
Characterization of Simulation

Performance for Ethernet using

SPaDES/Java Framework

Frujină Ionuţ-Andrei

ionut.frujina@gmail.com

A report presented in partial fulfilment for the degree of

Bachelor of Science

Supervisors:

Nicolae Ţăpuş

Dept. of Computer Science

University “Politehnica” of Bucharest

ntapus@cs.pub.ro

Teo Yong Meng

School of Computing

National University of Singapore

teoym@comp.nus.edu.sg

2004

Contents

List of Figures 4

1 Introduction 6

1.1 Simulation . 6

1.2 Discrete event simulation . 9

1.3 Parallel discrete event simulation 10

1.3.1 Conservative Protocols . 12

1.3.2 Optimistic Protocols . 14

2 SPaDES/Java 16

2.1 Sequential Simulator . 16

2.2 Time, Space and Strictness Analyzer 18

2.3 SPaDES/Java Simulator . 19

3 Carrier Sense Multiple Access with Collision Detection 24

3.1 Model . 26

2

Contents 3

3.2 Implementation . 29

4 Experimental results 32

4.1 Parallelism requirement across layers 35

4.2 Memory requirement across layers 36

4.3 Strictness across layers . 37

5 Conclusions 39

Bibliography 41

A Measurements 43

B SPaDES Manual Page 45

List of Figures

1.1 Ways to Study a System . 8

1.2 Discrete-system state variable . 9

1.3 Continuous-system state variable 9

1.4 Deadlock situation. Each process is waiting on the incoming link

containing the smallest time-stamp (queue is empty) although there

are events in other queues ready to process 13

2.1 SPaDES Measurements Tools . 17

2.2 Three Layer Performance Analysis Framework 20

3.1 Model configuration for the distributed simulation 26

3.2 State diagram of the CSMA/CD Simulation 27

3.3 Simplified state diagram of the CSMA/CD Simulation 29

4.1 Relationship between frame size and null messages 34

4.2 Parallelism across layers . 35

4

List of Figures 5

4.3 Parallelism at model layer . 36

4.4 Memory requirement across layers 37

4.5 Strictness across layers . 38

B.1 SPaDES/Java Man Page (1) . 46

B.2 SPaDES/Java Man Page (2) . 47

Chapter 1
Introduction

1.1 Simulation

Simulation is the process of designing a real system model, and conducing exper-

iments on this model, in order to understand the behavior of the system or to

evaluate different strategies for operation of the system.

A simulation model is the representation of a real system. This model is rep-

resented as a set of assumptions concerning the operation of the system. These

assumptions are stated in logical, mathematical and symbolic relationships be-

tween the objects of interest in the system (entities). When a system model is

developed and validated, it can be used to investigate various situations that can

occur in the system. Any change of the real system can be simulated first in order

to anticipate the changes that might appear. In addition, simulation could be used

for studying systems before they are built, in the design state.

Standard simulation may not always be appropriate. Simulation cannot be

used when the problem can be solved using common sense or if the problem can be

6

1.1 Simulation 7

solved analytically. Also if it is easier to perform direct experiments, or the cost

of the simulation exceeds the savings.

Simulation has many advantages, and even some disadvantages. For example,

new policies, operating procedures, decision rules, organizational procedures, and

so on can be explored without disrupting ongoing operations of the real systems.

New hardware designs, physical layouts, transportation systems and so on can be

tested without committing resources for their acquisition. Time can be compressed

or expanded, allowing a speedup or slowdown of the phenomena under investiga-

tion. Another advantage of a simulation is the level of detail that you can get

from a simulation. A simulation can give you results that are not experimentally

measurable with our current level of technology. You can set the simulation to run

for as many time steps you desire and at any level of detail you desire the only

restrictions are your imagination, your programming skills, and your computer.

As a disadvantage we can consider that model building requires special training.

There are also simulation errors. Any incorrect key stroke has the potential to alter

the results of the simulation and give you the wrong results. Also, if two models

are constructed by two different persons, they will have similarities, but they most

certainly will not be the same. Another disadvantage is that simulation results

may be difficult to interpret.

To model a system, it is necessary to understand the concept of a system. A

system is defined as any organized assembly of resources and procedures united

and regulated by interaction or interdependence to accomplish a set of specific

functions. A system can be affected either by events occurring outside the system

(system environment) or from the inside.

In order to understand a system, and to be able to analyze it, a number of

1.1 Simulation 8

Figure 1.1: Ways to Study a System

terms must be defined. An entity is an object of interest in a system. An attribute

is a property of an entity. An activity represents a time period of specified length.

The collection of entities that compose a system for one study might be only a

subset of the overall system for another study.[1] The state of a system id defined

as that collection of variables necessary to describe the system at any time, relative

to the objects of study. An event is defined as an instantaneous occurrence that

may change the state of the system and schedule other events.

Systems can be classified as discrete and continuous. ”Few systems in practice

are wholly discrete or continuous, but since one type of change predominates for

most systems, it will usually be possible to classify a system as being either discrete

or continuous” [1]. A discrete system is one in which the state variables change

only at a discrete set of points in time, while a continuous system is one in which

the state variable change continuously over time.

1.2 Discrete event simulation 9

t

Figure 1.2: Discrete-system state variable

t

Figure 1.3: Continuous-system
state variable

1.2 Discrete event simulation

Based on the characteristic of time, simulation models can be classified as static or

dynamic. In dynamic simulation the system state changes with time, in contrast

with static simulation where changes in the system state are independent of time.

Dynamic simulation models may be further classified into continuous and discrete

models, based on the characteristic of time. In continuous simulation, the system

state changes continuously with time. A real system is often modeled using a set

of differential equations. The system state in discrete simulation changes only at

discrete points of time. Time can be advanced using a fixed time increment time-

stepped or irregular time increment (discrete event). Simulation modeling can be

done in three different ways: activity oriented, process oriented or event oriented.

The most frequent used are event oriented and process oriented, but as the process

oriented view is built on top of the event oriented, we will concentrate on this.

1.3 Parallel discrete event simulation 10

1.3 Parallel discrete event simulation

Parallel discrete event simulation refers to the execution of a single discrete event

simulation program on a parallel computer. Parallel discrete event simulation

has attracted a considerable amount of interest lately because many simulation

consume enormous amount of time on sequential machines. It is also interesting

because it contains substantial amount of parallelism, but it is difficult to paral-

lelize.

As we are especially concerned with the simulation of asynchronous systems,

where evens are not synchronized by a global clock, but rather occur at irregular

time intervals, parallelization techniques based on lock-step execution using global

simulation clock perform poorly or require assumptions in the timing model that

compromise the fidelity of the simulation [2]. So, concurrent execution of events at

different point in simulated time is required, but this introduces synchronization

problems.

It was proposed using dedicated functional units to implement specific sequen-

tial simulation functions [3, 4]. This model can provide only a limited amount of

speedup. Others proposed to use a hierarchical of the simulation model to allow an

event consisting of several sub-events to be processed concurrently [5, 6]. A third

alternative of execution is to execute independent, sequential simulation programs

on different processors[7, 8]. it is useful for largely stochastic simulations or for

simulations that must be done on large numbers of different parameters.The major

drawback of this alternative is that each processor must contain sufficient memory

to hold the entire simulation.

In order to describe the problems of the parallel discrete event simulation, I

1.3 Parallel discrete event simulation 11

will examine the operation of a sequential discrete event simulator. Sequential

simulators typically have three data structures: the state variable that describes

the state of the system, an event list containing all pending events(each event has

a time-stamp) that have been scheduled, bat have not yet taken effect, and a global

clock variable to show how far the simulation has progressed. The principle is that

the event with the minimum time-stamp is removed from the list, the simulation

clock is advanced, and the event handler (some simulator code) is executed. This

is done until a stopping condition is met.

If we try to parallelize, it means more events are picked from the event list,

one for each processor. But if one event for example modifies some state variables

that another event uses, we have a causality error. So, certain sequential constrains

must pe maintained in order for the computation to be correct.

The system being modeled, usually referred to as the physical system, is viewed

as being composed of some number of physical processes (PP) that interact at

various points in simulated time. For example, in a communication network sim-

ulator, the physical processes might be switching centers that interact by trans-

mitting data over communication lines. Parallel discrete-event simulation uses

this information to partition a simulation model into smaller components called

logical processes(LP). Parallelization in simulation is done by simulating logical

processes concurrently.All interactions between physical processes are modeled by

time-stamped event messages sent between the corresponding logical processes.

Each logical process contains a local clock that denotes how far the process has

progressed and portion of the state variable of the corresponding physical process.

There are two potential benefits of implementing parallel simulator: reduced ex-

ecution time and facilitating the execution of larger models. In simulation, local

1.3 Parallel discrete event simulation 12

causality constraint imposes that if event a happens before event b and both events

happen at the same logical process, then a must be executed before b. Parallel

simulation must adhere to local causality constrain to produce correct simulation

results. Based on how local causality is maintained, parallel simulation protocols

are grouped into two main categories: conservative and optimistic.

1.3.1 Conservative Protocols

Conservative protocols do not allow any local causality constraint violation through-

out the duration of the simulation. Optimistic protocols allow local causality con-

straint violation, but provide mechanisms to rectify it. A more detailed taxonomy

of simulation mechanisms is described in [9].

To avoid the occurrence of straggler events which indicate local causality con-

straint violation, Chandy, Misra and Bryant proposed building a static communi-

cation path for every interacting LP [10, 11]. In the conservative mechanisms, if a

process contains an unprocessed event E1, with time-stamp T1(the smallest) and

the process can determine that it is impossible for it to later receive another event

with time-stamp smaller than T1, E1 can be processed because the local causality

constraint is not violated.

If a process does not contain any safe events, it blocks (deadlocks might occur).

In order to determine when it is safe to process a message, it is required that the

sequence of time-stamps on messages sent over a link be non-decreasing. The main

idea is to statistically specify the links that indicate which process can communicate

with which other process. Then every process has a queue for each incoming link

from which it selects the smallest clock, or if the queue is empty, it blocks. This

can lead to deadlocks. The solution is to use null messages, for example a message

1.3 Parallel discrete event simulation 13

Figure 1.4: Deadlock situation. Each process is waiting on the incoming link
containing the smallest time-stamp (queue is empty) although there are events in
other queues ready to process

with time stamp Tnull is sent from LPa to LPb is a promise by LPa that it will not

send a message to LPb with time stamp smaller then Tnull. The condition for this

scheme to be valid is to have a cycle of links with the same link clock time.

There are some improvements of this algorithm, like demand driven protocol

[12], where LP sends null-messages only on demand. There is also the flushing

protocol [13], when a null message is received, an LP flushes all null messages that

have arrived but not been processed.

Also there are other conservative protocols such as bounded-lag protocol and

conservative time window. The main idea of this protocols is that they start by

determining safe events, then execute them. A barrier is activated for synchroniza-

tion between identification and execution of events. This protocols are suitable

especially for shared-memory architecture because of the synchronization mecha-

nisms. Another approach is exploiting the lookahead (the ability to predict what

1.3 Parallel discrete event simulation 14

will happen, or more importantly what will not happen in the simulated future).

It is used in deadlock avoidance or in deadlock detection/recovery.

The performance of conservative mechanisms is usually poor, due to failure of

algorithms to exploit parallelism, rather then overheads, associated with the im-

plementation of the algorithms. Usually conservative algorithms are better suited

for large problems. If the lookahead is small, conservative algorithms perform very

poor, and minor changes to the application have huge impacts on performance.

1.3.2 Optimistic Protocols

There is also an alternative to the conservative protocols, the optimistic approach.

These protocols detect and recover causality errors, they do not strictly avoid

them. Usually every event that is ready to execute is executed. They detect

when an error has occurred, and invoke a procedure to repair it. The advantage

of these protocols is that parallelism can be exploited in a case where causality

might occur. Dynamic creation of processes is also possible, unlike conservative

methods. Time Wrap Protocol [14, 15] is one of the best optimistic protocols(an

error occurs if an event has a time-stamp smaller then the process clock. The event

causing a rollback is called a straggler. An event may do two things that have to be

rolled-back: modify a state variable, or send a event message to another process.

The rollback is done with anti-messages. In Time Wrap, the smallest time-stamp

among all unprocessed events is called /emphglobal virtual time, and no rollback

is performed before this time.

As an example of algorithms we have lazy-cancelation, aggressive-cancelation

which repair the damage caused by an incorrect computation rather than com-

pletely repeat it, respectively roll-backing it immediately. Of course performance

1.3 Parallel discrete event simulation 15

is degraded if too many rollbacks must be executed (overhead). There is also lazy

reevaluation (jump forward) which is similar to lazy cancelation, but deals with

state vectors rather then messages. When it is clear that the execution of an event

will be the same, do not execute it again, just jump forward.

There are some critiques for the optimistic algorithms. First of all, it is possible

that most of the time to be used on incorrect computations. The further the

incorrect computation go into the simulated future, the lower the priority (smaller

time-stamps have higher priority). another disadvantage is the need to periodically

save the state of each logical process(overhead) and also the use of memory which is

several times greater than conservative algorithms Finally, erroneous computation

may enter infinite loops and also optimistic protocols are much more complex to

implement.

Chapter 2
SPaDES/Java

The framework for characterizing the simulation performance is called SPaDES/Java.

There is a set of measurements tools, that measures the performance at three dif-

ferent layers: the physical system layer, the simulation model and the simulator

layer. Here is a scheme of the measurements tools:

The order in which the events are executed depends on the different event

orders. The degree of dependency between the events is affected by the strictness

of the ordering rules. So there was proposed a relation stricter and a measure called

strictness for comparing the event dependencies. The measurements at the physical

system layer are Πprob and Mprob; at the simulation model layer the measurements

are Πord and Mord and finally at the simulator layer we measure Πsync , Msync and

Mtot. Also strictness can be measured at all the three layers.

2.1 Sequential Simulator

The sequential simulator simulates a problem, the physical system. It is also used

to measure event parallelism, Πprob and memory requirement, Mprob. The simulator

16

2.1 Sequential Simulator 17

Figure 2.1: SPaDES Measurements Tools

2.2 Time, Space and Strictness Analyzer 18

produces a log file that contains the order in which the events are executed. Event

parallelism, Πprob, is measured in the simulator, based on the number of events.

The memory requirement,Mprob is also measured, based on the maximum queue

size. The log file generated is used by the Time, Space and Strictness analyzer

to simulate and measure the performance of different event orderings as detailed

later.

The algorithm for the simulator is basically the following:

1. while (stopping condition has not been met)

2. remove event e with the smallest timestamp from FEL

3. simulation clock = e.timestamp

4. execute (e)

5. add the generated events to FEL

2.2 Time, Space and Strictness Analyzer

Time Space and Strictness Analyzer is used to simulate different event orderings

and to measure the event parallelism at the simulation model layer, Πord, and also

the memory requirement M ord and the strictness , S , at all the three layers.

In order to measure Πord and M ord, the Time, Space and Strictness Analyzer

needs the log file generated by the sequential simulator. Then an event ordering can

be specified. The log file contains every event executed by the sequential simulator,

and also the dependencies between events. Having an event ordering, the Time,

Space and Strictness Analyzer simulates the execution of events, measuring also

Πord and M ord.

In order to measure the strictness at all the three layers the Time Space

2.3 SPaDES/Java Simulator 19

and Strictness Analyzer needs the log file form the sequential simulation (for the

first two layers, physical and simulation model) and also the log files from the

SPaDES/Java Simulator(for the simulator layer).

The method used to determine the strictness of event ordering is the following:

a fixed number of events is read form the log file, and strictness is measured based

on the given event ordering. And so on for all the events. Event ordering strictness

is determined by summing up the strictness at each step, and dividing by number of

steps. This method was chose because measuring the strictness of event orderings

with a large number of events not efficient (computationally).

2.3 SPaDES/Java Simulator

SPaDES/Java is a parallel simulator library that supports event oriented world-

view. It supports a parallel simulation based on CMB protocol with demand

driven optimization [12]. It is used to measure effective event parallelism, Πsync and

memory requirement for overhead events, Msync and the total memory requirement

Mtot. The simulator produces a log file for each physical processor that contains the

order in which the events are executed on each physical processor. Effective event

parallelism, Πsync, is measured in the simulator, based on the number of events

and the simulation time. The memory requirement for overhead event,M sync is

also measured, based on the maximum size of the data structure used to store the

overhead events. The log file generated is used by the Time, Space and Strictness

analyzer to measure strictness of event ordering at the simulator layer.

SPaDES/Java uses RMI API in Java for message passing needed to implement

2.3 SPaDES/Java Simulator 20

Figure 2.2: Three Layer Performance Analysis Framework

the parallel event synchronization. There is a communication manager (Comm-

Manager) that manages all the message passing activities between the processors.

During the simulation, all the LPs on the same host are managed by one Comm-

Manager running on that host. The location information of all the LPs is stored in

a table of the CommManager. When an LP is to send out a message to a receiver

LP, it will first check the location of that receiver LP according to the table in

its local CommManager. If the receiver LP is on the same host as the sender LP,

then the sender LP will just call the pass the message to the receiver LP through

shared memory. If the receiver LP is on a remote host, the sender LP will call

the CommManager to send the message to the CommManager running on that

remote host through RMI. In this case, the receiver CommManager will receive

the message and route it to the proper receiver LP through shared memory. In

SPaDES/Java simulation environment, an LP has the following data structures for

2.3 SPaDES/Java Simulator 21

parallel simulation based on conservative event synchronization protocols :

• an event list containing all pending events that have been scheduled, but

have not yet taken effect

• a local clock variable to denote the local virtual time (LVT) of an LP

• an array of input channels each of which stores the timestamp of the last

incoming event message from one LP connected to this LP, and

• an array of output channels each of which stores the timestamp of the first

outgoing event message to one LP connected to this LP and the reference to

the first outgoing event message.

The event list is a vector storing event messages. When an event message arrives

at an LP, it will be stored into the event list to be processed and its timestamp will

also be recorded in the corresponding input channel. The LP’s executive routine

advances the global clock to the timestamp of the next process in the event list

according to the null message algorithm. It then removes this event, executes it,

and sends out any new outgoing event generated from executing this event. Then

the executive cycle loops again for the entire duration of the simulation.

The event synchronization protocol used in SPaDES/Java is the conservative

null message protocol. The algorithm for the traditional null message protocol,

developed by Chandy, Misra and Bryant is described below :

CHANDY-MISRA-BRYANT()

1 while simulation is not over

2 do

3 wait till the FEL contains at least one message;

2.3 SPaDES/Java Simulator 22

4 M <- remove smallest timestamped message from FEL;

5 clock <- time stamp of M;

6 execute(M);

7 send null message to neighbouring LPs with

8 timestamp equal to lower bound on timestamp of

9 future messages (clock + lookahead);

Our implementation of SPaDES/Java adopts a modified version of the null

message protocol. Instead of adopting the greedy approach of transmitting null

messages every time the LP processes an event message, null messages are only sent

whenever the LP becomes blocked on at least one of its input channels, waiting for

messages to arrive from them. The modified algorithm is described below :

IMPROVED-NULL-MESSAGE-ALGORITHM()

1 Initialization:

2 Initialize the timestamps of all input channels to LVT;

3 Loop:

4 M ¡- remove smallest timestamped message from FEL;

5 if M != null and t ¿= timestamp of M

6 then execute(M);

7 else

8 for all output channels(OP) i

9 do

10 if timestamp of OPi = null

11 then send null messages with

12 timestamp = t + lookahead to

13 the LP connected to OPi;

2.3 SPaDES/Java Simulator 23

14 else

15 send null messages with

16 timestamp = timestamp of OPi to

17 the LP connected to OPi;

18 end for

19 wait until there is an incoming message

20 end loop

Chapter 3
Carrier Sense Multiple Access with

Collision Detection

The most commonly used medium access control protocol for Ethernet is Car-

rier Sense Multiple Access with Collision Detection (CSMA/CD) [16]. Under this

protocol, a station that attempts to transmit must listen to the medium first to

determine whether the medium is in use or not. If the medium is in use, then the

station must wait, otherwise it might transmit. It is possible that two or more

stations transmit almost the same time so that all of the sense that the medium

is idle. If this happens, there will be a collision, ant the frame being sent will be

garbled. Therefore, it is important for a station to be able to detect a collision. To

account for this, during transmission a station has to listen to the medium whether

one or more other stations are transmitting their frames for up to two propagation

delay time. If collision is detected during the transmission, then the station will

transmit a brief jamming signal to assure that all stations which are involved in the

collision must wait for a random amount of time before attempting to retransmit

24

25

their frames (back off). The simulation model adopted for the Ethernet is the one

developed by Wang and Keshav [17].

Ethernet refers to a family of Local Area Network (LAN) multiple access proto-

cols that vary in details such as bandwidth, collision detection mechanisms etc. In

this paper we use Ethernet to mean an unslotted, 1-persistent, carrier-sense mul-

tiple access method with collision detection (CSMA/CD) and binary exponential

back-off. Here is a brief review of the CSMA/CD protocol. Assume that n sta-

tions attach to the Ethernet link (Figure 3). A station senses the medium before

sending a packet and sends the packet immediately after the medium is idle. If

a collision is detected while sending a packet, the station sends out a jam signal

and exponential back-off scheme is employed. Upon a collision, the station waits

for a random time chosen from the interval [0, 2 * max propagation delay] be-

fore retransmitting the collided packet. If retransmission fails, the station backs

off again for a random time chosen from the interval with double length of the

previous one. Each subsequent collision doubles the back-off interval length until

the retransmission succeeds (the back-off interval is reset to its initial value upon

a successful retransmission of packet). If the back-off interval becomes too large

(e.g. after 16 retransmission), the packet is dropped and the back-off interval is

reset.

Most existing CSMA/CD simulation model the transmission medium as an

active centralized entity. This entity determines the exact moment in time at

which each station knows that a packet was placed on the medium or a collision

has occurred. It is very difficult to determine this times because many packages can

be placed on the medium at different points at very close moments in time. In order

to determine very accurate this times signal’s electromagnetic propagation should

3.1 Model 26

Figure 3.1: Model configuration for the distributed simulation

be simulated on the medium But this is very difficult both algorithmically and to

implement. After many attempts of creating a precise simulation of CSMA/CD, an

alternative approach was chosen. They considered that the medium is passive. But

each station on the Ethernet acted as a router, forwarding the packages from one

station to another. An idle station that receives a packet changes its status to busy.

If a packet arrives at a station that has the status set to busy, a collision occurs,

and the station broadcasts a jam signal to all the other stations. In this approach,

stations collaborate for simulating the medium. This makes the simulation a lot

easier to implement and to validate.

3.1 Model

Wang and Keshav [17] modeled CSMA/CD using the station state diagram shown

in Figure 3.2. It can be seen that the medium is not modeled as an active entity.

Instead, stations exchange data, jam, and collision messages as would happen in an

actual Ethernet. Each simulated station is responsible for actions such as packet

transmission/retransmission,collision detection, signaling. A simulated station can

3.1 Model 27

be in one of the seven states: idle, sending, receiving, wait for back-off end and jam

end, wait for jam end, wait for back-off end, and receiving and wait for back-off

end.

Figure 3.2: State diagram of the CSMA/CD Simulation

In our implementation, we use the same model but a little bit simplified. There

are only four states in which each station can be at a certain moment in time. This

states are sending, receiving, idle and wait for back-off end. Packet propagation on

the Ethernet is simulated as consecutive propagation by the intermediate stations

towards the destination. In this model we use six events in order to model the

frames moving from one station to another.

Frame arrival which represents the arrival of a frame at the MAC layer of the

station. If the station is not idle the frame will be buffered until the status of the

station is idle. If the station is idle, the frame transmitted.

Begin transmit data which appears when the station starts transmitting the

frame to its neighbors. When begin transmit data occurs the station switches from

3.1 Model 28

the idle status to the sending status.

End transmit data which appears when the station finishes transmitting the

last bit of the frame. When end transmit data occurs the station switches from

the sending status to the idle status.

Begin receive data which appears when a station receives the first bit of a frame

sent by its neighbor. When begin receive data occurs, if the status of the station

was idle it switches to receiving. If the status was sending than a collision occurs

tat means that the status is switched to wait for back-off end.

End receive data occurs when the station receives the last bit of a frame sent by

its neighbor. When end receive data occurs the station switches from the receiving

status to the idle status.

Finally, end back-off which appears when the period of time required for waiting

expires. The station switches to the previous state and tries to retransmit its

corrupted frame until the maximum retransmission is reached and the frame will

be dropped.

In Figure 3.3 the diagram of our model is shown.

We choose the 10BASE5 Ethernet specification and the following assumptions

and parameters: the time between packets is uniformly distributed, there is one

packet buffer at each station of finite size and the spacing between station is the

same. So, the assumptions that were made for this model are the frame size, which

can se set between the minimum value of 64 bytes and the maximum of 1518 bytes,

the end to end propagation delay which is set to 30µs and node to node propagation

delay which is set to 1µs. There is also the jamming signal size which is set to

4 bytes, the LAN speed of 10Mbps and the maximum buffer size at each station

which is set to 8 packets.

3.2 Implementation 29

Figure 3.3: Simplified state diagram of the CSMA/CD Simulation

3.2 Implementation

The SPaDES/Java simulator offers a template for implementing different problems.

The CSMA/CD protocol is implemented using this template based on the model

described in the previous section. The classes that need to be extended are Sim-

JavaParam which contains the description of the parameters, the SimJavaSim-

ulator which is responsible for starting the simulator, the SimJavaKernel which

is the class that executes the events, and at least two instances of SimJavaEvent

in order to have different types of events.

Here are the files that were implemented:

CSMAArrival.java - extends SimJavaEvent

CSMABeginRxData.java - extends SimJavaEvent

CSMABeginTxData.java - extends SimJavaEvent

CSMADef.java- interface

3.2 Implementation 30

CSMAEndBackOff.java - extends SimJavaEvent

CSMAEndRxData.java - extends SimJavaEvent

CSMAEndTxData.java - extends SimJavaEvent

CSMAKernel.java- extends SimJavaKernel

CSMAParam.java - extends SimJavaParam

CSMASimulator.java - extends SimJavaSimulator

CSMAStateVar.java - extends SimJavaStateVar

First we have the class CSMAParam which extends the SimJavaParam

where parameters for this particular problem are described. The parameters that

can be set in this problem are frame size, end to end propagation delay, node to node

propagation delay, jamming signal size,LAN speed,maximum buffer size, network

load and the packet transmission time. The general parameters such the problem

size or stopping condition are stored in the base class.

Then there is the CSMAStateVar which extends the SimJavaStateVar

where state variables are stored. This class contains only the state variables spe-

cific for this problem, general purpose variables such as the queue are stored in the

base class.

The main class, the one that starts the simulator is CSMASimulator which

extends the SimJavaSimulator. Here the configuration file is read and the sim-

ulator is initialized. Also the the communication matrix is initialized.

The CSMAKernel class is the one in charge of the execution of events. One

instance of the kernel is running on each physical processor (if the parallel version

of the simulator is used). The kernel receives the parameters form the simulator

and based on this parameters and using the Java RMI it communicates with the

other instances of kernels on other physical processors. The kernel also generates

3.2 Implementation 31

the report files for each of the physical processors. If the sequential version of

the simulator is used, all the logical processes are mapped on the same physical

processor.

There are six types of events defined for the CSMA/CD implementation: Ar-

rival, BeginRxData, BeginTxData, EndRxData, EndTxData and EndBackOff.

CSMAArrival is the event that appears when a frame arrives. If the status

of the current logical process is idle then BeginTxData is generated at the current

process, else the new package is queued. Also a new arrival is scheduled.

When CSMABeginTxData is executed, the logical process sends a CS-

MABeginRxData to all other logical processes and generates for itself a CS-

MAEndTxData. The status of the logical process switches to sending.

When CSMABeginRxData is executed, if the status was idle the status

changes to receiving, otherwise a collision occurs and the CSMAEndRxData

is sent to all the other logical processes. Then a CSMAEndBackOff is gener-

ated, and if the number of back-off attempts is reached the total number of failed

packages is incremented, otherwise, this the number of retries is incremented.

After CSMAEndTxData occurs, the CSMAEndRxData event is sent to

all the other logical processes and also o a new CSMABeginTxData is generated

on the current process.

When the CSMAEndRxData is executed, if the status is receiving, the CS-

MABeginRxData is sent to the other logical processes.

Finally, when CSMAEndBackOff is executed, CSMABeginRxData is sent

to all logical processes, and CSMAEndTxData is generated for the current log-

ical process.

Chapter 4
Experimental results

Having the framework for characterizing the simulation performance from the phys-

ical system layer to the simulator layer and the set of measurement tools we can

apply the framework in order to study the performance of the simulation.

There is a set of experiments for testing the framework. The experiments re-

quired for measuring the performance at the physical system layer and the simula-

tion model layer are conducted on a single processor machine. The experiments at

the simulator layer, those that use SPaDES/Java parallel simulator are conducted

on a cluster of computers, connected via Gigabit Ethernet. Each node is a dual

2.8GHz Intel Xeon with 2.5 GB of RAM.

The objective of this paper is to study the performance of Ethernet simulation.

We will concentrate in our experiments on the parallelism on different layers in the

simulator.

Parallelism at the three different layers can not be compared directly. At the

problem layer, the parallelism is measured in events per µs. At the simulation

model layer the event parallelism is measured in events per timestamp, and finally

32

33

at the simulator layer it is measured in events per ms.

In order to be able to compare the three types of event parallelism a normaliza-

tion is required. The base of normalization was chose the simulation model layer,

so the measurement unit will be events per timestamp. At the physical system

layer, the conversion is done using this formula:

Πprob
norm = Πprob ∗ Dprob

Dord
ts

(4.1)

where Πprob is the one measured at the problem layer, Dprob is the total duration

at the same layer and Dord
ts is the total duration measured at simulation model layer

using the timestamp ordering.

The parallelism at the simulation model layer is the base of normalization, so

only the parallelism value at the simulator layer must be normalized. This can

not be done easily, by a formula, and it is done by the Time, Space and Strictness

Analyzer. The normalized parallelism at the simulator layer is determined by

counting the actual number of steps required by the simulator to run. Then the

normalized parallelism is computed as follows:

Πsync
norm =

#events

#steps
(4.2)

In our experiments we are interested in parallelism loss/gain across layers. But

the CSMA/CD problem has a lot of parameters that can affect the parallelism.

Some of them have a well known impact on performance, so in our experiments

are fixed.

For example there is the frame size. It can vary form 64 to a maximum of

1512 bytes. If we increase the frame size, the number of packets will decrease, so

34

the number of events will decrease also. This happens because a larger frame size

implies that the transmission time (the time to complete frame transmission) is

longer. Therefore, when a station has executed BeginTxData, the station can only

execute event EndTxData after executing at least a number of null messages (time

to complete transmission divided by propagation delay between two stations). So if

the frame size is larger, there will be a lot more null messages executed(Figure 4.1).

Figure 4.1: Relationship between frame size and null messages

The parameters that I chose to vary are the problem size (number of stations in

the simulation) and the number of physical processors. Of course, at the simulation

model layer, I have used different orderings. Here are the results for the CSMA/CD

simulation when varying the number of stations from 24 to 96.

4.1 Parallelism requirement across layers 35

4.1 Parallelism requirement across layers

As it can bee seen in Figure 4.2 the parallelism of the problem is relatively small.

In our example the number of physical processors at the simulator layer varies from

two to eight.

All the parallelism values in Figure 4.2 and Figure 4.3 are measured in events

per time stamp, values corresponding to the normalized parallelism.

Figure 4.2: Parallelism across layers

As the number of physical processors increases, so does the event parallelism.

The parallelism value grows towards the value obtained at the simulation model

layer, using the CMB protocol (because the simulator uses the CMB protocol).

Although the increase of number of physical processors is linear the parallelism

increases logarithmic, because of the null message density, which increases with

the number of physical processors (more processors means more communication

4.2 Memory requirement across layers 36

Figure 4.3: Parallelism at model layer

between them).

Considering only the parallelism at the simulation model layer (Figure 4.3)we

can see that different ordering could produce more parallelism.

By far the best result is obtained using the partial ordering. But partial ordering

means less constrained in event dependencies, so a lot more difficult to implement at

the simulator layer. But as our simulator is implemented using the CMB ordering

this is the value of parallelism that we should refer to.

4.2 Memory requirement across layers

As we can see in Figure 4.4 the memory required for synchronization (Πsync) grows

significantly with problem size. This happens because the memory is derived from

the queue size on each station.

4.3 Strictness across layers 37

Figure 4.4: Memory requirement across layers

As we increase the problem size, Πsync becomes the dominant factor in Πtot,

and this happens because the null message ration increases dramatically towards

1, so the memory structures required to store the null messages are larger.

4.3 Strictness across layers

Finally we come to the measurement that is proposed in the SPaDES/Java Frame

Work, strictness. As mentioned above, strictness is a measure introduced in order

to determine event dependencies.

As we can see in Figure 4.5 strictness of CMB event ordering is very high

so it does not yield enough parallelism. There fore CMB event ordering is not

suitable for Ethernet simulation. Another ordering such ar partial ordering should

considered. One of the reasons why strictness is so poor for Ethernet simulation is

4.3 Strictness across layers 38

Figure 4.5: Strictness across layers

the big difference between frame transmission time and propagation delay, which

results in poor lookahead.

Chapter 5
Conclusions

We have a framework for characterizing the simulation performance from the physi-

cal system layer to the simulator layer and the set of measurement tools(SPaDES/Java

Framework).

We applied the framework in order to study the performance of a particular

simulation problem. I chose the CSMA/CD problem (Ethernet) to be simulated.

In order to model the CSMA/CD problem I used a simplified version of Wang

and Keshav [17] model for ethernet simulation. The main feature of this model

is that the medium of Ethernet is not seen as active, it is considered passive, so

each station on the Ethernet acted as a router, forwarding the packages from one

station to another. This made the simulation a lot easier to implement and to

validate.

Based on the experimental results we concluded that Ethernet Simulation is

not suited for simulation because the parallelism of the problem can not be fully

exploited because of the CMB implementation of the Simulator which introduces

a large overhead and a high event dependency.

39

40

Another disadvantage of Ethernet simulation is that events in real world (prob-

lem layer) happen at a rate of a few billions per second (ns) while at the simulator

layer, events cannot be executed at a rate higher than a few million per second

(µs).So simulation is actually slower than the real world.

In order to make Ethernet suitable for simulation, another event ordering should

be considered (such as partial).

Another approach I have tried was to use the Fast Ethernet (100Mbps) in

my simulation. The difference between Fast Ethernet and Ethernet is that the

transmission time drastically reduces, reducing also the null message ratio.

Bibliography

[1] Law, A. M., and W.D. Kelton [2000], Simulation Modeling and Analysis, 3d

ed., McGraw-Hill

[2] Fujimoto, R.M. [2000], Parallel and Distributed Simulation Systems

[3] Comfort, J.C. [1984], The simulation of a Master-s;ave Event Processor,

pp117-124

[4] Davis, C.K., Sheppard, S.V., and Livey, W.M. , [1988], Automatic Develop-

ment of Parallel Simulation Models in Ada pp339-343

[5] Conception, A.I., [1989], A Hierarchical Computer Architecture for Distributed

Simulation, 311-319

[6] Zhang, G. and Zeigler, B.P. [1989] DEVS=Scheme supported mapping of hi-

erarchicl models onto multiple processor systems, pp64-69.

[7] Biles W.E., Daniels, D.M. and O’Donnel, T.J., [1985], Statistical considera-

tions in simulation on a network of microcomputers, pp 388-393

41

Bibliography 42

[8] Heidelberger, P., [1986], Statistical analysis of parallel simulations, pp 290-295

[9] Reinolds, P.F., Jr. [1988], A spectrum of options for parallel simulations, pp

325-332

[10] Chandy, K.M. and Misra J. [1979] Distributed simulation: a Case Study in De-

sign and Verification of Distributed Programs, IEEE Transaction on Software

engineering,5, pp 440-452

[11] Bryant, R.E. [1984] A Switch-Level Model and Simulator for MOS Digital

systems, IEEE Transaction on Computer, 33(2), pp 160-177

[12] Bain, W.L. and Scot, D.S. [1988] An Algorithm for Time Synchronisation in

Distributed Discrete Event Simulation, Proceedings of the SCS Multiconfer-

enceon Distributed Simulation, 19, 3, pp 30-33

[13] Teo, Y.M. and Tay, S.C. [1994] Algorithms for Conservative Parallel Simula-

tion of Interconnection Networks, Proceedings of International Symposium on

Parallel Architectures, Algorithms and Networks, pp 286-293

[14] Jefferson, D.R., [1985] , Virtual Time ACM Transaction on Programming

Language System , pp404-425

[15] Jefferson, D.R. and Sowizral, H., [1982] , Fast Concurrent Simulation Using

the Time Wrap Mechanism pp 77-93

[16] Stallings, W., [2000], Data and Computer Communications, Prencince Hall

[17] Wang, J. and Keshav, S. ,[1999] Efficient and Accurate Ehernet Simulation ,

Proceedings oh 24th Conference on Local Computer Networks pp 182-201

Appendix A
Measurements

Problem size Πprob ΠCMB
ord Π2PP

sync Π4PP
sync Π6PP

sync Π8PP
sync

24 1,26 3,50 1,35 2,16 2,60 2,96
48 1,38 3,82 1,30 2,07 2,50 2,85
72 1,40 4,70 1,30 2,02 2,46 2,73
96 1,49 4,87 1,29 2,03 2,48 2,78

Table A.1: Parallelism at different layers

Problem Size Πprob ΠCMB
ord ΠPartial

ord ΠTI5
ord

24 1,26 3,50 20,07 7,21
48 1,38 3,82 40,04 14,36
72 1,40 4,70 60,792 21,02
96 1,49 4,87 81,03 27,32

Table A.2: Parallelism at simulation model layer

43

44

Problem size Mprob MCMB
ord MPartial

ord M
TI(5)
ord

24 192 772 1052,00 772
48 384 2312 3014,00 2307
72 576 5076 6234,00 5048
96 768 7369 9872,00 7329

Table A.3: Memory requirement at simulation model layer

Problem
size

Mprob MCMB
ord M2PP

sync M2PP
tot M4PP

sync M4PP
tot M6PP

sync M6PP
tot M8PP

sync M8PP
tot

24 192 772 96 1060 408 1372 960 1924 1488 2452
48 384 2312 192 2888 768 3464 1968 4664 4544 7240
72 576 5076 288 5940 1224 6876 3312 8964 5472 11124
96 768 7369 384 8521 1572 9709 4416 12553 8832 16969

Table A.4: Memory requirement at different layers

Problem
Size

S Prob SCMB STI5 Spartial S2PP S4PP S6PP S8PP

24 0,988 0,868 0,715 0,151 0,998 0,994 0,990 0,986
48 0,990 0,917 0,696 0,148 0,999 0,998 0,997 0,996
72 0,993 0,933 0,684 0,145 0,999 0,999 0,999 0,998
96 0,993 0,944 0,676 0,144 0,999 0,999 0,999 0,999

Table A.5: Strictness at different layers

Appendix B
SPaDES Manual Page

Example of configuration file for SPaDES/Java (CSMA example):

#CONFIGURATION FILE FOR SIMJAVA

#GENERAL CONFIGURATION

Algorithm: sequential

Stop(duration): 250000

Problem size: 96

Debugging log level: 1

Report file: reps/repCs96

Events file: yes

#PROBLEM SPECIFIC CONFIGURATION

Frame size: 64

Jam size: 4

Max buffer size: 8

Offered load: 1

Max propagation delay: 30

LAN speed: 10

45

46

SPADES(JAVA) SPADES(JAVA)

NAME

SPaDES/Java - a framework for discrete event simulation

DESCRIPTION

SPaDES/Java is an implementation of the SPaDES (Structured Parallel

Discrete-event Simulation) modeling and simulation framework based on

the event-oriented modeling paradigm.

CONFIGURATION FILE

SPaDES/Java optins can be set through a configuration file. The name of

the file is given as a parameter to the simulator. If no configuration

file is specified, the default configFile is assumed.

OPTIONS AVAILABLE IN THE CONFIGURATION FILE

This are the options that can be set in the configuration file. If any

of the option is not specified, the default value is used.

Algorithm: type

select the simulation type, either sequential or parallel

Default - sequential

Stop(duration): number

enable duration stopping condition

Default: 10

Stop(duration2): number

enable duration stopping condition, allowing sheduled events to

execute

Default: disabled

Debugging log level: (0-4)

sets the debugging level, 0 - less messages, 4 - all messages.

Default: 4 - all messages

Report file: filename

sets the filename for the report file.

Default: reportFile

Events file: yes / no

sets if event file is generated.

Default: no

Profile file: yes /no

sets if profile file is generated.

Default: no

Hosts file: filename

sets the filename for the hosts file. This file is used only for

the parallel version of the simulator. Please consult examples

for details of the syntax of this file.

Default: hosts.txt

Other options

Figure B.1: SPaDES/Java Man Page (1)

47

Application specific options can be set also in this file.

Examples

Configuration file:

#CONFIGURATION FILE FOR SIMJAVA

#GENERAL CONFIGURATION

Algorithm: parallel

Stop(duration) : 100

Debugging log level: 4

Report file: repPar

Event file: yes

Hosts file: hosts.txt

===================

#PROBLEM SPECIFIC CONFIGURATION

Row size: 2

Column size: 2

Messages per server: 1

Mean service time: 1

Transport time: 1

===================

The syntax for a line in the configuration file is: "Option : value"

Hosts file:

0 63 1 compute-0-1.ddns.comp.nus.edu.sg

64 127 1 compute-0-2.ddns.comp.nus.edu.sg

128 191 1 compute-0-3.ddns.comp.nus.edu.sg

192 255 1 compute-0-4.ddns.comp.nus.edu.sg

This means that there are 255 logical processes, the first 64 are

mapped on the first host and so on. The third parameter on each line

represents the step. Step = 1 means that all logical processes 0

through 63 are mapped on the firs host and so on.

Another example:

0 127 2 compute-0-1.ddns.comp.nus.edu.sg

1 127 2 compute-0-2.ddns.comp.nus.edu.sg

128 255 2 compute-0-3.ddns.comp.nus.edu.sg

129 255 2 compute-0-4.ddns.comp.nus.edu.sg

Step = 2 means that logical process 0,2,4, etc are mapped on the first

host, logical processes 1,3,5, etc are mapped on the second host and so

on.

WRITING A NEW APPLICATION

For writing a new application, SPaDES/Java comes with 3 example appli-

cations, PHOLD and MIN and CSMA

AUTHOR

The SPaDES/Java version 0.2 is freeware.

May 2005 0.2 SPADES(JAVA)

Figure B.2: SPaDES/Java Man Page (2)

