distance(p, q) ≤ (1 + ǫ) distance(p∗, q)

where p∗ is the true nearest neighbor to q.

In other words, p is within a relative error ǫ to the true nearest neighbor.

This problem was also extensively studied in computational geometry field (Ta-

ble 4.2). Arya and Mount [3] obtained in 1993 an algorithm with query time

exponential in d (O(exp(d) · 1
ǫd · log n)) and nearly linear space: O(n log n).

Clarkson [7] gave in 1994 a different algorithm which improves the dependence

on ǫ in query time to O(exp(d) · 1

ǫ
d−1
2

· log n). This complexity was also obtained

by Chan [5] in another algorithm in 1997.

Then in 1999, Arya, Mount, Netanyahu, Silverman and Wu [2] found an algo-

rithm with O(d n) complexity for storage, but the query time grows to O(dd · 1
ǫd).

Kleinberg [14] in 1997 showed it is possible to eliminate exponential dependen-

cies on dimension in query time (O(d2 log2 n)), but with O((n log d)2d) space.

A year later, in 1998, Indyk and Montwani [12] and independently Kushilevitz

[16] announced algorithms that eliminate all exponential dependencies in dimen-

sion: O(d logø(1)(d n)) for query time and O((d n)ø(1)) space complexity. ø-notation

hides constant factors that depend exponentially on ǫ, but not on dimension.

Unfortunately, it is quite obvious that if we consider the Voronoi problem, the

size of the diagram is exponential (and the complexity of the search function low),

and if we consider the Nearest-Neighbor problem (either exact or approximate),

4.3 Nearest Neighbor problem 20

Query Storage Paper

exp(d) · 1
ǫd · log n n log n Arya, Mount ’93

exp(d) · 1

ǫ
d−1
2

· log n n log n Clarkson ’94, Chan ’97

dd · 1
ǫd d n Arya, Mount, Netanyahu, Silverman, Wu ’94

d2 log2 n (n log d)2d Kleinberg ’97

d logO(1)(d n) (d n)O(1) Indyk and Montwani 1998

Kushilevtz 1998

Table 4.2: Nearest-neighbor - approximative problem

even the situation is slightly better, we still have to manage with an exponential

complexity either in query time or in storage space.

Moreover, we can make some observations. For algorithms that require an

exponential dependence on d in query time, the bruteforce algorithm (which simply

computes the distance from the query point to every point in P , in O(dn) time),

provides a faster query time even theoretically when d ≥ log n [14]. And, if

the algorithm requires storage complexity to be polynomial in n (for variable d),

it appears that no algorithms are known with query time that improve bruteforce

search once d is comparable to log n [14]. Arya [2] said in 1999 that:

”... if the dimension is significantly larger than log n

(as is for a number of practical instances), there are no

approaches we know that are significantly faster than

brute-force search.”

4.4 Bruteforce Method 21

4.4 Bruteforce Method

Bruteforce method seems a good tradeoff between space and time complexity. Let’s

see what are that 3 factors we mentioned in Section 4.3:

1. The data structure DNN has O(d n) complexity, that is the space required

to store all points (n points, d dimensions); we do not manipulate a data

structure to fit our needs, but simply store it as is.

2. The time required to create this data structure is O(1) - points are only

stored, there is no preprocessing at all.

3. Since we scan the entire space each time in order to find the nearest neighbor,

query time is O(d n); for a real-time application this complexity may not be

sufficient but in our case it is quite acceptable, because in this way we can

avoid an impossible-to-handle storage space.

4.4.1 Bruteforce Method 1

The first method is the classical bruteforce method. An unknown instance X is

evaluated by considering the power of prediction of the closest instance:

eval(X) = sgn(eval(Xk)), where

X1, . . . , Xn - instances

Xi(fi1, . . . , fid) - features for instance Xi

distance(X, Xk) ≤ distance(X, Xi) ∀ i 6= k

4.4.2 Bruteforce Method 2

A variation of the first method may be this: instead of taking the closest point

we can evaluate an instance by considering the power of predicting all training

4.4 Bruteforce Method 22

instances. One way to do this is to ponderate the contribution of each point

according to their distances to the point we want to evaluate. If a point is far

away, if will not have much influence on the instance, but if it is just near to

the point, then it might have many characteristics in common so the power of

prediction of the point should weigh more.

For example we can choose to ponderate the values using the squared value of

the distance:

eval(X) = sgn
n

∑

i=1

eval(Xi)

distance2(X, Xi)
, where

X1, . . . , Xn - instances

Xi(fi1, . . . , fid) - features for instance Xi

This method is more precise (at least theoretically) because it can accept some

“noise” values, in the sense that even the closest neighbor is positive for example, an

unknown instance can be negative if it is “surrounded” by many negative instances

(Figure 4.5).

unknown instance

closest instance

f2

f1

Figure 4.5: Bruteforce method 2

4.4 Bruteforce Method 23

Also, although it seems a little more complicated than the first method, the

complexity is exactly the same because in the bruteforce method, even we need

only the nearest neighbor, we cannot skip the task of traversing all points for each

query points.

4.4.3 Data normalization

As we said in Section 4.2.2 the distance between instances is the classical Euclidean

distance, but computed in d-dimensional space:

distance(pi, pj) =

√

√

√

√

d
∑

k=1

(fik − fjk)
2,

pi(fi1, fi2, . . . , fid) and pj(fj1, fj2, . . . , fjd)

The values of the features can be dispersed at different scales and because of

this, the distance can be dominated by one dimension. For example, if one feature

has a range of 0 to 1 while another has a range of 0 to 1000 then the contribution

of the first feature to the distance will be swamped by that of the second feature.

The contribution of one feature will depend heavily on its variability relative to

other features. So it is essential to re-scale the features so that all values to be in

the same range or having same standard deviation.

Suppose we want to normalize a feature f . Let the values for this feature, as

obtained from n data, be: f1, f2, . . . , fn.

Two of the most useful ways to normalize the date are:

1. Mean 0 and standard deviation 1:

Compute the mean of the values:

f =

∑n
i=1 fi

n

4.4 Bruteforce Method 24

Compute the standard deviation of the values:

σ =

√

√

√

√

∑n
i=1 (fi − f)

2

n − 1

Then, the normalized value corresponding to fi will be:

new fi =
fi − f

σ

2. Midrange 0 and range 2 (i.e, minimum -1 and maximum 1):

Compute the midrange of the values:

midrange =
max fi + min fi

2

Compute the range of the values:

range = max fi − min fi

The normalized value corresponding to fi will be:

new fi =
fi − midrange

range

Various other pairs of location and scale estimators can be used besides the

mean and standard deviation, or midrange and range.

We have to note here that statistics such as the mean and standard deviation

are computed from the training data, not from the validation or test data. But the

validation and test data must be normalized using the statistics computed from

the training set.

Even in our case normalization is a must, generally speaking, normalization of

data should be done with caution because it discards information. If that infor-

mation is irrelevant then normalization can be quite helpful, like in our case. But

if that information is important, then normalization can be disastrous.

4.5 Bounding Box Method 25

4.4.4 Problems

In the previous section we saw the importance of scaling data. There are situations

when the scaling may not be enough and the distance may still be misleading.

Until now we scale the features so that all features have the same range. But

we didn’t take into consideration that some features might be more important than

others. For example if each instance is described by 20 attributes, but only 2 of

these are relevant to determining the classification, in this case, instances that have

identical values for the 2 relevant attributes may be distant from each other in the

20-dimensional space because the distance will be dominated by the large number

of irrelevant attributes.

So it is essential to re-scale the data so that their variability reflects their

importance (the more important features should have larger variances and/or range

than less important one).

One interesting approach to overcoming this problem is to weigh each attribute

when calculating the distance between 2 instances. This corresponds to stretching

the axes in the Euclidean space, shortening the axes that correspond to less relevant

attributes, and lengthening the axes that correspond to more relevant attributes.

This project does not implement the feature-weighing solution. Some details

and references about such implementation can be found in Chapter 7.

4.5 Bounding Box Method

Bruteforce methods should be the most accurate methods for classifying new in-

stances, but, as we have seen, we have to adjust the relevance of the features in

a right way in order to achieve best results. In this section we explore a totally

different approach, a simpler one: we try to find a box in high dimensional space

which includes all positive instances and assume that all new instances inside this

4.5 Bounding Box Method 26

hyperbox are positive and all outside the box are negative. By including all posi-

tive instances it is possible to include some negative instances inside the box. We

accept this and hope the number of such instances will be as small as possible.

The main drawback of this method is that it is approximative, it is not complete

(as bruteforce) according to the information that can be inferred from the training

data. But it has some advantages that make it worth considering.

• The new definition of the pattern will be formed by easy to check constraints

(coordinates to be in some intervals).

• The algorithm is easy to compute - we don’t have to deal with complex

algorithms as we saw in previous sections. We will see that the complexity

used here is linear in n and d.

• The size of the refined pattern is independent on the size of the training

set. This is very important because we can improve a definition many times

without worrying about growth in the of the data set. Patterns generated

by this method are more reusable than those obtained with methods like

bruteforce.

4.5.1 Method

The basic idea is that we want to compute a hyperbox with all positive instances

in it and we want this box to be as big as possible but to include as few negative

instances as possible.

A possible method to achieve this is the one we’ll describe here. It requires 2

steps:

1. Compute the minimum interval in each dimension which contains all positive

instances in it. Let these intervals be:

{[min1, max1], . . . , [mind, maxd]}

4.5 Bounding Box Method 27

These intervals form the limits of the minimal hyperbox. Any other hyperbox

which enclose all positive instances has the volume bigger than this one.

2. Expand the box (to make if as big as possible) by expanding the interval

[mini, maxi] for each dimension i in a safe way. Let’s say we want to

expand interval for dimension D. For adjusting the limits we search (in both

directions) for the nearest (negative) instance that has all its coordinates

except D inside current intervals and its D-coordinate outside the current

interval for D. We expand the limits in this way, rather than by searching for

the nearest negative instance, because we don’t want to limit the intervals

that will provide a box smaller than the optimal one. Basically when we

adjust a dimension of the current hyperbox we keep the rest of the dimensions

fixed and extend limits until we rich a negative instance.

There is one caveat in this method. At the end of this method (after adjusting

all dimensions) we cannot guarantee the box is maximum, because it depends on

the order of adjusting. If we want the maximum box for sure we have to try all

possible ways of adjusting (backtracking or branch and bound).

4.5.2 Example

Let’s take 6 instances in 2D space (Figure 4.6):

• 1, 2, 3 - positive instances

• 4, 5, 6 - negative instances

Instance i is described by the pair of features (Xi, Yi).

After stage 1, the minimal box with all positive instances in it (Figure 4.6) is

delimited by these intervals:

X : [X1, X3]

4.5 Bounding Box Method 28

1

2

5

4

6

3

Y

X

1

2

5

4

6

3

Y

X

a b

Figure 4.6: Example - Stage 1

Y : [Y3, Y2]

There are two possibilities of enlarging the box:

1. First adjust Y dimension and then X:

• Expand Y , max value (Figure 4.7 a): I’m looking for the nearest Y value

of a negative instance that have X value inside current X interval. We

found point 5 (X6 is outside interval [X1, X3] that’s why we didn’t stop

searching at point 6).

The new interval for Y dimension becomes [Y3, Y5], so the new box

(Figure 4.7 b) is delimited by these intervals:

X : [X1, X3] - remains the same

Y : [Y3, Y5]

• Expand Y , min value (Figure 4.8 a): there is no negative instance with

Y value smaller than Y3 so we can extend it to −∞. The new interval

for Y dimension becomes (−∞, Y5].

So far the new intervals are (Figure 4.8 b):

4.5 Bounding Box Method 29

1

2

3

4

5

6

1

2

3

4

5

6

a b

X

Y

X

Y

Figure 4.7: Example - expanding Y interval (max limit), Y first

X : [X1, X3] - remains the same

Y : (−∞, Y5]

• Expand X, max value (Figure 4.9 a): point 6 is the nearest negative

point with X value greater then X3 and Y value inside Y interval, which

is (−∞, Y5]. So the new interval for X is [X1, X6], and the box becomes

(Figure 4.9 b):

X : [X1, X6]

Y : (−∞, Y5] - remains the same

• Expand X, min value (Figure 4.10 a): find nothing so expand to −∞.

The new interval for X is (−∞, X6]. The bounding box becomes (Figure

4.10 b):

X : (−∞, X6]

Y : (−∞, Y5] - remains the same

2. First adjust X dimension and then Y :

• Expand X, max value (Figure 4.11 a): no negative instances are found

4.5 Bounding Box Method 30

1

2

3

4

5

6

1

2

3

4

5

6

a b

X

Y

X

Y

Figure 4.8: Example - expanding Y interval (min limit), Y first

so the interval for X becomes [X1, +∞). The bounding box is now

(Figure 4.11 b):

X : [X1, +∞)

Y : [Y3, Y2] - remains the same

• Expand X, min value (Figure 4.12 a): again, no instances found so the

interval for X becomes (−∞, +∞) and the bounding box (Figure 4.11

b):

X : (−∞, +∞)

Y : [Y3, Y2] - remains the same

• Expand Y , max value (Figure 4.13 a): expand to point 6, so the interval

for Y becomes [Y3, Y6]. The bounding box is now (Figure 4.13 b):

X : (−∞, +∞) - remains the same

Y : [Y3, Y6]

• Expand Y , min value (Figure 4.14 a): Y : (−∞, Y6]. And the box

becomes (Figure 4.14 b):

4.5 Bounding Box Method 31

ba

1

2

3

4

5

6

1

2

3

4

5

6

Y

X

Y

X

Figure 4.9: Example - expanding X interval (max limit), Y first

X : (−∞, +∞) - remains the same

Y : (−∞, Y6]

If we compare the bounding boxes after adjusting dimensions using order [1]

and [2] (Figure 4.15) we can see that they are not the same. Moreover, it is not

easy to say which box is better, because some intervals might not be (and, in our

example they aren’t) finite. If we want for sure the maximal box then we have

to test all possibilities of ordering dimensions, using backtracking or branch-and-

bound method.

In the beginning we assumed that a larger bounding box is preferred but,

fortunately, we don’t know for sure that the biggest one would give us the best

results. So, considering that finding the biggest one is time consuming we prefer,

in this implementation, to choose a random ordering of dimensions, let’s say the

natural one: feature1, feature2, ..., featuren.

4.5 Bounding Box Method 32

1

2

3

4

5

62

3

4

5

6

1

ba

Y

X

Y

X

Figure 4.10: Example - expanding X interval (min limit), Y first

4.5.3 Threshold

While the first step of the algorithm bounds all positive instances in a box, the

second stage expand this hyperbox by taking care not to include any addition neg-

ative instances in it. An obvious problem here is what happens if the bounding box

include too many negative instances inside it? If the extreme values of the intervals

that contain all instances (positive and negative) belong to positive instances then

all negative instances will be inside those intervals. In this case the definition will

perform poorly even when testing on the training data!

The most frequent case that results in poor performance of this method is the

one where there are some “isolated” positive instances (which are positive instances

surrounded by many negative instances), like the one in the Figure 4.16 a. By

trying to include such an instance in a box, a lot of negative instances will also

be included. A natural fix to this problem is to exclude such “isolated” instances

from the training set. In this way, after expanding the box in stage 2, many of the

negative instances will not be inside the box (Figure 4.16 b).

For a fine tuning we use 2 parameters here: one parameter for specifying the

4.5 Bounding Box Method 33

1

2

3

4

5

6

1

2

3

4

5

6

a b

Y

X

Y

X

Figure 4.11: Example - expanding X interval (max limit), X first

size of the surrounding region and one for specifying the percentage of negative

instances we can accept inside this region in order not to skip this positive instance.

By adjusting these two parameters we can obtain better (or worse) results.

4.5.4 More refinement

To further reduce the number of negative instances inside the bounding box, we

can attempt to exclude some negative instances from the box.

One way to do this is to partition the entire space into regular hyperboxes

(Figure 4.17 a) (the number depends on the accuracy wanted) and to count the

number of negative and positive instances inside each hyperbox (Figure 4.17 c). For

n instances in d-dimensional space, the space will be divided into np d-dimensional

boxes, where p is that number in which we split one dimension). We use 2 counters

for each box: one for positive instances and one for negative. If the number of

negative instances in a box is much greater than the number of positive (much

meaning a value given as a parameter) we conclude the entire box is “negative”,

otherwise (empty box or with a great number of positive instances) is “positive”.

All “negative” boxes will be skipped from the bounding box (Figure 4.17 b).

4.5 Bounding Box Method 34

1

2

3

4

5

6

1

2

3

4

5

6

a b

Y

X

Y

X

Figure 4.12: Example - expanding X interval (min limit), X first

The total number of boxes is large but most of them are empty so we can

memorize only the boxes with at least one of the two counters greater than zero.

In the worst case we will have n boxes (where n is the total number of instances) -

with each instance in a different box (in the extreme case when we fix p to a high

value for more accuracy). That means this improvement requires O(d n) space

complexity.

Nevertheless, the size of the new definition will grow but the accuracy will be

greater.

4.5 Bounding Box Method 35

1

2

3

4

5

6

1

2

3

4

5

6

a b

Y

X

Y

X

Figure 4.13: Example - expanding Y interval (max limit), X first

1

2

3

4

5

62

3

4

5

6

1

ba

Y

XX

Y

Figure 4.14: Example - expanding Y interval (min limit), Y first

4.5 Bounding Box Method 36

1

2

3

4

5

6

1

2

3

4

5

6

X first, Y second

X

Y Y

X

Y first, X second

Figure 4.15: Comparison

f2

f1

f2

f1
a b

Figure 4.16: Threshold

4.5 Bounding Box Method 37

f2

f1

f2

f1

ba c

Figure 4.17: Removing negative boxes

Chapter 5
... and Implementation

This chapter gives an overview of the main files of the project. Details of imple-

mentation can be found in sources.

5.1 Files

These are the CPL original files, each with a brief description:

• CPL.hs - contains the main function for searching a pattern a set of data;

some examples of pattern’s definitions are also included.

• CompanyNames.hs - contains a definition of an array with 40 names of

input files, one file for each company.

• Mutables.hs - contains:

– definitions if indicators: open, close, high, low, volume

– functions for loading data, both for ASCII and binary format

– various declarations of instances

38

5.1 Files 39

• Operators.hs - defines various operators and their priorities; also contains

some definitions of instances.

• Pattern.hs - defines a class for landmark ; also defines followed-by and

constraint-by operations.

• Primitives.hs - contains definitions for up and down patterns

• Types.hs - here is definition of the Ind class, definition of Patt and PattT

types and also some basic types (like Slope, Bar, Price, Volume etc.)

CPL also comes with a graphical interface, written in Java, which facilitate

the work of discovering patterns (Browser.java, CPL.java, CommandLine.java,

Ghc.java, Graph.java, MyDate.java, MyReader.java).

Files added/modified by this project:

• CPL.hs

• CPLTuningBb.hs

• CPLTuningBf.hs

• Constraints.hs

• DeepSeq.hs

• Evaluations.hs

• Features.hs

• Makefile

• Utils.hs

• run-test.hs

5.1 Files 40

• run-tuning.hs

• run.hs

• some scripts

A few words about each of these files can be found in the following sections

together with some details for the most important functions.

5.1.1 CPLTuningBf.hs

This file contains the implementation of the Bruteforce algorithm. For a CPL user

one single function is important here:

adjustAll - its goal is to search a pattern in a training set of data and generate

a better CPL definition; requires the following parameters, in this order:

1. pattern - a pattern definition, like the one that exists in CPL.hs.

2. constraints - a list of additional constraints that can be checked during the

searching process; it was designed as a possible backdoor for quickly imple-

mentation of some filtering functions, if they are needed, but they are not

wanted to be included in the new definition; usually this list is left blank.

3. evalFunction - a function that evaluates the “goodness” of an instance; this

function needs to be previously defined in the Evaluations.hs file.

4. featuresFunList - a list of functions for computing characteristics of the func-

tions that are wanted to be adjusted; all the features from the list should be

previously defined in Features.hs file.

5. patternLength - a maximum possible length of an instance (specified by a

number of day); this parameter is needed by the search function.

5.1 Files 41

6. rescaleFun - a function used for normalization of values of features; two func-

tions (according to the two methods discussed in Section 4.4.3) are provided

in Utils.hs.

7. fromFileName - name of the input file

8. fileName - name of the output file

9. constrName - a string specifying the name of the new definition

10. featuresString - a string specifying the name of the functions for computing

features; we have a list of functions in another parameter but we also need

the names of these because it should be included in the new definition.

5.1.2 CPLTuningBb.hs

This is the implementation of the Bounding Box method. Here is the main func-

tion:

adjustAllBb - its goal is to search a pattern in a training set of data and

generate a better CPL definition; requires the following parameters, in this order:

1. pattern - the same as in Section 5.1.1

2. constraints - the same as in Section 5.1.1

3. evalFunction - the same as in Section 5.1.1

4. featuresFunList - the same as in Section 5.1.1

5. patternLength - the same as in Section 5.1.1

6. fromFileName - the same as in Section 5.1.1

7. fileName - the same as in Section 5.1.1

5.1 Files 42

8. constrName - the same as in Section 5.1.1

9. featuresString - the same as in Section 5.1.1

10. p1 - this is the first parameter used by the threshold function; it is a percent-

age used for specifying the size of the region (see 4.5.3 for details); a value

of 1 means the region is as large as possible (from the current point to the

farthest, so p1 is a percentage of this maximum distance); low values (such

as 0.001) are recommended or even lower.

11. p2 - this is the second parameter used by the threshold function; it represents

the ratio of the negative instances that needs to be inside the zone specified by

the previous parameter in order to exclude the positive instance (see Section

4.5.3 for details); a value of 1 means no toleration, a positive instance is

eliminated only in the case where all instances that surround it are negative;

high values are recommended such as 0.9.

12. p3 - the number of “chunks” in which each dimension will be split (p value

used in 4.5.4); recommended values: none, choose an appropriate number

considering how big you want the new definition to be; should be a positive

integer value.

13. p4 - it represents the ratio of the negative instances that needs to be inside

the box in order to exclude a hyperbox from the bounding box (see Section

4.5.4 for more details about this); a value of 1 means that a box is eliminated

only if all instances are negative; large values are recommended, such as 0.9.

5.1.3 CPL.hs

In this file were added some functions that generates some statistics after a search

process.

5.1 Files 43

5.1.4 Constraints.hs

This file contains some examples of definitions generated by bruteforce and bound-

ing box algorithms.

5.1.5 Evaluations.hs

This is the file in which functions for evaluating various patterns should be defined.

These function will be used as parameters for adjustAll and adjustAllBb functions.

5.1.6 Features.hs

This is the file in which functions for computing features for various patterns

should be defined. These functions will be used as parameters for adjustAll and

adjustAllBb functions.

5.1.7 Utils.hs

Contains a set of auxiliary functions used by other modules, like some functions

for working with lists, basic statistical functions and some functions for debugging.

5.1.8 Makefile

It is used for building binaries for searching, adjusting and testing patterns.

5.1.9 Other files

• run - bash script for running CPL using ghci interpretor

• run-test.hs - example of running test functions

• run-tuning.hs - example of running adjust functions

5.2 Additional scripts 44

• run.hs - example of running search function

5.2 Additional scripts

• convert.pl - perl script that converts a data file from Yahoo format [26] in

CPL input format.

• all-in-one - bash script that takes a file with tickers names, a start and an

end date and automatically download the data for that period of time from

Yahoo Finance website [26]; after downloading, the script converts the data

in CPL format and runs a function for computing statistics.

Chapter 6
Testing Area

6.1 Bruteforce method

We tested the bruteforce method on a training set of data collected from 250

companies in a period of approximately 13 years (1990-2003). A similar set of

data, obtained from another 250 companies was used for testing the definitions

generated by the algorithms.

It was determined that the training set contains 283 instances of the original

definition, while the testing set contains 293 instances of the original definition.

Also, we should know that from those 283 instances only 20 instances were found

“positive” (they match the expected evolution) and from the last 293 instances 25

were positive.

We choose to perform the adjustment process on a head-and-shoulder pattern

whose definition is provided together with CPL sources. The refinement process

was based on 3 characteristics (features): feature1, feature2 and feature4. It

were tested all combinations of features.

The results obtains can be seen in Table 6.1.

The columns have the following meanings:

45

6.1 Bruteforce method 46

BF1.0 BF1.1 BF1.2 BF2.0 BF2.1 BF2.2

feature 1 32/3 32/3 32/3 25/2 25/2 25/2

feature 2 22/0 22/0 22/0 21/0 21/0 21/0

feature 4 21/2 21/2 21/2 13/2 13/2 13/2

features 12 17/2 17/2 17/2 19/2 17/2 17/2

features 14 24/4 22/6 26/6 13/1 6/3 8/3

features 24 24/2 19/4 22/6 12/2 15/1 17/2

features 124 32/3 14/5 14/5 10/1 4/3 17/2

Table 6.1: Bruteforce method - tests

BF1.0 = Bruteforce method 1, no rescaling

BF1.1 = Bruteforce method 1, rescaling method 1

BF1.2 = Bruteforce method 1, rescaling method 2

BF2.0 = Bruteforce method 2, no rescaling

BF2.1 = Bruteforce method 2, rescaling method 1

BF2.2 = Bruteforce method 2, rescaling method 2

A result X/Y on a row row means that X is the total number of instances found

in the testing set of data using the definition generated after adjusting features

mentioned in the first column on row row. Y is the number of instances from X

that are “positive”.

Some remarks on the results:

• The feature number 2 is quit irrelevant, when we adjust only this feature we

find not even one good instance! The other two features find 2 or 3 good

instances which is also a small number (from 25). The best results seems to

be those obtained by feature1 - feature4 combination.

• The results without rescaling are worse than with rescaling (as it is expected)

6.2 Bounding box method 47

and when we take into consideration only one dimension the scaling method

doesn’t matter (also as expected).

6.2 Bounding box method

For testing this method we choose two definitions of head-and-shoulder pattern,

hdR and hns, and two distinct sets of data, data set 1 and data set 2. The results

can be seen in Table 6.2.

Before After

hdR data set 1 163/18 88/14

hns data set 1 574/119 429/95

hdR data set 2 120/13 54/10

hns data set 2 481/99 385/88

Table 6.2: Bounding box method - tests

We can see the improvement in the total number of instances found by the new

definitions: it was reduced to almost half while the number of positive instances is

close to the original number. Some acceptable values for tuning bounding-method

were chosen so these might not be the best results that can be obtained on these

sets of data.

This test was performed with feature1, feature2 and feature4, altogether.

6.3 Comparison

Here we perform some tests in which we adjust the same definitions on the same

sets of data. The results are in Table 6.3.

For evaluation of the results we used three ratios:

6.3 Comparison 48

Definition and method Before After ratio1 ratio2 ratio3

hdR, data set 2, BF1, rescale1 120/13 7/3 23% 42% 11%

hdR, data set 2, BF1, rescale2 120/13 7/3 23% 42% 11%

hdR, data set 2, BF2, rescale1 120/13 6/2 14% 33% 11%

hdR, data set 2, BF2, rescale2 120/13 6/2 14% 33% 11%

hdR, data set 2, bounding box 120/13 54/10 77% 19% 11%

hns, data set 2, BF1, rescale1 481/99 119/31 31% 26% 20%

hns, data set 2, BF1, rescale2 481/99 123/31 31% 25% 20%

hns, data set 2, BF2, rescale1 481/99 66/19 19% 28% 20%

hns, data set 2, BF2, rescale2 481/99 64/18 18% 28% 20%

hns, data set 2, bounding box 481/99 385/88 89% 22% 20%

Table 6.3: Tests - comparison

• ratio1 - the percentage of positive instances found by the new definition

relative to the number of positive instances found by the original definition

• ratio2 - the percentage of positive instance found by the new definition rela-

tive to the number of total instances found by the new definition

• ratio3 - the percentage of positive instance found by the original definition

relative to the number of total instances found by the original definition

ratio2 and ratio3 are directly comparable: in the case of hdR adjustment the

percentage rose from 11% to 19− 42% while for hns definition it rose from 20% to

22 − 28%.

Chapter 7
Conclusion

In conclusion, both methods we have implemented in this project improve the orig-

inal definitions, but, bounding method have a small advantage in front of bruteforce

because of the simplicity of the algorithm and the size of the definitions that are

generated. It is hard to compare the results of these two methods, because, as we

saw in Section 6.3, the bounding box method provides higher values for ratio1 (the

percentage of positive instances found by the new definition relative to the number

of positive instances found by the original definition) while the bruteforce method

improve ratio2 to higher values then bounding box method.

One important issue for bruteforce method, as we discussed in Section 4.4.4

is how we handle with irrelevant features. The standard distance formula weighs

each feature equally, and this can cause problems if only a few features are relevant

in the classification task, so the method could be misled by similarities in many

irrelevant dimensions.

Some methods for adjusting feature relevance that can be explored in the future

are:

• methods for selection a set of features that are relevant (helpful only if the

number of features that are wanted to be adjusted together are really high -

49

50

i.e. > 20):

– Wrapper methods - generate a set of candidate features, run the algo-

rithm with these features and then add or remove attributes in/from

this set (John et al, 1994).

– Methods based on decision trees - in addition to storing training cases

use them to induce a decision tree. Features that do not appear in the

decision tree are considered irrelevant for the learning task and can be

discarded (Cardie, 1993).

• methods for computing weights for the features. These methods can be split

in two categories:

– Global methods which compute a single weight vector for the classifi-

cation task. Daelemans et al. in 1999 and Cardie and Howe in 1997

proposed some algorithms.

– Local methods which allow feature weights to vary for each training

instance, for each test instance, or both (Wettschereck et al, 1997);

Another method was proposed by Stanfill and Waltz in 1986.

Bibliography

[1] Pankaj K. Agarwal and Jiri Matousěk: Ray shooting and

parametric search, Proceedings of the 24th Annual ACM Symposium

on Theory of Computation, 1992, pages 517-526

[2] Sunil Arya, David M. Mount, Nathan S. Netanyahu, Ruth

Silverman, Angela Y. Wu: An Optimal Algorithm for Approx-

imate Nearest Neighbor Searching Fixed Dimensions, Proceedings

of the 5th Annual ACM-SIAM Symposium on Discrete Algorithms,

1994, pages 573-582

[3] Sunil Arya and David M. Mount: Approximate Nearest Neigh-

bor Queries in Fixed Dimensions Proceedings of 4th Annual ACM-

SIAM Symposium on Discrete Algorithms, 1993, pages 271:280

[4] Mark de Berg, Marc van Kreveld, Mark Overmars, Or-

fried Schwarzkopf: Computational Geometry. Algorithms and

Applications, Second Edition

51

Bibliography 52

[5] Timothy M. Chan: Approximate Nearest Neighbor Queries Re-

visited Proceedings of the 13th Annual ACM Symposium on Com-

putational Geometry, 1997, pages 352-358

[6] Kenneth L. Clarkson: A randomized algorithm for closest-point

queries, SIAM Journal on Computing, 17(1988): pages 830-847

[7] Kenneth L. Clarkson: An Algorithm for Approximate Closest-

Point Queries, Proceedings of the 10th Annual Symposium on Com-

putational Geometry, 1994, pages 160-164

[8] David P. Dobkin, Richard J. Lipton: Multidimensional search

problems, SIAM Journal on Computing, 5(1976): pages 181-186

[9] Kevin Q. Brown: Voronoi Diagrams from Convex Hulls, Infor-

mation Processing Letters 9(5): pages 223-228 (1979)

[10] Thomas N. Bulkowski: Encyclopedia of Chart Patterns, John

Wiley & Sons, January 2000

[11] Herbert Edelsbrunner, Raimund Seidel: Voronoi Diagrams

and Arrangements, Discrete & Computational Geometry 1: pages

25-44 (1986)

[12] Piotr Indyk, Rajeev Motwani: Approximate Nearest Neigh-

bors: Towards Removing the Curse of Dimensionality Proceedings

of the 30th Annual ACM Symposium on Theory of Computing 1998,

pages 604-613

[13] Victor Klee: On the complexity of d-dimensional Voronoi dia-

grams, Archiv der Mathematik, 34: pages 75-80, 1980

Bibliography 53

[14] Jon M. Kleinberg: Two Algorithms for Nearest-Neighbor Search

in High Dimensions, Proceedings of the 29th Annual ACM Sympo-

sium on Theory of Computing, 1997, pages 599-608

[15] Komei Fukuda: Frequently Asked Questions in Polyhedral Compu-

tation, http://www.cs.mcgill.ca/ fukuda/soft/polyfaq/polyfaq.html

[16] Eyal Kushilevitz, Rafail Ostrovsky, Yuval Rabani: Effi-

cient Search for Approximate Nearest Neighbor in High Dimensional

Spaces Proceedings of the 30th Annual ACM Symposium on Theory

of Computing, 1998, pages 614-623

[17] Jiri Matousěk: Reporting points in halfspaces, Computational Ge-

ometry: Theory and Applications, 2 (1992), pages 169-186

[18] Stefan Meiser: Point location in arrangements of hyperplanes,

Information and Computation, 106(1993): pages 286-303

[19] Tom M. Mitchell: Machine Learning, McGraw-Hill Sci-

ence/Engineering/Math, March 1997

[20] Atsuyuki Okabe, Barry Boots, Kokichi Sugihara, Sung

Nok Chiu: Spatial Tessellations. Concepts and Applications of

Voronoi Diagrams

[21] Joseph O’Rourke: Computational Geometry in C, 1994 or 1998

edition

[22] Anand Saswat: CPL: A Language for Programming Chart Pat-

terns, Masters Thesis, National University of Singapore, 2002

[23] Anand Saswat, Wei Ngan Chin and Siau Cheng Khoo:

Charting Patterns on Price History, ACM SIGPLAN International

Bibliography 54

Conference on Functional Programming (ICFP’01), September 2001:

pages 134-145

[24] Franco P. Preparata, Michael Ian Shamos: Computational

Geometry: An introduction, Springer-Verlag, 1985

[25] Raimund Seidel: On the Number of Faces in Higher-Dimensional

Voronoi, 1987

[26] Yahoo Finance: Historical Prices, http://chart.yahoo.com/d

[27] A.C. Yao and F.F. Yao: A general approach to d-dimensional

geometric queries, Proceedings of the 17th Annual ACM Symposium

on Theory of Computing, 1985, pages 163:168

